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PROBLEM SET 2
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INSTRUCTIONS

• You are allowed to collaborate with up to two students taking the class in solving problem sets. But
here are some rules concerning such collaboration:

1. You should think about each problem by yourself for at least 30 minutes before commencing
any collaboration.

2. Collaboration is defined as discussion of the lecture material and solution approaches to the
problems. Please note that you are not allowed to share any written material and you must write
up solutions on your own. You must clearly acknowledge your collaborator(s) in the write-up of
your solutions.

3. Of course, if you prefer, you can also (and are encouarged to) work alone.

• Solutions typeset in LATEX are encouraged, but not required. If you are submitting handwritten so-
lutions, please write clearly and legibly (you might want to first write the solution sketch in rough,
before transferring it to the version you turn in).

• You should not search for solutions on the web. More generally, you should try and solve the problems
without consulting any reference material other than the course notes and what we cover in class. If
for some reason you feel the need to consult some source, please acknowledge the source and try to
articulate the difficulty you couldn’t overcome before consulting the source and how it helped you
overcome that difficulty. Alternatively, before turning to any such material, we encourage you to ask
the instructor for hints or clarifications.

• Please start work on the problem set early. The problem set has six problems worth 20 points each.
There is also a bonus problem (which is open-ended, and you can email or meet with the instructor to
discuss any promising ideas you might have).

1. For a field F with |F| ≥ n, an n-tuple ~α = (α1, α2, . . . , αn) of n distinct elements of F, and a
vector v = (v1, v2, . . . , vn) ∈ (F∗)n of n (not necessarily distinct) nonzero elements from F, the
Generalized Reed-Solomon code GRSF(~α,v, k) is defined as follows:

GRSF(~α,v, k) = {(v1 · p(α1), v2 · p(α2), . . . , vn · p(αn)) | p(X) ∈ F[X] has degree < k} .

(a) Check that GRSF(~α,v, k) is an [n, k, n− k + 1]F linear code.

(b) Prove that the dual code of GRSF(~α,v, k) is

GRSF(~α,v, k)⊥ = GRSF(~α,u, n− k)

for u = (u1, u2, . . . , un) ∈ (F∗)n where for i = 1, 2, . . . , n,

ui =
1

vi
∏
j 6=i(αi − αj)

.



2. Let us recall the notion of k-wise independence from Problem Set 1. For integers 1 ≤ k ≤ n, call
a (multi)set S ⊆ {0, 1}n to be k-wise independent if for every 1 ≤ i1 < i2 < · · · < ik ≤ n and
(a1, a2, . . . , ak) ∈ {0, 1}k

Probx∈S [xi1 = a1 ∧ xi2 = a2 ∧ · · · ∧ xik = ak] =
1

2k

where the probability is over an element x chosen uniformly at random from S. Small sample spaces
of k-wise independent sets are of fundamental importance in derandomization.

(a) Using BCH codes and Problem 3 of Problem set 1, show how one can construct a k-wise inde-
pendent subset of {0, 1}n of size at most 2 · (2n)bk/2c.

(b) Prove an almost matching lower bound, namely any k-wise independent set S ⊆ {0, 1}n satisfies

|S| ≥
b k
2
c∑

i=0

(
n

i

)
. (1)

Suggestion: Find a set of linearly independent vectors in R|S| of cardinality at least the R.H.S of
(1). Specifically, for T ⊆ {1, 2, . . . , n} of size ≤ bk/2c, consider the vector 〈χT (x)〉x∈S where
χT (x) = (−1)

∑
i∈T xi .

3. (a) Recall the definition of “tensor product” of codes from Problem Set 1. If C1 is an [n1, k1, d1]2
binary linear code, and C2 an [n2, k2, d2] binary linear code, then C = C1 ⊗ C2 ⊆ Fn2×n1

2 is
defined to subspace of n2 × n1 matrices whose rows belong to C1 and whose columns belong
to C2.
Suppose C2 has an efficient algorithm to correct < d2/2 errors and C1 has an efficient errors-
and-erasures decoding algorithm to correct any combination of e errors and s erasures provided
2e + s < d1. Show how one can efficiently decode C up to < d1d2/2 errors using these
algorithms as subroutines.

(b) Consider the bivariate version of the Reed-Solomon code, which encodes a polynomial f ∈
Fq[X,Y ] with degree less than k in both X and Y by its evaluations at all q2 points (α, β) ∈
Fq × Fq.

i. What are the block length, dimension, and minimum distance of this code?
ii. Describe how one can efficiently decode this code up to (almost) half its minimum distance.

((The natural) hint: Relate to Part (a) of this question.)

4. In this problem, we will look at some binary “BCH-like” subfield subcodes of Reed-Solomon codes
that meet the Gilbert-Varshamov bound.

Let F = F2m . Fix positive integers k, nwith (n−k)m < n < 2m, and a tuple ~α = (α1, α2, . . . , αn) of
n distinct elements of F. For a vector v = (v1, . . . , vn) ∈ (F∗)n of n not necessarily distinct nonzero
elements from F, recall the Generalized Reed-Solomon code GRSF(~α,v, k) defined as follows:

GRSF(~α,v, k) = {(v1 · p(α1), v2 · p(α2), . . . , vn · p(αn)) | p(X) ∈ F[X] has degree < k} .

(a) Argue that GRSF(~α,v, k) ∩ Fn2 is a binary linear code of rate at least 1− (n−k)m
n .

(b) Let c ∈ Fn2 be a nonzero binary vector. Prove that (for every choice of ~α, k) there are at most
(2m − 1)k choices of the vector v for which c ∈ GRSF(~α,v, k).



(c) Prove that if the integer D satisfies

(2m − 1)n−k >
D−1∑
i=0

(
n

i

)
,

then there exists a vector v ∈ (F∗)n such that the minimum distance of the binary linear code
GRSF(~α,v, k) ∩ Fn2 is at least D.

(d) Using Parts (4a) and (4c), show how to conclude that the family of codes GRSF(~α,v, k) ∩ Fn2
contains binary linear codes that meet the Gilbert-Varshamov bound.

5. For this problem, assume the NP-hardness of the following problem (this can be shown via a reduction
from Subset Sum):

Instance: A set S = {α1, . . . , αn} ⊆ F2m , an element β ∈ F2m , and an integer 1 ≤ k < n.

Question: Is there a nonempty subset T ⊆ {1, 2, . . . , n} with |T | = k + 1 such that
∑

i∈T αi = β?

Consider the [n, k] Reed-Solomon code CRS over F2m obtained by evaluating polynomials of degree
at most k − 1 at points in S. Define y ∈ (F2m)n as follows: yi = αk+1

i − βαki for i = 1, 2, . . . , n.

Prove that there is a codeword of CRS at Hamming distance at most n − k − 1 from y if and only if
there is a set T as above of size k + 1 satisfying

∑
i∈T αi = β.

Conclude that finding the nearest codeword in a Reed-Solomon code over exponentially large fields
is NP-hard. (Proving this for polynomial sized fields remains an embarrassing open question.)

6. In this problem, we develop a more abstract view of the Reed-Solomon decoding algorithm that
we saw in class. This enables extending the apprpach to other Reed-Solomon-like codes, such as
algebraic-geometric codes. First we give some definitions. Let F be a field. For u, v ∈ Fn, define
u ∗ v = (u1v1, u2v2, . . . , unvn) ∈ Fn be the component-wise product. For U, V ⊆ Fn, define
U ∗ V = {u ∗ v | u ∈ U, v ∈ V }.
The idea of the abstract decoding procedure is that given a code C capable of correcting e errors (i.e.,
its distance exceeds 2e) that we want to decode, we construct an error-locator codeE, such thatE ∗C
is contained in another linear code N that has large distance. Specifically, we want codes E and N to
have the following properties:

• dim(E) > e.

• E ∗ C ⊆ N .

• dist(N) > e.

• dist(C) > n− dist(E)

Consider the following decoding algorithm for C. Given as input r ∈ Fn with Hamming distance at
most e from some codeword c ∈ C, the goal of the algorithm is to find c.

Step 1: Find a ∈ E and b ∈ N , a 6= 0, such that a ∗ r = b.

Step 2: For each i, if ai = 0, set si =?, and oherwise set si = ri. Perform erasure decoding (for the
code C) on the resulting vector s, to find a c ∈ C such that ci = si whenever si 6=?.
Output c.

The exercises below justify the algorithm, proving its efficiency and correctness. Again, we assume
that the input r ∈ Fn satisfies the property that there is a c ∈ C with ∆(r, c) ≤ e (such a c is then
unique, due to the assumed e-error correction property of C).



(a) Prove that a, b as in Step 1 exist.

(b) Prove that the algorithm can be implemented in polynomial time, given generator matrices of
C,N,E.

(c) Prove that for every (a, b) satisying the condition of Step 1, a ∗ c = b.

(d) Prove that if a ∗ c′ = b for some c′ ∈ C, then c′ = c.

(e) Conclude the correctness of the algorithm.

(f) If C is an [n, n − 2e] Reed-Solomon code, what are E and N in the above abstraction that
correspond to the Welch-Berlekamp algorithm covered in lecture?

7. (Open-ended bonus problem) For the Wozencraft ensemble discussed in class, find an explicit α ∈
F2m (i.e., computable in deterministic poly(m) time, or even 2o(m) time) for which the [2m,m]2
binary linear code Cα mapping x ∈ F2m to (x, αx) ∈ F2m × F2m has distance at least d, for as large
a value of d as you are able to establish.


