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1 Introduction

A fundamental objective in coding theory is to find upper bounds on the size of a code in Fn
q with a certain

distance d. Upper bounds make us aware of the best transmission rates possible for codes of a certain size
and distance.

Delsarte’s linear program is a method for upper bounding the sizes of codes. It establishes a series of
linear constraints that every code in Fn

q with distance d must satisfy. Naturally, the objective function
becomes to maximize the size of the code, subject to these linear constraints. Together, the constraints and
the objective function form a linear program, which, when solved, gives an upper bound on the size of a
code in Fn

q with distance d.
The linear program can be computed numerically for small n. For large n, the best we can hope for is to

provide asymptotics on the value of the optimum.
We begin with some preliminaries required to understand the motivation behind Delsarte’s linear pro-

gram. We then discuss numerical results, followed by asymptotic bounds, and conclude with open problems
to be worked on.

2 Preliminaries

2.1 Association schemes

Delsarte’s linear program makes use of the notion of a Hamming scheme, which is a type of association
scheme. The association scheme is defined as follows.

Definition 1. A symmetric association scheme A = {X,R} is a finite set X and a set of relations R =
{R0, R1, . . . , Rd} on X such that the Ri satisfy the following properties:

1. R0 = {(x, x) : x ∈ X}.

2. If (x, y) ∈ Ri, then (y, x) ∈ Ri. (Note: this condition is weaker in asymmetric association schemes.)

3. R partitions X × X.

4. Fix values h, i, j ∈ [0, d], and consider the relations Rh, Ri, and Rj. For each (x, y) ∈ Rh, the number
of elements z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj is always the same, regardless of (x, y). Let
this number be ph

i,j .
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Perhaps the most interesting and important property is the fourth condition. Unfortunately, the condition
is not so motivating when stated in mathematical notation. For more intuition on this condition, we can
think of the association scheme in terms of a graph.

Consider the graph with vertex set X, and undirected edges representing the values (x, y) ∈ X × X.
(Note that (x, x) is allowed, so this graph has self-loops.) We can think of the relations R0, . . . , Rd as d + 1
distinct colors, and for each pair (x, y) in Ri, we color the corresponding edge (x, y) the color of Ri. Since
{R0, . . . , Rd} partitions X ×X, we know that each edge is colored exactly one color. In other words, we get
a coloring of the complete graph (with self-loops) into d + 1 colors.

Under this representation of the association scheme, the fourth condition may seem more intuitive,
especially when we view the triples {(x, y), (y, z), (z, x)} as triangles in the graph. Then, the condition
becomes the following:

4. Fix values h, i, j ∈ [0, d], and consider all triangles with the first edge colored Rh, the second edge
colored Ri, and the third edge colored Rj . Then, every edge colored Rh takes part in the same number
of such triangles.

This property will become very important later on, so it is important to develop intuition for it.

2.2 Hamming scheme

We now move to the Hamming scheme, which is the association scheme relevant to Delsarte’s linear program.

Definition 2. For fixed n and q, consider the vector space Fn
q . The Hamming scheme on Fn

q is defined as
follows:

1. There are n + 1 relations R0, . . . , Rn, which correspond to Hamming distances between pairs of points.

2. For two coordinates x, y ∈ Fn
q , the pair (x, y) belongs to the relation indexed by the Hamming distance

of x and y. That is, (x, y) ∈ RΔ(x,y).

Before we continue, it is helpful to verify that the Hamming scheme is indeed an association scheme.

Claim 1. The Hamming scheme on Fn
q is an association scheme.

Proof. We need to check all of the properties of a symmetric association scheme.

1. R0 = {(x, x) : x ∈ X}.

• Satisfied because Δ(x, y) = 0 ⇔ x = y.

2. If (x, y) ∈ Ri, then (y, x) ∈ Ri.

• Satisfied because the Hamming distance is symmetric.

3. R partitions X × X.

• Satisfied by definition.

4. Fix values h, i, j ∈ [0, d], and consider the relations Rh, Ri, and Rj . For each (x, y) ∈ Rh, the number
of elements z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj is always the same, regardless of (x, y).

• This is perhaps the most interesting to check. Intuitively, this is true because the Hamming
distance has many symmetric properties. For example, it is invariant under coordinate shifts and
coordinate permutations. It is also possible to compute ph

i,j , the exact number of satisfying triples
(x, y, z) for each (x, y) ∈ Rh. This number is

2



ph
i,j =

b(i+j−h)/2c∑

δ=0

(q − 2)i+j−h−2δ

(
h

j − δ

)(
j − δ

h − i + δ

)(
n − h

(i + j − w)/2

)

.

This result is not important later on, so we omit the derivation.

2.3 Associate matrices

In an association scheme with set X and relations R0, . . . , Rd, we can define one associate matrix Ai for each
Ri as follows:

Definition 3. The associate matrices A0, . . . , Ad have rows and columns indexed by elements in X. (So
each Ai is an |X|-by-|X| matrix.) The matrix Ai represents an “indicator” matrix of Ri, in that entry (x, y)
of Ai is 1 if (x, y) ∈ Ri, and 0 otherwise.

As an example, let us consider the Hamming scheme on F3
2, indexed by {000, 001, 010, 011, 100, 101, 110, 111}.

Then, the associate matrices are as follows.

A0 =






1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




 , A1 =






0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0




 , A2 =






0 0 0 1 0 1 1 0
0 0 1 0 1 0 0 1
0 1 0 0 1 0 0 1
1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1
1 0 0 1 0 0 1 0
1 0 0 1 0 1 0 0
0 1 1 0 1 0 0 0




 , A3 =






0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0




 .

The associate matrices have several nice properties, listed below.

1. A0 = I, since R0 only has elements of the form (x, x).

2.
d∑

i=0

Ai is the all-ones matrix, since R0, . . . , Rd partition X × X.

3. If we multiply two matrices Ai and Aj , then we get a linear combination of Ah for h ∈ [0, d].

• In particular, AjAi =
d∑

h=0

ph
i,jAh. This is where property 4 of association schemes comes into

play. It is easy to verify through matrix multiplication that the value in entry (x, y) is exactly
the number of triangles with first edge (x, y), second edge in Ri, and third edge in Rj . And since
this number is the same for each element in Rh, we get the above equation.

4. Since ph
i,j = ph

j,i, we get AjAi = AiAj from the above property, so the matrices are pairwise commu-
tative.

5. If we think of the matrices as a vector space, then the Ai are linearly independent. This is because
each of the |X|2 matrix entries is 1 in exactly one Ai.

2.4 The Bose-Mesner algebra

Consider the vector space spanned by the associate matrices. Since multiplying two basis elements Ai and
Aj gives us another element of the vector space, we know that multiplying any two linear combinations of
the Ai gives another element in the vector space.

An algebra is a vector space equipped with a bilinear product. Therefore, the vector space spanned by
the associate matrices forms an algebra, with the bilinear product being matrix multiplication. This algebra
is called the Bose-Mesner algebra.
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2.5 Orthogonal basis

It turns out that the Bose-Mesner algebra always has another basis of pairwise “orthogonal” matrices
E0, . . . , Ed such that

1. EiEj is the zero matrix if i 6= j

2. E2
i = Ei (such matrices are called idempotent.)

We will not prove this theorem, but think of it as analogous to the spectral theorem of linear algebra.

2.6 First and second eigenmatrices

The Bose-Mesner algebra has two special matrices P and Q, called the first eigenmatrix and the second
eigenmatrix, respectively. These matrices are defined as follows:

1. The entries of P satisfy Ai =
d∑

j=0

PjiEj .

2. The entries of Q satisfy Ei =
1
|X|

d∑

j=0

QjiAj .

They are essentially change-of-basis matrices from the basis A0, . . . , Ad to the basis E0, . . . , Ed and back.
If we instead think of the Ai and Ei as individual entries of a matrix (i.e. pretend that they are numbers),

then the definitions can be more concisely written as

1. [ A0 A1 ∙∙∙ Ad ] = [ E0 E1 ∙∙∙ Ed ] ∙

[
↑ ↑ ∙∙∙ ↑

P∗,0 P∗,1 ∙∙∙ P∗,d

↓ ↓ ∙∙∙ ↓

]

2. [ E0 E1 ∙∙∙ Ed ] =
1
|X|

∙ [ A0 A1 ∙∙∙ Ad ] ∙

[
↑ ↑ ∙∙∙ ↑

Q∗,0 Q∗,1 ∙∙∙ Q∗,d

↓ ↓ ∙∙∙ ↓

]

If we combine the two equations, then we can see that

[ E0 E1 ∙∙∙ Ed ] =
1
|X|

∙ ([ E0 E1 ∙∙∙ Ed ] ∙ P ) ∙ Q.

Since the Ei are linearly independent, we must have

P ∙ Q = |X| ∙ I,

where I is the (d + 1)-by-(d + 1) identity matrix. This is what we might expect, when viewing P and Q
as change-of-basis matrices.

2.7 Eigenmatrices for the Hamming scheme

Even for the Hamming scheme, computing the eigenmatrices P and Q is highly non-trivial. Delsarte [2]
showed that the eigenmatrix Q for the Hamming scheme on Fn

q can be represented in terms of the Krawtchouk
polynomials, which are defined as

Kk(x) =
k∑

i=1

(
x

i

)(
n − x

k − i

)

(−1)i(q − 1)k−i.

In particular, Qi,k = Kk(i).
The particular values in Q are not particularly important, so we also skip this derivation.
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3 Delsarte’s linear programming bound

In this section, we present the main ideas behind Delsarte’s linear program.

3.1 Distribution vectors

For a given association scheme (X,R) and a subset Y of X, we can define the distribution vector of Y as
follows:

Definition 4. The distribution vector of Y is the vector a of length d + 1 such that

ai =
|(Y × Y ) ∩ Ri|

|Y |
.

In graph notation, we can think of the subgraph induced by the vertices in Y . Then, ai is simply the
average degree of a vertex in Y , where only edges in Ri are considered.

We can easily see that ai ≥ 0 for each i, and
d∑

i=0

ai = |Y |.

3.2 Hamming scheme

Let us go back to the Hamming scheme, with X = Fn
q . We can let Y ⊂ X be a set of codewords. From

before, we know that for the distribution vector a of Y , we have ai ≥ 0 and
d∑

i=0

ai = |Y |.

In addition, suppose that the code has distance r. Then, we also know that a1 = a2 = ∙ ∙ ∙ = ar−1 = 0.
There is one more property of a, which we prove next.

3.3 Main theorem

Here is the key theorem on distribution vectors that forms the basis for the linear programming bound.

Theorem 1. If a is a distribution vector of a subset Y of an association scheme with second eigenmatrix
Q, then aQ ≥ 0. (That is, the vector aQ has only non-negative entries.)

Proof. Let y be the characteristic vector of Y . That is, yx = 1 if x ∈ Y , and 0 otherwise. Then,

0 ≤ ‖yEi‖
2 = (yEi)(yEi)

T = yEiE
T
i yT = yEiy

T ,

where the last step is true because Ei is idempotent and symmetric.

Recall that Ei =
1
|X|

d∑

j=0

QjiAj and ai =
yAiyT

|Y |
. Therefore,

0 ≤ yEiy
T =

1
|X|

y




d∑

j=0

QjiAj



yT =
1
|X|




d∑

j=0

QjiyAjy
T



 =
|Y |
|X|

d∑

j=0

ajQji =
|Y |
|X|

(aQ)i.

So for each i, (aQ)i ≥ 0, as desired.
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3.4 Formulation of Delsarte’s linear program

Let us collect all of the conditions that a must satisfy:

1. ai = 1.

2. ai = 0 for 1 ≤ i < r.

3. ai ≥ 0 for r ≤ i ≤ n.

4. aQ ≥ 0. (This introduces d + 1 linear inequalities.)

At the end, we know that
d∑

i=0

ai = |Y |. Therefore, to upper bound the set Y of codewords, our objective

of the linear program is to maximize
d∑

i=0

ai.

That’s it for Delsarte’s linear program. Since any code in Fn
q of distance r must satisfy the above

constraints, the optimum of the linear program is an upper bound on the maximum size of the code.
One thing of note is that Delsarte’s linear program makes no assumptions on the structure of Y . Therefore,

the upper bound holds for all codes, not just linear codes.

4 Numerical computations

For small n and q, we can numerically solve the linear program to find the upper bound for codes in Fn
q .

Here is a table comparing the Hamming bound and the LP bound for codes in Fn
2 with distance δ:

Note that the tables suggest that the LP bound is always at most the Hamming bound. This is in fact
true: Delsarte [2] showed how to establish the Hamming bound using the LP bound, so the LP bound is
always at least as strong.

Also, note the perfect code with n = 15 = 24 − 1 and δ = 3. As expected, both bounds achieve this
perfect code.
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5 Asymptotics

What about for higher n? We would like to find asymptotics for the linear programming bound. For the
rest of this report, we will focus only on binary codes.

Let A(n, bδnc) be the maximum size of a binary code with length n and distance δn. We can define the

function R(δ) = lim sup
n→∞

log2 A(n, bδnc)
n

. Intuitively, this is an asymptotic measure of the best rate possible

for a binary code.

Similarly, let ALP (n, bδnc) to be the maximum value of
d∑

i=0

ai for some a that satisfies Delsarte’s linear

program. Since the LP bound is an upper bound, we have A(n, bδnc) ≤ ALP (n, bδnc).

We can also define RLP (δ) = lim sup
n→∞

log2 ALP (n, bδnc)
n

. We want bounds on RLP (δ), which is an upper

bound for R(δ).

5.1 Upper bound

We are most interested in an upper bound for RLP (δ), since this will also be an upper bound for R(δ).

McEliece, Rodemich, Rumsey, and Welch [MRRW ’77] showed that RLP (δ) ≤ H(
1
2
−
√

δ(1 − δ)). This is

the best bound known for δ ≥ 0.273.

Here is a plot of this upper bound with the Elias-Bassalygo bound R(δ) ≤ 1−H

(
1 −

√
1 − 2δ

2

)

, which

we saw in class:

5.2 Proof of RLP (δ) ≤ H(
1

2
−
√

δ(1 − δ))

Navon and Samorodnitsky [5] established a simpler proof of the same bound, RLP (δ) ≤ H(
1
2
−
√

δ(1 − δ)).

We will present this proof below, which uses basic properties of Fourier analysis on Fn
2 .
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5.2.1 Fourier analysis on Zn
2

In this section, we present some preliminaries on the Fourier analysis on Zn
2 . To begin, we can think of Zn

2

in multiple ways. Instead of thinking of Z2 as the group {0, 1} under addition, we can think of Z2 as the
group {−1, 1} under multiplication. In addition, since Z2 is boolean, we can think of Z2 as the set of subsets
of [n]. For each T ∈ {−1, 1}, we will also attribute to T the subset of [n] that contains all elements i for
which Ti = −1. We will be using the {−1, 1}n and the subset definitions simultaneously for elements of Zn

2 .
For each T ∈ Zn

2 , define the function WT from Z2 to the set of functions on n variables as WT (x1, . . . , xn) =∏

i∈T

xi. In other words, WT is the monomial composed of the xi’s for which Ti = −1. From here, it is easy

to see that if S ∈ Zn
2 , then WT (S) = (−1)|T∩S|.

We would like to introduce a measure on each of the functions WT . In particular, we consider the
measure μ(WT ) = ES∼Zn

2
[WT (S)], which is the expected value of WT (S) for a uniformly random S ∈ Zn

2 . It
is easy to see that μ(WT ) = 1 for T = ∅, and 0 otherwise. In addition, observe that μ(WSWT ) = μ(WS⊕T ),
because any squared term x2

i in the product becomes 1 when xi is restricted to {−1, 1}. This means that
μ(WSWT ) = 1 if S = T , and 0 otherwise. Therefore, with respect to the measure μ, the functions WT are
orthonormal. In particular, they form an orthonormal basis for all functions from Zn

2 to R.
For each f : Zn

2 → R, define f̂ : Zn
2 → R so that f̂(T ) equals the coefficient of the monomial with

elements in T in the expansion of f(x). From the orthogonal properties of WT , we can observe that f̂(T ) =
1
2n

∑

x∈Zn
2

f(x)WT (x). The function f̂ is the Fourier transform of f .

Finally, we will use two well-known properties of the Fourier transform. First is Parseval’s identity,
1
2n

∑

x∈Zn
2

f(x)g(x) =
∑

S∈Zn
2

f̂(S)ĝ(S). Next, for two functions f, g : Zn
2 → R, let h = f ∗ g be their convolution,

defined as h(x) =
1
2n

∑

y∈Zn
2

f(y)g(x ⊕ y). Then, ĥ = f̂ ∙ ĝ.

5.2.2 Proof of RLP (δ) ≤ H(
1
2
−
√

δ(1 − δ))

Define L1 : Zn
2 → R so that L1(S) = 1 if |S| = 1, and 0 otherwise. Then, define the function Δ : Zn

2 → R as
Δ = 2nL1. Observe that Δ̂(S) = n − 2|S|. Note that for any f : Zn

2 → R, the function f ∗ Δ evaluated at x
returns the sum of the values of f at all points at distance 1 from x.

First, we show that any nonnegative function Γ with a nonnegative Fourier transform provides an upper
bound on the cardinalities of codes. Note that here, we will consider the {0, 1} additive representation of
Z2.

Lemma 1. Let Γ be a function on {0, 1}n with Γ ≥ 0, Γ̂ ≥ 0, and assume that for some 0 < λ < 1, we have
Γ ∗ Δ ≥ λn ∙ Γ. Then, if C is a code with distance d such that

d >
1 − λ

2
∙ n,

then we have

|C| ≤
2n

2d/n − (1 − λ)
∙
Γ̂(0)
Γ(0)

.

Proof. Let δ =
d

n
=

1 − λ

2
+ ε.

Let f = 1C , the indicator function for C. Let F =
2n

|C|
f ∗ f , and note that F (x) = 0 for 0 < |x| < d. Let
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g be the function such that ĝ = F . It can be verified that g =
22n

|C|
f̂2, so that g ≥ 0. We compute the inner

product 〈Γ ∗ Δ, g〉 =
∑

S∈Zn
2

(Γ ∗ Δ)(S)g(S) in two ways.

On one hand,

〈Γ ∗ Δ, g〉 ≥ λn ∙ 〈Γ, g〉 = λn ∙
∑

S

Γ̂(S)F (S).

On the other hand,

〈Γ ∗ Δ, g〉 = 〈Γ̂ ∙ (n − 2|S|), F 〉 =
∑

S

Γ̂(S)F (S)(n − 2|S|)

≤ nΓ̂(0)F (0) +
∑

|S|≥d

Γ̂(S)F (S)(n − 2|S|) ≤ nΓ̂(0)F (0) + (n − 2d) ∙
∑

S

Γ̂(S)F (S)

= nΓ̂(0) + (λ − 2ε)n ∙
∑

S

Γ̂(S)F (S).

Combining the two computations, we get

2ε〈Γ, g〉 ≤ Γ̂(0).

Since

〈Γ, g〉 ≥
1
2n

Γ(0)g(0) =
1
2n

|C|Γ(0),

we have

|C| ≤
2n

2ε
∙
Γ̂(0)
Γ(0)

.

Next, we show how to construct a function Γ that satisfies the conditions of the lemma.

Lemma 2. Let Λ be a function on {0, 1}n with Λ ≥ 0, and assume that for some 0 < λ < 1 we have
Λ ∗ Δ ≥ λn ∙ Λ. Let Γ = Λ ∗ Λ. Then, Γ satisfies the conditions of lemma 1 with the same λ. Moreover,

Γ̂(0)
Γ(0)

≤
|supp(Λ)|

2n
.

Proof. We have Γ̂ = Λ̂2 ≥ 0, which means Γ ≥ 0 as well. Also, Γ ∗Δ = Λ ∗ (Λ ∗Δ) ≥ λnΛ ∗Λ = λnΓ, so the
conditions of lemma 1 are satisfied.

For the second condition of lemma 2, we have, by the Cauchy-Schwarz inequality,

Γ̂(0) = Λ̂2(0) =
1

22n

(
∑

x

Λ(x)

)2

≤
1

22n
∙ |supp(Λ)| ∙

∑

x

Λ2(x)

=
1
2n

∙ |supp(Λ)| ∙
1
2n

∑

x

Λ(x)Λ(0 ⊕ x) =
1
2n

∙ |supp(Λ)| ∙ Γ(0).
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It remains to construct a function Λ. This function will be symmetric, in that its value at a point only
depends on the Hamming weight at the point. Therefore, we can think of Λ as taking in the integers from
0 to n. Note that to determine a function Λ, it suffices to determine Λ(0), . . . , Λ(n), which is the approach
we will take.

Note that a symmetric function f taking on the integers from 0 to n satisfies (f ∗Δ)(r) = rf(r−1)+(n−
r)f(r+1), where we take f(−1) = f(n+1) = 0. Motivated by this recurrence, we start by choosing f(−1) = 0
and f(0) = 1, and defining f(r) for 1 ≤ r ≤ n so that the relation λnf(r) = rf(r− 1)+(n− r)f(r +1) holds
for all r. It turns out that this function becomes negative at some point in the interval. To more precisely
determine when the function becomes negative, we use the following lemma, whose proof is omitted because
it is rather technical. (The proof of the lemma can be found in the appendix of the corresponding paper.)

Lemma 3. Let 0 < λ < 1 and let ε > 0 be arbitrarily small. There exists a sufficiently large n0 = n0(λ, ε)

such that for any n > n0, the function f defined above becomes negative in the interval

[

0,
1 −

√
1 − λ2

2
(1 + ε) ∙ n

]

.

Let r0 be the such that f is positive on [0, r0] and non-positive at r0 + 1. Define Λ = f for r ∈ [0, r0] and
Λ = 0 for r > r0. We claim that this function works.

Lemma 4. The function Λ satisfies the conditions for lemma 2.

Proof. We need to check that (Λ∗Δ)(r) ≥ λn ∙Λ(r) for all 0 ≤ r ≤ n. We know that (Λ∗Δ)(r) = λnΛ(r) for
r ≤ r0 − 1 and for r > r0 +1 by definition of Λ. It remains to verify the inequality for r = r0 and r = r0 +1.
For r = r0 + 1, we have (Λ ∗ Δ)(r) ≥ 0 = λnΛ(r). For r = r0, we have

(Λ ∗ Δ)(r) = rΛ(r − 1) + (n − r)Λ(r + 1) = rΛ(r − 1) = rf(r − 1)

≥ rf(r − 1) + (n − r)f(r + 1) = λnf(r) = λnΛ(r),

where the inequality above holds because f(r + 1) ≤ 0.

Armed with this function Λ, we are ready to prove the bound.

Fix a distance parameter δ <
1
2
, so that d = δn. Choose λ = 1 −

2d − 2
n

, and let Λ be defined according

to this λ. Let Γ = Λ ∗ Λ. Then, by the preceding lemmas, we have, for sufficiently large n, every code C in
Fn

2 with distance δn satisfies

|C| ≤
2n

2d/n − (1 − λ)
∙
Γ̂(0)
Γ(0)

=
2n

2/n
∙
Γ̂(0)
Γ(0)

≤
n

2
∙ |supp(Λ)| ≤

n

2
∙

r0∑

i=0

(
n

i

)

≤
n

2
∙ 2n∙H(r0/n).

Therefore, asymptotically, RLP (δ) ≤ H
(r0

n

)
≤ H

(
1 −

√
1 − λ2

2

)

(1 + ε). Since λ = 1 −
2δn − 2

n
→

1 − 2δ, we have RLP (δ) ≤ H

(
1 −

√
1 − (1 − 2δ)2

2

)

(1 + ε) = H

(
1
2
−
√

δ(1 − δ)

)

(1 + ε). This holds for

any ε > 0, so we have the desired RLP (δ) ≤ H

(
1
2
−
√

δ(1 − δ)

)

.

5.3 Lower bound

We might also be interested in a lower bound for RLP (δ), which gives an accurate measure of how powerful
the LP bound actually is. It is essentially a cap on the strength of the bound.
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Navon and Samorodnitsky [5] showed the lower bound RLP (δ) ≥
1
2
H(1 − 2

√
δ(1 − δ)), which improved

upon the previous best known bound. Their proof for the lower bound also uses Fourier analysis on Zn
2 , but

is a lot more complicated, so we omit it in this report.
Here is a plot of the lower bound with the upper bound.

6 Open problems

6.1 Improved asymptotic bounds

The major success of Delsarte’s linear programming bound is the asymptotic upper bounds for the rate of
binary codes, which are the best known for δ ≥ 0.273. Therefore, any improvement to the upper bound with
δ in this range improves upon the best known upper bound for all binary codes.

However, Navon and Samorodnitsky [5] cite some numerical results from [1] that suggest that the bound

H

(
1
2
−
√

δ(1 − δ

)

might actually be tight. That is, they believe that RLP (δ) = H

(
1
2
−
√

δ(1 − δ)

)

.

Therefore, there is work to be done on increasing the lower bound, to determine if the upper bound is indeed
tight.

6.2 Generalizing asymptotics to q > 2

Note that for the asymptotic upper and lower bounds for RLP (δ), we assumed that the codes are binary.
Unfortunately, many nice properties of Fourier analysis on Zn

2 do not generalize in larger alphabets, so the
techniques used in proving these bounds do not generalize, either.

However, Delsarte’s linear program holds for all q. Therefore, an open question remains to show good
asymptotic bounds for RLP (δ) for q > 2.

11



References

[1] Barg, A., Jaffe D.B.: Numerical results on the asymptotic rate of binary codes, Codes and Association
Schemes, AMS, 2001

[2] Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep.,
Suppl. 10 (1973)

[3] McEliece, R.J., Rodemich, E.R., Rumsey, H. Jr., Welch, L.R.: New upper bounds on the rate of a code
via the DelsarteMacWilliams inequalities. IEEE Trans. Inf. Theory IT-23, 157166 (1977) of FOCS 46

[4] McKinley, S.: The Hamming Codes and Delsarte’s Linear Programming Bound, available at
http://www.mth.pdx.edu/ caughman/thesis.pdf

[5] Navon, M., Samorodnitsky, A.: On Delsarte’s linear programming bounds for binary codes. In: Pro-
ceedings of FOCS 46

12


