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Introduction

For all n, q, and d , Delsarte’s linear program establishes a
series of linear constraints that every code in Fn

q with
distance d must satisfy.

We want to maximize the size of the code, subject to these
linear constraints.

Together, the constraints and the objective function form a
linear program.

Solving this linear program gives an upper bound on the
size of a code in Fn

q with distance d .
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Association schemes
Definition

A symmetric association scheme A = {X ,R} is a finite set X
and a set of relations R = {R0, R1, . . . , Rd} on X such that the
Ri satisfy:

R0 = {(x , x) : x ∈ X}

If (x , y) ∈ Ri , then (y , x) ∈ Ri . (This condition is weaker in
asymmetric association schemes.)

R partitions X × X .

Fix values h, i , j ∈ [0, d ], and consider the relations Rh, Ri ,
and Rj . For each (x , y) ∈ Rh, the number of elements
z ∈ X such that (x , z) ∈ Ri and (z, y) ∈ Rj is always the
same, regardless of (x , y).
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Association schemes
Graph intuition

We can think of X as the vertices of a graph, and the
values of (x , y) are the (undirected) edges of the graph.
(Note that (x , x) is allowed, so the graph has self-loops.)

We can think of the relations R0, . . . , Rd as d + 1 distinct
colors. If an edge (x , y) is in Ri , then we color the edge
(x , y) by the color of Ri .

Since {R0, . . . , Rd} partitions X × X , we know that each
edge is colored exactly one color.
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Association schemes
Graph intuition

Recall the following condition:
Fix values i , j , k ∈ [0, d ], and consider the relations Ri , Rj ,
and Rk . For each (x , y) ∈ Ri , the number of elements
z ∈ X such that (x , z) ∈ Rj and (z, y) ∈ Rk is always the
same, regardless of (x , y).

Think of the edges (x , y), (x , z), and (z, y) as a triangle in
the graph. Then, the condition becomes the following:

If we consider all triangles (x , y , z) with (x , y) ∈ Rh,
(x , z) ∈ Ri , and (z, y) ∈ Rj , then every edge (x , y) ∈ Rh

takes part in the same number of triangles.
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Hamming scheme
Definition

The association scheme that we are interested in is the
Hamming scheme. Consider the vector space Fn

q. Our set of
elements X will be all coordinates in Fn

q. Then, the
Hamming scheme is defined as follows:

There are n + 1 relations R0, . . . , Rn, which correspond to
Hamming distances between pairs of points.

For two coordinates x , y ∈ Fn
q, (x , y) belongs to the relation

indexed by the Hamming distance of x and y . That is,
(x , y) ∈ RΔ(x ,y).
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Hamming scheme
... is an association scheme

Let us check that the Hamming scheme satisfies the conditions
for a symmetric association scheme.

R0 = {(x , x) : x ∈ X}
Satisfied because Δ(x , y) = 0 ⇔ x = y .

If (x , y) ∈ Ri , then (y , x) ∈ Ri .
Satisfied because Hamming distance is symmetric.

R partitions X × X .
Satisfied by definition.

Fix values h, i , j ∈ [0, d ], and consider the relations Rh, Ri ,
and Rj . For each (x , y) ∈ Rh, the number of elements
z ∈ X such that (x , z) ∈ Ri and (z, y) ∈ Rj is always the
same, regardless of (x , y).

Intuitively, this is true because the Hamming distance is
unaffected by coordinate shifts.
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Associate matrices
Definition

In an association scheme with set X and relations R0, . . . , Rd ,
we can define one associate matrix Ai for each Ri as follows:

Each Ai has rows and columns indexed by elements in X .
(So each Ai is an |X |-by-|X | matrix.)

Entry (x , y) of Ai is 1 if (x , y) ∈ Ri , and 0 otherwise.
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Associate matrices
Example: Hamming scheme

Consider the Hamming scheme on F3
2, indexed by

[000, 001, 010, 011, 100, 101, 110, 111]. We can easily check
that

A0 =







1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





 , A1 =







0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0





 ,

A2 =







0 0 0 1 0 1 1 0
0 0 1 0 1 0 0 1
0 1 0 0 1 0 0 1
1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1
1 0 0 1 0 0 1 0
1 0 0 1 0 1 0 0
0 1 1 0 1 0 0 0





 , A3 =







0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0





 .
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Associate matrices
Properties

The associate matrices have several nice properties:

A0 = I, since R0 only has elements of the form (x , x)
d∑

i=0

Ai is the all-ones matrix, since Ri partition X × X

If we multiply two matrices Ai and Aj , then we get a linear
combination of Ah for h ∈ [0, d ].

In particular, AjAi =
d∑

h=0

ph
i,jAh, where ph

i,j is the number of

triangles with one edge in (x , y) ∈ Rh and other two edges
in Ri , Rj . This is easily verified.

From above, since ph
i,j = ph

j,i , we get that AjAi = AiAj , so
the matrices are commutative.
If we think of the matrices as a vector space, then the Ai
are linearly independent.

because each of the |X |2 entries is 1 in exactly one Ai .
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Bose-Mesner algebra
Definition

Recall the following property, which is perhaps the most
important:

If we multiply two matrices Ai and Aj , then we get a linear
combination of Ah for h ∈ [0, d ].

An algebra is a vector space equipped with a bilinear product.

The matrices Ai are a basis for a vector space of matrices.

Moreover, multiplying any two Ai and Aj results in a linear
combination of the Ah, which is again an element of the
vector space.

Therefore, the vector space spanned by Ai forms an algebra
over the matrices, called the Bose-Mesner algebra.
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Bose-Mesner algebra
Orthogonal basis

It turns out that the Bose-Mesner algebra always has another
basis of pairwise “orthogonal” matrices. Specifically, the vector
space spanned by A0, . . . , Ad has another basis E0, . . . , Ed

such that

EiEj is the zero matrix if i 6= j

E2
i = Ei (such matrices are called idempotent.)

This is analogous to the spectral theorem of linear algebra.
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First and second eigenmatrices
Definition

Define the (d + 1)-by-(d + 1) matrices P and Q as follows:

The entries of P satisfy Ai =
d∑

j=0

PjiEj .

The entries of Q satisfy Ei =
1
|X |

d∑

j=0

QjiAj .

P is called the first eigenmatrix, and Q is the second
eigenmatrix. They are essentially change-of-basis matrices
from the basis A0, . . . , Ad to the basis E0, . . . , Ed and back.
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First and second eigenmatrices
Properties

If we instead think of the Ai and Ei as individual entries of a
matrix (i.e. pretend that they are numbers), then the definitions
can be more concisely written as

[ A0 A1 ∙∙∙ Ad ] = [ E0 E1 ∙∙∙ Ed ] ∙

[
↑ ↑ ∙∙∙ ↑

P∗,0 P∗,1 ∙∙∙ P∗,d
↓ ↓ ∙∙∙ ↓

]

[ E0 E1 ∙∙∙ Ed ] =
1
|X |

∙ [ A0 A1 ∙∙∙ Ad ] ∙

[
↑ ↑ ∙∙∙ ↑

Q∗,0 Q∗,1 ∙∙∙ Q∗,d
↓ ↓ ∙∙∙ ↓

]

If we combine the two equations, then we can see that

[ E0 E1 ∙∙∙ Ed ] =
1
|X |

∙ ([ E0 E1 ∙∙∙ Ed ] ∙ P) ∙ Q

Since the Ei are linearly independent, we must have

P ∙ Q = |X | ∙ I (where I is the (d + 1)-by-(d + 1) identity
matrix)
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Eigenmatrices for the Hamming scheme

Even for the Hamming scheme, computing the
eigenmatrices P and Q is highly non-trivial. Delsarte [Del
’73] showed that the eigenmatrix Q for the Hamming
scheme on Fn

q can be represented in terms of the
Krawtchouk polynomials, which are defined as:

Kk (x) =
k∑

i=1

(
x
i

)(
n − x
k − i

)

(−1)i(q − 1)k−i

In particular, Qi,k = Kk (i). (This is a highly non-trivial
result.)

As an example, for the Hamming scheme in F3
2,

Q =

[
1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1

]

.
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Distribution vectors
Definition

Let (X ,R) be an association scheme and let Y be a subset
of X .

The distribution vector of Y is a vector a of length d + 1

such that ai =
|(Y × Y ) ∩ Ri |

|Y |
.

In graph notation, we can think of the subgraph induced by
the vertices in Y . Then, ai is simply the average degree of
a vertex in Y , where only edges in Ri are considered.

We can easily see that
d∑

i=0

ai = |Y |.
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Distribution vectors
Relation to coding theory

Let us consider the Hamming scheme again, where
X = Fn

q.

Consider a code in Fn
q. We can let Y be the set of

codewords.

Now consider the distribution vector a. Recall that ai is the
average degree of a vertex in the subgraph induced by Y ,
where only edges in Ri are considered. What can we
deduce about a?

We know that ai ≥ 0 and that
d∑

i=0

ai = |Y |.

We can also easily see that a0 = 1.

Suppose, in addition, the code has distance r . Then, we
also know that a1 = a2 = ∙ ∙ ∙ = ar−1 = 0.

There is one more key property, which we prove next.
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Distribution vectors
Main theorem

Here is the key theorem on distribution vectors that forms the
basis for the linear programming bound.

Theorem: If a is a distribution vector of a subset Y of an
association scheme with second eigenmatrix Q, then
aQ ≥ 0. (That is, the vector aQ has only non-negative
entries.)

Proof:

Let y be the characteristic vector of Y . That is, yx = 1 if
x ∈ Y , and 0 otherwise. Then,

ai =
yAiyT

|Y |
.

It follows that

0 ≤ ‖yEi‖
2 = (yEi)(yEi)

T = yEiET
i yT = yEiyT , where the

last step is true because Ei is idempotent and symmetric.
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Distribution vectors
Main theorem

Proof (continued):
Recall that

Ei =
1
|X |

d∑

j=0

QjiAj and ai =
yAiyT

|Y |
.

Therefore,

0 ≤ yEiyT =
1
|X |

y




d∑

j=0

QjiAj



 yT =
1
|X |




d∑

j=0

QjiyAjy
T



 =

|Y |
|X |

d∑

j=0

ajQji =
|Y |
|X |

(aQ)i .

So for each i , (aQ)i ≥ 0, as desired.
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The linear programming bound
Formulation

Let us collect all of the conditions that a must satisfy:

a0 = 1.
ai = 0 for 1 ≤ i < r .
ai ≥ 0 for r ≤ i ≤ n.
aQ ≥ 0. (This introduces d + 1 linear inequalities.)

At the end, we know that
d∑

i=0

ai = |Y |. Therefore, to upper

bound the set Y of codewords, our objective of the linear

program is to maximize
d∑

i=0

ai .

That’s it for Delsarte’s linear program.
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The linear programming bound
A nice property

A nice property that merits its own slide:

The linear programming bound works for all codes, not just
linear codes. This is because we make no assumption on
the set Y ⊆ X .
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The linear programming bound
Comparison to Hamming bound

For fixed n and q, we can numerically
solve the linear program to find the
upper bound for codes in Fq

n . Here is
a table comparing the Hamming
bound and the LP bound for codes in
Fn

2 with distance δ.

Note that the tables suggest
that the LP bound is always at
most the Hamming bound. This
is in fact true: Delsarte [Del ’73]
showed how to establish the
Hamming bound using the LP
bound, so the LP bound is
always at least as strong.
Also note the perfect code with
n = 15 = 24 − 1 and δ = 3. As
expected, both bounds achieve
this perfect code.
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Asymptotics
for the linear programming bound

What about for higher n? We would like to find asymptotics
for the linear programming bound.

For the rest of this talk, we will focus only on binary codes.
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Asymptotics
for the linear programming bound

Let A(n, bδnc) be the maximum size of a binary code with
length n and distance δn. We can define the function

R(δ) = lim sup
n→∞

log2 A(n, bδnc)
n

. Intuitively, this is an

asymptotic measure of the best rate possible for a binary
code.

Similarly, let ALP(n, bδnc) to be the maximum value of
d∑

i=0

ai for some a that satisfies Delsarte’s linear program.

Since the LP bound is an upper bound, we have
A(n, bδnc) ≤ ALP(n, bδnc).

We can also define RLP(δ) = lim sup
n→∞

log2 ALP(n, bδnc)
n

. We

want bounds on RLP(δ), which is an upper bound for R(δ).
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Asymptotics: upper bound
for the linear programming bound

We are most interested in
an upper bound for RLP(δ),
since this will also be an
upper bound for R(δ).
McEliece, Rodemich,
Rumsey, and Welch [MRRW
’77] showed that

RLP(δ) ≤ H(
1
2
−
√

δ(1 − δ).

This is the best bound
known for δ ≥ 0.273.
Here is a plot of this upper
bound with the
Elias-Bassalygo bound
R(δ) ≤

1 − H
(

1 −
√

1 − 2δ

2

)

,

which we saw in class:
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Asymptotics: upper bound
for the linear programming bound

Navon and Samorodnitsky [NS ’05] established a simpler

proof of the same bound, RLP(δ) ≤ H(
1
2
−
√

δ(1 − δ).

Their method was to construct feasible solutions to the dual
of Delsarte’s linear program, which can be formulated as:

minimize (Qb)0, given the constraints

b ≥ 0.
b0 = 1.
(Qb)i ≤ 0 for d ≤ i ≤ n.

By linear programming duality, the minimum of the dual
equals the maximum of the primal, so any feasible solution
to the dual is an upper bound of the optimum ALP(n, d).
Their construction uses Fourier analysis on Zn

2.
Unfortunately, Fourier analysis is not as nice on Zn

q for
q > 2, so their construction does not generalize to arbitrary
q.
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Asymptotics: lower bound
for the linear programming bound

We might also be interested
in a lower bound for RLP(δ).
A lower bound for RLP(δ)
gives a better measure of
how powerful the LP bound
actually is. It is essentially a
cap on the strength of the
bound.
Navon and Samorodnitsky
[NS ’05] showed the lower
bound RLP(δ) ≥
1
2

H(1 − 2
√

δ(1 − δ)), which

is currently the best known.
Here is a plot of the lower
bound with the upper bound.
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Open problems

Improved lower bounds for binary codes

Delsarte’s linear program provides asymptotic upper
bounds that are the best for δ ≥ 0.273. Therefore, any
improvement to the upper bound with δ in this range
improves upon the best known upper bound.
While the lower and upper bounds of [NS ’05] converge as

δ →
1
2

, there is a large gap for smaller δ. This allows for

improvement of at least one of the bounds.

Asymptotic bounds for q > 2:

The linear programming bound has provided some of the
best asymptotic bounds for q = 2. Unfortunately, these
techniques do not generalize for arbitrary q.
However, Delsarte’s linear program generalizes to all q.
Therefore, an open question remains to show good
asymptotic bounds for RLP(δ) for q > 2.
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The end
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