
MSWasm: Soundly Enforcing Memory-
Safe Execution of Unsafe Code

Marco Vassena Deian Stefan

Alexandra Michael Anitha Gollamudi Jay Bosamiya

Conrad Watt Bryan Parno Marco Patrignani

Craig DisselkoenAidan Denlinger Evan Johnson

WebAssembly
New bytecode language designed to run native applications safely

.c .rs.cpp

Host
Wasm Sandbox

Wasm programs cannot read or corrupt the host’s memory!

Browsers, Edge and
IoT platforms

.wasm Wasm code runs in a
sandbox by construction

Host API

Host

Little protection within sandbox!
Unsafe programs remain unsafe when compiled to Wasm

2/3 of Wasm programs are
compiled from C/C++

.c .rs.cpp .wasm

Wasm Sandbox

Memory vulnerabilities are easier
to exploit in Wasm than natively!

Can abuse host APIs to
perform unsafe actions!

For example, buffer overflows can be turned into XSS attacks [Lehmann et al. 2020]

Attacker can effectively
bypass sandbox! API

exec

DOM.write 
...

Existing Solutions
Insert memory-safety checks during compilation:

.c .cpp
Softbounds, CETS,

CCured

Industrial compilers do not and they should not!

Emscripten & Clang

+ =No robustness:

Linked unsafe code
can bypass checks

Performance:

Inlined checks cannot leverage
efficient memory-safety mechanisms

Our Solution: MSWasm
MSWasm extends Wasm with memory-safety language abstractions

Handles Segments

MSWasm backends can enforce memory safety robustly & efficiently!

Unforgeable pointer with
segment metadata

Linear region of memory
accessible only via handles

A

B

C

MSWasm

Leverage hardware extensions, OS
abstractions, platform details

4 MSWasm Compilers

Contributions of this work
Color-based  

Memory Safety
Sound C-to-MSWasm  

Compilation
MSWasm Formal  

Specification

Evaluation on PolyBenchC

Language- and mechanism-
independent definition

Well-typed MSWasm programs
are robustly memory safe

Memory-safe execution
of unsafe code

Easy to support different
enforcement mechanisms

General design enables
performance-security tradeoffs

Design trade-off for compilers (e.g., clang)

Struct & Arrays Bags of bytes in memory

Pointers Integer memory offsets

Wasm Basics
Low-level bytecode designed as a safe compilation target

wasm

Stack-based virtual machine & 
linear memory (heap)

Validation via type-checking

get $i

const 1

i32.add 
i32.load

Easy: Only int and float types
& structured control-flow!

Trap if memory accesses
are not in bounds!

No stack-smashing attacks!

No sandbox breakout!

Sandboxing without Memory Safety

// Copy the rest one char at the time 
for (j = 0; next != \0; j++)

 trimmed[j] = next;

 next = token[++i];

Vulnerable function trim_token adapted from libpng 1.6.37:

Possible buffer overflow!

// Scan token and skip leading whitespace 
// First non-whitespace char and index: 
char next = ... 
int i = ...

char *trim_token(char *token) {

char *trimmed = malloc(1024);

}
return trimmed;
... To exploit the vulnerability, call trim_token on a

string longer than 1024 char after trimming!

␣ t o k e n \0 t o k e n \0
trim_token

 trimmed[j] = next; get $trimmed

get $j

i32.add 
get $next 
i32.store

The vulnerability persists across compilation to Wasm:

Emscripten/ClangC Wasm

Compute the i32 memory
address of trimmed[j]

Buffer must be laid out in
linear memory in Wasm

Succeed as long as address
is in linear memory!

Vulnerable code cannot break out of the sandbox, but:

It can corrupt and steal sensitive data within sandbox

Much easier than natively!

Wasm lacks native memory abstractions and protections

Read-only memory & ASLR

MSWasm Design
MSWasm provides abstractions to enforce memory safety

Segment Memory

0 1 2 3 4
load 
store

Individual Segment

Handles

New types, values, instructions

segment_load 
segment_store

= < base, offset, length, isCorrupted, id >

Spatial Safety Temporal SafetyHandle Integrity

safe?

segment_alloc 
segment_free 

handle.add 
slice

Pointer arithmetic never traps

Other new instructions:

Emit slice for intra-object
memory safety (eg structs)

Shrink portion of segment that a handle can access

Enforcing memory safety via compilation

char *trimmed = malloc(1024); 
... 
for (j = 0; next != \0; j++)

 trimmed[j] = next;

 next = token[++i];

const 1024 
segment_alloc 
set $trimmed 
...

get $trimmed 
get $j

handle.add 
get $next 
i32.segment_store 
...

C-toMSWasm  
Compiler

Compilers can eliminate latent memory vulnerabilities by targeting MSWasm

Allocate 1024-byte segment &
store handle in var $trimmed

Increment offset of $trimmed
& write $next in the segment

If trimmed is incremented past its bound, segment_store traps

Prevent buffer overflow!

4 MSWasm Compilers

This Talk
Color-based  

Memory Safety
Sound C-to-MSWasm  

CompilationMSWasm Design

In the paper: type system &
operational semantics

Evaluation on PolyBenchC

4 MSWasm Compilers

This Talk
Color-based  

Memory Safety Formal ResultsMSWasm Design

Evaluation on PolyBenchC

Reason about memory safety & show
that MSWasm specs are sound!

Reasoning about Memory Safety using Colors

Memory allocations associate a unique color to pointer and memory region:

Represent pointer provanance
[Memarian et al. 2019]

Shadow Memory

Colored  
 Pointers 0 5

Color mismatch:  
out-of-bounds access

Color match:  
in-bounds access

This is sufficient to detect spatial memory-safety violations

Can be generalized to temporal
safety & intra-object spatial safety

alloc(5)

Safe access?

Color-Based Memory Safety

4 5

Free tag: Use after freeShade mismatch:  
intra-object violation

Decorate pointers and locations with shades

Temporal Safety Add tags to mark free memory locations

Intra-object Safety

struct User { char name[4], char id };

Spatial Safety Location and pointer colors must match

F F F

4

No buffer overflows within structs

4

user->name[4]

user->id

?

Color-Based Memory-Safety Monitor
Inspect a trace of memory events and detect violations using colors:

E1E2E3

Allocation, free, memory accesses

The monitor allows reasoning about memory safety for different languages

Abstract 
Events

MSWasm  
Events

W1W2W3

C1C2C3C Events

Language-independent

Establish soundness of compiler-
based memory-safety enforcement

Cross-language
Equivalence Relation

Monitor
Memory Safety  

 Violation

Memory Safe  
Execution

4 MSWasm Compilers

This Talk
Color-based  

Memory Safety
Sound C-to-MSWasm  

CompilationMSWasm Design

Evaluation on PolyBenchC

4 MSWasm Compilers

This Talk
Color-based  

Memory Safety
Sound C-to-MSWasm  

CompilationMSWasm Design

Evaluation on PolyBenchC

Formal Results
1. Any well-typed MSWasm module M is robustly memory safe:

Program event trace is memory safe

C-to-Wasm compiler enforces memory-safe execution of unsafe code:

2. If C() then C(⟦ ⟧)
Well-typed And preserves the semantics of C!

3. If C() then C(⟦ ⟧)
Traps at the first memory-

safety violation!

∀ . M()+

C-to-MSWasm Compiler: ⟦·⟧ :
Simplified CType-preserving

4 MSWasm Compilers

This Talk
Color-based  

Memory Safety Formal ResultsMSWasm Design

Evaluation on PolyBenchC

4 MSWasm Compilers

This Talk
Color-based  

Memory Safety Formal ResultsMSWasm Design

Evaluation on PolyBenchC

MSWasm Implementation
C-to-MSWasm compiler based on Cheri fork of Clang/LLVM

Reuse Cheri-LLVM “fat pointer” IR
representation for handles

MSWasm Backends Memory SafetyType EnforcementBased on

S = Spatial Safety  
T = Temporal Safety  
H = Handle Integrity

AOT STH, ST / SSW / 64-bitrWasm

JIT STSWGraalWasm

AOT SHHWCheri LLVM

General design makes it easy to
support different mechanisms

Baggy Bounds

Capabilities

Could optimize memory safety checks

4 MSWasm Compilers

This Talk
Color-based  

Memory Safety Formal ResultsMSWasm Design

Evaluation on PolyBenchC

4 MSWasm Compilers

This Talk
Color-based  

Memory Safety Formal ResultsMSWasm Design

Evaluation on PolyBenchC

Evaluation of MSWasm on PolyBenchC

198% overhead for full MS in
SW compared to rWasm

42% overhead wrt graalWasm.
(No JIT optimization yet)

21%: only spatial
(baggy bounds)

Geomean 
overhead  

over Wasm

The overhead for enforcing Cheri-SH in HW is 39% over native (aarch64)

Not directly
comparable

Each safety enforcement techniques comes with a runtime performance cost:

Handle integrity in SW
is the most expensive!

Native = x64 
Non-Wasm

Only sandbox safety

4 MSWasm Compilers

Color-based  
Memory Safety

Sound C-to-MSWasm  
Compilation

MSWasm Formal  
Specification

Evaluation on PolyBenchC

Language- and mechanism-
independent definition

Well-typed MSWasm programs
are robustly memory safe

Memory-safe execution
of unsafe code

Easy to support different
enforcement mechanisms

General design enables
performance-security tradeoffs

MSWasm: Soundly Enforcing Memory-Safe
Execution of Unsafe Code

