WALT: Watch And Learn 2D Amodal Representation from Time-lapse Imagery [
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Goal: Learnlng Automatlc 2D Amodal Representatlon
- | = cameras capturing data over a year in short bursts.

Unoccluded Objects composited in layers onto same scene
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Input Time-Lapse Video | Youtube 6 30 3s 5 Mil 15 Mil
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ASN[1] | 24.9 @296 « 794 | 7691 | ASN[]| 66.1 @ 831 8109
BCN[2] | 27.3 @ 327 | 8279 7744 | BCN[2] 732 @ 899 883

a2 1 Ours | 279 331 836 782 | Ours 753 | 921 @ 917
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each camera of WALT  Unoccluded objects Segmentation

Synthdatasets have domain gap with real data[4]
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