MSWasm: Soundly Enforcing Memory-
Safe Execution of Unsafe Code

Alexandra Michael Anitha Gollamudi Jay Bosamiya

Aidan Denlinger Evan Johnson Craig Disselkoen
Conrad Watt Bryan Parno Marco Patrignani
Marco Vassena Deian Stefan

/A

UMASS

LOWELL

University of UNIVERSITY OF
Massachusetts CAMBRIDGE

Lowell

UNIVERSITA Utrecht .
DI TRENTO University UC San Diego

WebAssembly

New bytecode language designed to run native applications safely

1\
ARE —

7

L

Wasm code runs in a
sandbox by construction

a

J

(Host
A

7

Browsers, Edge and
loT platforms

\

=

Host API

Wasm Sandbox

Wasm programs cannot read or corrupt the host’s memory!

Little protection within sandbox!

Unsafe programs remain unsafe when compiled to Wasm

B3R —

2/3 of Wasm programs are

compiled from C/C++

\. J

Memory vulnerabilities are easier
to exploit in Wasm than natively!

|

~
Attacker can effectively Host API
bypass sandbox!
exec
<4—|DOM.write
_

Wasm Sandbox

)
£

For example, buffer overflows can be turned into XSS attacks [Lehmann et al. 2020]

\

Can abuse host APIs to
perform unsafe actions!

J

Existing Solutions

Insert memory-saftety checks during compilation:

. Y . Softbounds, CETS,
h —s’ @ CCUred
[Emscripfen & ClangL

Industrial compilers do not and they should not!

Linked unsafe code
can bypass checks
No robustness: @ +

[Inlined checks cannot leverage]

A efficient memory-safety mechanisms
& V
Performance: % > —» @

Our Solution: MSWasm

MSWasm extends Wasm with memory-safety language abstractions

Segments

<

Handles

, A \
[Linear region of memory

accessible only via handles

J

A
[Unforgeable pointer wifh]

segment metadata

MSWasm backends can enforce memory safety robustly & efficiently!

MSWasm | ——————pp>

g

= BT

-

o o

- - e
1
) - | EH
) -] |

{

Leverage hardware extensions, OS
abstractions, platform details

Contributions of this work

(MSWasm Formal \ (Color-based \ Gound C-to-MSWasm\

Specification Memory Safety Compilation
e
V| jep .:) ‘.: \W/
_ . /NG B L .),

/ \ A / \ N
[Well—fyped MSWasm programs] [Language- and mechanism-] [Memory-safe execution

are robustly memory safe of unsafe code

independent definition

J

4)
CI MSWasm CompilerD Evaluation on PolyBenchC
y \

Easy to support different

'\\«/’m @ enforcement mechanisms @
2 s)
Graal ﬂ_l

arm Morello [General design enables

_ ') | performance-security tradeoffs]

Wasm Basics

Low-level bytecode designed as a safe compilation target

get $i & Design trade-off for compilers (e.g., clang)
const 4 Struct & Arrays —— Bags of bytes in memory
132.add

132. load Pointers +—

Integer memory offsets

Easy: Only int and float fypes]

L & structured control-flow!

Vv f\
q Validation via type-checking /\ \‘! No stack-smashing attacks!
A
2
l J Trap if memory accesses]

are not in bounds!

V
Stack-based virtual machine &\

linear memory (heap) J \‘! No sandbox breakout!

Sandboxing without Memory Safety

Vulnerable function trim_token adapted from libpng 1.6.37:

char xtrim_token(char xtoken) {

char xtrimmed = malloc(1024):

trim_token

> t E 0 E k E e E N E

// Scan token and skip leading whitespace
// First non-whitespace char and index:

char next = ...
int i = | I B |

// Copy the rest one char at the time

for (j = @; next != \0; j++)
trimmed[j] = next;

next = token[++1]; | Possible buffer overflow! J /\

return trimmed;

To exploit the vulnerability, call trim_token on a
string longer than 1024 char after trimming!

The vulnerability persists across compilation to Wasm:

C Emscripten/Clang Wasm
trimmed[j] = next; : > get $trimmed
A get $]
. . 132.add
[Blt.Jffer must be lc?td\;uf in]) 4 get $next
fnedr memory fn e Compute the i32 memory | 132.store
address of frimmed|j] g A >

Succeed as long as address

is in linear memory!
\. J

Vulnerable code cannot break out of the sandbox, but:

(Much easier than nafively!}

L-
i [t can corrupt and steal sensitive data within sandbox

{Read—only memory & ASLR

\Y
Wasm lacks native memory abstractions and protections

= MSWasm Design ii

MSWasm provides abstractions to enforce memory safety
A\

(New types, values, instructions J

(Individual Segment J

V Segment Memory

L
oad *» 0/1234
store ks
segment_load safe? ‘
segment_store #

Handles (5% O = < base, offset, length, isCorrupted, id >

A A A
Spatial Safe Handle Integri Temporal Safe
Other new instructions: (2o fy] (2 fy] (: fy]

segment_alloc

segment_free l Pointer arithmetic never traps J Emit slice for intra-object
handle.add memory safety (eg structs)

slice Shrink portion of segment that a handle can access

Enforcing memory safety via compilation

Compilers can eliminate latent memory vulnerabilities by targeting MS\Wasm

C-toMSWasm
Compiler
char xtrimmed = malloc(1024); ’ > const 1024
“ e segment_alloc
for (j = 0; next != ;o J++) set $trimmed

Allocate 1024-byte segment &

. . get $trimmed
store handle in var Strimmed

trimmed[j] = next;
next = token[++i]; {

get $j]
handle.add
get $next
[Increment offset of Strimmed i32.segment_store
& write Snext in the segment

(Prevent buffer overflow!

G’/ [f trimmed is incremented past its bound, segment_store traps
A\

MSWasm Design

In the paper: type system &

operational semantics

This Talk

~

Color-based
Memory Safety

~

(‘

arm Morell
orello iy

rSouno’ C—z‘o—MSWasm\
Compilation

@

_ /

Evaluation on PolyBenchC

ah JJC

This Talk

~

~

MSWasm Design

J

Color-based
Memory Safety

®
L 4

~

Formal Results

~

(Reason about memory safety & show)

that MSWasm specs are sound!

S/

~ N

L5

Graal

4 MSWasm Compilers

arm Morell
orello iy

\

Evaluation on PolyBenchC

ah JJC

Reasoning about Memory Safety using Colors

Memory allocations associate a unique color to pointer and memory region:

[alloc(5) j

1

[Memarian et al. 2019]

Represent pointer provanance]

Shadow Memory

A

[Safe access? }>
Colored 0
Pointers

Color match:
in-bounds access

|

5

out-of-bounds access

Color mismatch:]

.

(

\

Can be generalized to temporal

safety & intra-object spatial safety

L

J/

\

This is sufficient to detect spatial memory-safety violations

Color-Based Memory Safety

Spatial Safety [ocation and pointer colors must match

Temporal Safety Add tags to mark free memory locations

Intra-object Safety Decorate pointers and locations with shades

A
(No buffer overflows within structs J

x user—->name [4]
/ user—>id

- -
x { Free tag: Use after free J

@ =

struct User { char namel4], char id };

intra-object violation

[Shade mismatch:

Color-Based Memory-Satety Monitor

Inspect a trace of memory evel(wts and detect violations using colors:

Allocahon, free, memory accesses }

o Events [J j j Memory Safety
Monitor Violation

{Lc:mguage-indepencleniL

Apsirac & ; J;J " ._\.@\

A
ﬁ C.ross-language Memory Safe

YSWasm [J » j j Equivalence Relation Execution
Even
vents Establish soundness of compiler-
based memory-safety enforcement
\

The monitor allows reasoning about memory safety for different languages

This Talk

ey

T
A

Graa

Arm Morello
Y,

rSouno’ C—z‘o—MSWasm\
Compilation

g MSWasm Design A Color-based
J Memory Safety
\- Y
\
s 4 MSWasm Compilers g

®

l

Evaluation on PolyBenchC

ah JJC

This Talk

ey

T
A

Graa

arm Morell
orello iy

Sound C-to-MSWasm
Compilation

g MSWasm Design N [Colorbased A
g Memory Safety
e
\
g 4 MSWasm Compilers g

®

l

Evaluation on PolyBenchC

Formal Results

1. Any well-typed MSWasm module M is robustly memory safe.

L Program event trace is memory safe J

v & . V(& - =)
(Typepreserving | [Simplified C)

g]].—»

C-to-MSWasm Compiler:
C-to-Wasm compiler enforces memory-safe execution of unsafe code.:

(Well fyped) L And preserves the semantics of C! J

@ then @(ﬂ:.]‘)
3. If O(-) then @([-])

safety violation!

[Traps at the first memory-]

~

MSWasm Design

~

J

This Talk

~

Color-based
Memory Safety

~

~

arm Morell
orello iy

Formal Results

~

~

MSWasm Design

This Talk

4 Color-based)
Memory Safety

~

Formal Results

~

®

GraalV

Arm Morello

MSWasm Implementation

C-to-MSWasm compiler based on Cheri fork of Clang/LLVM

N\
() J

representation for handles

L Reuse Cheri-LLVM “fat pointer” IR }
S = Spatial Safety

H = Handle Integrity

General design makes it easy to
support different mechanisms

l T = Temporal Safety

MSWasm Backends Based on Type Enforcement Memory Safety

(Baggy Bounds l

@ rWasm AOT SW /64-bit STH, ST/S
(Could optimize memory safety checks J
%

G Ydd l GraalWasm JIT SW ST
i Capabilities J
Ar'M Morello BEReE AT /ENV-10l HW SH

~

MSWasm Design

~

Arm Morello

This Talk

4 Color-based)
Memory Safety

~

Formal Results

~

Evaluation on PolyBenchC

ah JJC

This Talk

N [

Formal Results

~

Graa

aArm Morello
Y,

s MSWasm Design) (Colorbased
J Memory Safety
\ .
b R W
\-)&
g R
4 MSWasm Compilers
v @

v

Evaluation on PolyBenchC

 JJC

Evaluation of MSWasm on PolyBenchC

Each safety enforcement techniques comes with a runtime performance cost:
A

w

© 10 Handle integrity in SW
© ——
@ is the most expensive!
S -
Nafive — x64 fl,’ 198% overhead for full MS in . |
I\c;hvew; TS 2,02 SW compared to rWasm $ l
on-Wasm Z
%)
3 21%: only spatial B
o (baggy bounds) j
< |
'8 10 V D : o
g | =
%) |
Geomean g J 42% head wrt IW,
N o overhead wrt graalWasm.
Overll;‘/ead £ - . " [(No JIT optimization yet) J
over a/S\m g 10 —4 — V
r‘Wasmpyasm rWasms rWasmsr rWasmsry Graalyassm Graalst Not dir ecf’y
(Only sandbox safefy] el

The overhead for enforcing Cheri-SH in HW is 39% over native (aarch64)

MSWasm: Soundly Enforcing Memory-Safe
Execution of Unsafe Code

4 MSWasm Formal) 4 Color-based) Gound C-to-MSWasm\
Specification Memory Safety Compilation

5 || @
=t)| @) V y

/ \ A / \ N
[Well—fyped MSWasm programs] [Language- and mechanism-] [Memory-safe execution

are robustly memory safe of unsafe code

independent definition

J

4)
CI MSWasm CompilerD Evaluation on PolyBenchC
y \

Easy to support different

enforcement mechanisms | 1 @
_ Y,

arm Morello [General design enables

_ ') | performance-security tradeoffs]

