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Introduction

@ For all n, q, and d, Delsarte’s linear program establishes a
series of linear constraints that every code in g with
distance d must satisfy.

@ We want to maximize the size of the code, subject to these
linear constraints.

@ Together, the constraints and the objective function form a
linear program.

@ Solving this linear program gives an upper bound on the
size of a code in g with distance d.
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Association schemes
Definition

A symmetric association scheme A = {X, R} is a finite set X
and a set of relations R = {Ro, R1,...,Rq} on X such that the
R; satisfy:
® Rp ={(x,x):x e X}
@ If (X,y) € R;, then (y,x) € R;. (This condition is weaker in
asymmetric association schemes.)
@ R partitions X x X.

@ Fix values h,i,j € [0,d], and consider the relations Ry, R;,
and R;. For each (x,y) € Ry, the number of elements
z € X such that (x,z) € Ry and (z,y) € R; is always the
same, regardless of (x,y).




Association schemes
Graph intuition

@ We can think of X as the vertices of a graph, and the
values of (x,y) are the (undirected) edges of the graph.
(Note that (x, x) is allowed, so the graph has self-loops.)

@ We can think of the relations Ry, ..., Ry as d + 1 distinct
colors. If an edge (x,Yy) is in R;, then we color the edge
(x,y) by the color of R;.

@ Since {Ry,...,Rq} partitions X x X, we know that each
edge is colored exactly one color.



Association schemes
Graph intuition

@ Recall the following condition:
@ Fixvaluesi,j,k € [0,d], and consider the relations R;, R;,
and Ry. For each (x,y) € R;, the number of elements
z € X such that (x,z) € Rj and (z,y) € Ry is always the
same, regardless of (x,y).
Think of the edges (X,Y), (x,z), and (z,y) as a triangle in
the graph. Then, the condition becomes the following:
o If we consider all triangles (x,y,z) with (X,y) € Ry,
(x,z) € R, and (z,y) € R;, then every edge (X,y) € Ry
takes part in the same number of triangles.



Hamming scheme
Definition

The association scheme that we are interested in is the
Hamming scheme. Consider the vector space Fg. Our set of
elements X will be all coordinates in . Then, the
Hamming scheme is defined as follows:

@ There are n + 1 relations Ry, ..., Rn, which correspond to
Hamming distances between pairs of points.

@ For two coordinates x,y € Fg, (X,y) belongs to the relation
indexed by the Hamming distance of x and y. That is,
(Xay) S I:eA(x,y)-



Hamming scheme
... Is an association scheme

Let us check that the Hamming scheme satisfies the conditions
for a symmetric association scheme.
® Ro ={(x,x):x € X}
o Satisfied because A(x,y)=0<x =vy.
@ If (x,y) € Rj, then (y,x) € R;.
@ Satisfied because Hamming distance is symmetric.
@ R partitions X x X.
o Satisfied by definition.

@ Fix values h,i,j € [0,d], and consider the relations Ry, R;,
and R;. For each (x,y) € Ry, the number of elements
z € X such that (x,z) € Rj and (z,y) € R; is always the
same, regardless of (x,y).
@ Intuitively, this is true because the Hamming distance is
unaffected by coordinate shifts.



Associate matrices
Definition

In an association scheme with set X and relations Ry, ..., Ry,
we can define one associate matrix A; for each R; as follows:
@ Each A; has rows and columns indexed by elements in X.
(So each A; is an |X|-by-|X| matrix.)
@ Entry (x,y) of Ajis 1if (x,y) € R;, and O otherwise.
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Associate matrices
Properties

The associate matrices have several nice properties:

@ Ap =1, since Rq only has elements of the form (x, x)
d
o ZAi is the all-ones matrix, since R; partition X x X
i=0
@ If we multiply two matrices A; and A;, then we get a linear

combination of Ay, for h € [0,d].
d

o In particular, AjA; = Z pﬂjAh, where pth is the number of
h=0
triangles with one edge in (x,y) € R, and other two edges
in R;,R;. This is easily verified.
@ From above, since pf'; = pf';, we get that AjA; = AjA}, SO
the matrices are commutative.
@ If we think of the matrices as a vector space, then the A,
are linearly independent.
@ because each of the |X |2 entries is 1 in exactly one A,.



Bose-Mesner algebra
Definition

Recall the following property, which is perhaps the most
important:

@ If we multiply two matrices A; and A;, then we get a linear
combination of Ay, for h € [0,d].

An algebra is a vector space equipped with a bilinear product.
@ The matrices A; are a basis for a vector space of matrices.

@ Moreover, multiplying any two A; and A; results in a linear
combination of the Ay, which is again an element of the
vector space.

Therefore, the vector space spanned by A; forms an algebra
over the matrices, called the Bose-Mesner algebra.




Bose-Mesner algebra
Orthogonal basis

It turns out that the Bose-Mesner algebra always has another
basis of pairwise “orthogonal” matrices. Specifically, the vector
space spanned by Ag, ..., Aq has another basis Eg, ..., Eq4
such that

@ E;E; is the zero matrix if i # |
) Ei2 = E; (such matrices are called idempotent.)

This is analogous to the spectral theorem of linear algebra.



First and second eigenmatrices
Definition

Define the (d + 1)-by-(d + 1) matrices P and Q as follows:

d
@ The entries of P satisfy A; = Y _ P;E;.
=0

d
. . 1
@ The entries of Q satisfy E; = X > QA
i—0

P is called the first eigenmatrix, and Q is the second
eigenmatrix. They are essentially change-of-basis matrices
from the basis Ag, . .., Ay to the basis Eg, ..., E4 and back.



First and second eigenmatrices
Properties

If we instead think of the A; and E; as individual entries of a
matrix (i.e. pretend that they are numbers), then the definitions
can be more concisely written as
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If we combine the two equations, then we can see that

@ [EoE; - Eq] = [EoE:i - Eq]-P)-Q

—
X
Since the E; are linearly independent, we must have

@ P-Q = |X|-I(wherelisthe (d 4+ 1)-by-(d + 1) identity
matrix)



Eigenmatrices for the Hamming scheme

@ Even for the Hamming scheme, computing the
eigenmatrices P and Q is highly non-trivial. Delsarte [Del
'73] showed that the eigenmatrix Q for the Hamming
scheme on [ can be represented in terms of the
Krawtchouk polynomials, which are defined as:

k
B X\ (M =X\, Ny 4k
> k00 =3 () (k)
@ In particular, Q; x = Ki(i). (This is a highly non-trivial
result.)
@ As an example, for the Hamming scheme in F3,
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Distribution vectors
Definition

@ Let (X, R) be an association scheme and let Y be a subset

of X.
@ The distribution vector of Y is a vector a of lengthd + 1
(Y X Y)NRj|
such that a; = T

@ In graph notation, we can think of the subgraph induced by
the vertices in Y. Then, g is simply the average degree of
a vertex in Y, where only edges in R; are considered.

d
@ We can easily see that Y "a; = |Y|.
i—0



Distribution vectors
Relation to coding theory

Let us consider the Hamming scheme again, where

X = Fg.

Consider a code in Fg. We can let Y be the set of
codewords.

Now consider the distribution vector a. Recall that a; is the
average degree of a vertex in the subgraph induced by Y,
where only edges in R; are considered. What can we
deduce about a?

d
We know that a; > 0 and that » ~a; = |Y|.

i=0
We can also easily see that ag = 1.
Suppose, in addition, the code has distance r. Then, we
also knowthata; =a, =---=a,_1 =0.

There is one more key property, which we prove next.



Distribution vectors
Main theorem

Here is the key theorem on distribution vectors that forms the
basis for the linear programming bound.

@ Theorem: If a is a distribution vector of a subset Y of an
association scheme with second eigenmatrix Q, then
aQ > 0. (That is, the vector aQ has only non-negative
entries.)

@ Proof:

o Lety be the characteristic vector of Y. That is, yx = 1 if
x € Y, and 0 otherwise. Then,

YAY'
@ g = N

o [t follows that

@ 0<|lyEi|® = (YE)(YE)" = yEE'y" =yEy", where the
last step is true because E; is idempotent and symmetric.




Distribution vectors
Main theorem

@ Proof (continued):

@ Recall that
d T
1 YAy
Ei=— QiA anda = ———.
X ,Z TR TN

@ Therefore,

d
@ 0<yEY' = W (ZQJIA]> ‘71| (ZjSijyT) =

j=0
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@ So for each i, (aQ)i > 0, as desired. [



The linear programming bound
Formulation

@ Let us collect all of the conditions that a must satisfy:

ag=1.

a=0forl<i<r.

g >0forr <i<n.

aQ > 0. (This introduces d + 1 linear inequalities.)

® © ¢ ¢

d
@ At the end, we know that Zai = |Y|. Therefore, to upper
i=0
bound the set Y of codewords, our objective of the linear

d

program is to maximize » _ a;.
i=0
@ That’s it for Delsarte’s linear program.



The linear programming bound
A nice property

A nice property that merits its own slide:

@ The linear programming bound works for all codes, not just
linear codes. This is because we make no assumption on
thesetY C X.



The linear programming bound
Comparison to Hamming bound

For fixed n and g, we can numerically | " | %] Hamming Bound | Linear Programming Bound
solve the linear program to find the N 1o
upper bound for codes in FY. Here is E ’ 38086 Zj
a table comparing the Hamming ST e
bound and the LP bound for codes in | , |, 10 0
I3 with distance é. o7 - o
@ Note that the tables suggest 1313 5851 o2
that the LP bound is always at | ™|7|  * o
most the Hamming bound. This i 3 13;23 1024
is in fact true: Delsarte [Del '73] uls 1;4.; 105
showed how to establish the ne 10 16
Hamming bound using the LP 513 2018 2018
bound, so the LP bound is 155 2708 256
always at least as strong. 157 56.9 32

@ Also note the perfect code with
n=15=2*—1andj§ = 3. As
expected, both bounds achieve
this perfect code.



Asymptotics

for the linear programming bound

@ What about for higher n? We would like to find asymptotics
for the linear programming bound.

@ For the rest of this talk, we will focus only on binary codes.



Asymptotics

for the linear programming bound

@ Let A(n, [6n]) be the maximum size of a binary code with
length n and distance dn. We can define the function

R(0) = limsup w. Intuitively, this is an

n—oo
asymptotic measure of the best rate possible for a binary
code.

@ Similarly, let A_p(n, [dn]) to be the maximum value of
d

Z a; for some a that satisfies Delsarte’s linear program.
i=0

Since the LP bound is an upper bound, we have

A(n, [on]) < Aip(n, [dn]).

log, Acp(n, [0n])

n—oo n
want bounds on R p(6), which is an upper bound for R(9).

. We

@ We can also define R p(d) = limsup



Asymptotics: upper bound

for the linear programming bound

@ We are most interested in
an upper bound for R;p(9),
since this will also be an
upper bound for R(4).

@ McEliece, Rodemich,
Rumsey, and Welch [MRRW
"77] showed that

Rip(9) < H(5 — /(L 0).
This is the best bound
known for § > 0.273.

@ Here is a plot of this upper
bound with the

R(0) <

1-H
2

which we saw in class:

1—\/@)’



Asymptotics: upper bound

for the linear programming bound

@ Navon and Samorodnitsky [NS '05] established a simpler
proof of the same bound, R p(9) < H(% — /(1 —9).

@ Their method was to construct feasible solutions to the dual
of Delsarte’s linear program, which can be formulated as:

@ minimize (Qb)o, given the constraints
@ b>0.
[*) bo =1.
@ (Qb)y<0Oford <i<n.

@ By linear programming duality, the minimum of the dual
equals the maximum of the primal, so any feasible solution
to the dual is an upper bound of the optimum A p(n,d).

@ Their construction uses Fourier analysis on Z5.

@ Unfortunately, Fourier analysis is not as nice on Zg for
g > 2, so their construction does not generalize to arbitrary

g.



Asymptotics: lower bound

for the linear programming bound

@ We might also be interested
in a lower bound for R p(4).

@ A lower bound for R p(0)
gives a better measure of
how powerful the LP bound
actually is. It is essentially a
cap on the strength of the
bound.

@ Navon and Samorodnitsky
[NS '05] showed the lower
bound Rip(9) >

%H(l —24/6(1 —4)), which
is currently the best known.

@ Here is a plot of the lower
bound with the upper bound.




Open problems

@ Improved lower bounds for binary codes

o Delsarte’s linear program provides asymptotic upper
bounds that are the best for 6 > 0.273. Therefore, any
improvement to the upper bound with ¢ in this range
improves upon the best known upper bound.

@ While the lower and upper bounds of [NS '05] converge as

1 . :
J— > there is a large gap for smaller 4. This allows for
improvement of at least one of the bounds.

@ Asymptotic bounds for q > 2:

@ The linear programming bound has provided some of the
best asymptotic bounds for g = 2. Unfortunately, these
techniques do not generalize for arbitrary q.

@ However, Delsarte’s linear program generalizes to all q.

@ Therefore, an open question remains to show good
asymptotic bounds for R p(9) for g > 2.
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