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PROBLEM SET 3
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INSTRUCTIONS

• You are allowed to collaborate with up to two students taking the class in solving problem sets. But
here are some rules concerning such collaboration:

1. You should think about each problem by yourself for at least 30 minutes before commencing
any collaboration.

2. Collaboration is defined as discussion of the lecture material and solution approaches to the
problems. Please note that you are not allowed to share any written material and you must write
up solutions on your own. You must clearly acknowledge your collaborator(s) in the write-up of
your solutions.

3. Of course, if you prefer, you can also (and are encouarged to) work alone.

• Solutions typeset in LATEX are encouraged, but not required. If you are submitting handwritten so-
lutions, please write clearly and legibly (you might want to first write the solution sketch in rough,
before transferring it to the version you turn in).

• You should not search for solutions on the web. More generally, you should try and solve the problems
without consulting any reference material other than the course notes and what we cover in class. If
for some reason you feel the need to consult some source, please acknowledge the source and try to
articulate the difficulty you couldn’t overcome before consulting the source and how it helped you
overcome that difficulty. Alternatively, before turning to any such material, we encourage you to ask
the instructor for hints or clarifications.

• Please start work on the problem set early. There are five problems, for a total of 120 points.

1. (25 points) Recall the definition of an ε-biased space: it is a (multi)-set S ⊆ Fm
2 such that for every

a ∈ Fm
2 , a 6= 0, ∣∣∣∣Prx∈S

[a · x = 1]− Pr
x∈S

[a · x = 0]

∣∣∣∣ ≤ ε .
Below we think of ε > 0 as a fixed but arbitrarily small constant, and m as growing.

(a) Argue that for a suitable constant C <∞, a random set of size dCm/ε2e is an ε-biased set with
high probability (tending to 1 as m→∞).

(b) Using Reed-Solomon codes concatenated with Hadamard codes, show how one can explicitly
construct (i.e., list all elements of S in poly(|S|) time) an ε-biased set S ⊆ Fm

2 of size at most
O(m2/ε2).

(c) Consider the Hermitian curve over Fq for q = r2 defined as Y r+Y = Xr+1 which we discussed
in class. Suppose we use as messages polynomials of total degree at most s < r, and evaluate it
at all r3 points on the curve. What are the parameters of the resulting code (it suffices to give a
good lower bound on the distance)?



(d) By concatenating the codes from the previous part with Hadamard codes and a suitable choice
of parameters, show how one can construct ε-biased sets in Fm

2 of size at most O((m/ε2)5/4).

2. (25 points) Recall the two invertible linear transforms Pn, Rn on Fn
2 , n a power of two, that we defined

recursively:

• P0(x) = x, and Pn(U, V ) = (Pn/2(U + V ), Pn/2(V )) where U (resp. V ) is the first n/2 (resp.
last n/2) bits of the n-bit input to Pn.

• R0(x) = x, and Rn(U, V )2i = Rn/2(U)i + Rn/2(V )i and Rn(U, V )2i+1 = Rn/2(V )i, for
i = 0, 1, . . . , n/2 − 1, where the Xi denotes the i’th bit of vector X , and we index the bits
starting at 0.

Recall that we used the transform Pn to conveniently present and analyze the successive cancellation
decoder, and the transformRn to conveniently analyze the polynomially strong polarizing property of
the transform. In this exercise, we will relate these transforms to conclude that the polarizing property
of Rn implies that of Pn, as alluded to in class.

(a) Prove that Pn is its own inverse.

(b) Let us use the notation Pn to also denote the n × n matrix so that the transform is given by

Z 7→ PnZ where Z ∈ Fn
2 is a column vector. Prove that Pn = P

⊗(lgn)
2 where P2 =

(
1 1
0 1

)
.

(c) Prove that Rn = BnPn where Bn : Fn
2 → Fn

2 permutes the coordinates via “bit-reversal,” that
is, it maps location i with binary representation bmbm−1 · · · b2b1 (where m = lg n) to location j
with binary representation b1b2 · · · bm−1bm.

(d) Prove that Pn and Bn commute, i.e., BnPn = PnBn. (Note that this is equivalent to showing
that Rn is its own inverse.)

(e) Recap why the above implies that Rn and Pn have identical polarization properties.

3. (25 points) Let Z ∈ Fn
2 be sampled as n i.i.d copies of Ber(p) and let W = Pn(Z).

(a) Show how, given i ∈ {1, 2, . . . , n}, one can efficiently sample the random variable W<i, i.e., W
restricted to the first i− 1 coordinates.

(b) Given an arbitrary string w<i ∈ Fi−1
2 , show how one can compute the distribution of Wi condi-

tioned on W<i = w<i. (Hint: Use the approach behind the successive cancellation decoder.)

(c) Using the above parts, show that there is a randomized algorithm running in poly(n, 1/γ)
time which with probability at least 1 − 1/n2 outputs an estimate of the conditional entropy
H(Wi|W<i) within an additive error of γ.

(d) Suppose that Pn is (ε, 1/n2)-polarizing, i.e., the set {i | H(Wi |W<i) ≥ 1/n2} has size at most
(h(p)+ ε)n (we proved this property in class provided n is at least a sufficiently big polynomial
function of 1/ε).
Combine the steps above to give a poly(n) time randomized algorithm that with probability at
least 1−1/n outputs a set S of size at most n(h(p)+ ε) such that for all i /∈ S, H(Wi |W<i) ≤
3/n2.

4. (20 points) Let p ∈ (0, 1/2). Suppose H ∈ Fm×n
2 is a linear compression matrix and Decompress :

Fm
2 → Fn

2 is such that

Pr
Z∼Ber(p)⊗n

[
Decompress(HZ) 6= Z

]
≤ 2−t .



Prove that the code with parity check matrix H has minimum distance at least t
lg(1/p) .

(Thus linear compression schemes for i.i.d Bernoulli sources (equivalently linear codes for BSC) with
very good error probability imply codes with good minimum distance.)

Hint: The optimal decompression algorithm is the maximum likelihood algorithm, that on input w ∈
Fm
2 , outputs argminx:Hx=w wt(x) (Why?)

5. (25 points) For a correlated random variables (U,A) with U taking values in F2 and A in any finite
set and joint distribution pUA, define the quantity

B(U | A) = 2
∑

a∈supp(A)

√
pUA(0, a) · pUA(1, a)

where supp(A) is the support of A.

Prove that

(a) Prove that there is a function D : supp(A)→ F2 such that

Pr
(u,a)∼(U,A)

[D(a) 6= u] ≤ B(U | A) .

That is, if B(U | A) is small, then we can predict U well from A.

(b) The binary entropy function satisfies 4x(1 − x) ≤ h(x) ≤ 2
√
x(1− x) for x ∈ [0, 1]. Using

this prove that
B(U | A)2 ≤ H(U | A) ≤ B(U | A) .

Suppose (U1, A1) and (U2, A2) are two i.i.d copies of (U,A).

(c) Prove that
B(U1 + U2 | (A1, A2)) ≤ 2 ·B(U | A) .

(d) Prove that
B(U2 | (A1, A2, U1 + U2)) = B(U | A)2 . (1)

Comment: Using the above facts, one can use the quantity B(· | ·) in place of conditional
entropy in the analysis of the second phase of the polarization (where we amplified moderate
polarization to values very close to 0), to drive the polarized entropies within 2−n

0.49
(rather than

n−ω(1)) of the boundary values {0, 1}. This is because (1) shows that the “good branch” squares
B(· | ·) instead of dropping it by a large multiplicative factor.

(e) Bonus: Formalize and provide the details of the analysis alluded to in the above comment.


