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PROBLEM SET 1
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INSTRUCTIONS

• You are allowed to collaborate with up to two students taking the class in solving problem sets. But
here are some rules concerning such collaboration:

1. You should think about each problem by yourself for at least 30 minutes before commencing
any collaboration.

2. Collaboration is defined as discussion of the lecture material and solution approaches to the
problems. Please note that you are not allowed to share any written material and you must write
up solutions on your own. You must clearly acknowledge your collaborator(s) in the write-up of
your solutions.

3. Of course, if you prefer, you can also work alone (see the last bullet item for some “credit” for
doing so).

• Solutions typeset in LATEX are encouraged, but not required. If you are submitting handwritten so-
lutions, please write clearly and legibly (you might want to first write the solution sketch in rough,
before transferring it to the version you turn in).

• You should not search for solutions on the web. More generally, you should try and solve the problems
without consulting any reference material other than the course notes and what we cover in class. If
for some reason you feel the need to consult some source, please acknowledge the source and try to
articulate the difficulty you couldn’t overcome before consulting the source and how it helped you
overcome that difficulty. Alternatively, before turning to any such material, we encourage you to ask
the instructor for hints or clarifications.

• Please start work on the problem set early. The problem set has seven problems and is worth a total of
120 points. As a rough estimate, a score around 105, or 95 if you work by yourself, might correspond
to an A level performance on this problem set.

1. (15 points) LetG = (V,E) be any undirected graph (assume no loops or multiple edges). A cut in the
graph is the subset of all edges that connect a vertex in S to vertex in V \ S, for some subset S ⊆ V .
Let Cuts(G) ⊆ {0, 1}E consist of the characteristic vectors of all cuts of G.

(a) Prove that Cuts(G) is an [|E|, |V | − 1]2 binary linear code. What parameter of G equals the
distance of Cuts(G)?

(b) Describe the dual code Cuts(G)⊥ of Cuts(G). What is its dimension? What parameter of G
equals the distance of Cuts(G)⊥?

2. (20 points) In this problem you will need to come up with some ways of constructing new codes from
existing ones, and prove the following statements. Recall that [n, k, d]q stands for an length n linear
code over Fq of dimension k.

(a) If there exists an [n, k, d]q code (d ≥ 2), then there also exists an [n− 1, k, d′ ≥ d− 1]q code.



(b) If there exists an [n, k, d]2 code with d odd, then there also exists an [n+ 1, k, d+ 1]2 code.
What is the code that you get when you apply this transformation to the [2r − 1, 2r − 1− r, 3]2
Hamming code? What is the dual of this code?

(c) If there exists an [n, k, d]q code, then there also exists an [n−d, k−1, d′ ≥ dd/qe]q code. (Hint:
Drop the d positions corresponding to the support of a minimum weight codeword.)

(d) If there exists an [n, k, d]2 code (0 < d < n/2), then for every m ≥ 1, there also exists an[
nm, k, n

m−(n−2d)m

2

]
2

code.

(Hint: Given an n × k generator matrix G for the code, consider the nm × k generator matrix
whose (i1, i2, . . . , im)’th row is the sum of rows i1, i2, . . . , im ofG. It is also more slick to use a
±1 notation for binary alphabet via the translation b 7→ (−1)b from {0, 1} to {1,−1}, and track
the bias Ei∈{1,...,N}[xi] of a string x ∈ {−1, 1}N as a proxy for its relative Hamming weight.)

3. (15 points) A set of vectors S ⊆ Fnq is called t-wise independent if for every set of positions I with
|I| = t, the set S projected to I has each of the vectors in Ftq appear the same number of times. (In
other words, if one picks a vector (s1, . . . , sn) from S at random then any of the t random variables
are uniformly and independently random over Fq).
Prove that any linear code C whose dual C⊥ has distance d⊥ is (d⊥ − 1)-wise independent.

4. (15 points) Let C1 be an [n1, k1, d1]2 binary linear code, and C2 an [n2, k2, d2] binary linear code. Let
C ⊆ Fn2×n1

2 be the subset of n2 × n1 matrices whose rows belong to C1 and whose columns belong
to C2 (view elements of C as binary vectors of length n1n2 in some canonical way).

Prove that C is an [n1n2, k1k2, d1d2]2 binary linear code.

5. (15 points) A n×k Toeplitz Matrix A = {Ai,j}k , n
i=1, j=1 satisfies the property thatAi,j = Ai−1,j−1. In

other words, any diagonal has the same value. For example, the following is a 6× 4 Toeplitz matrix:

1 7 8 9
2 1 7 8
3 2 1 7
4 3 2 1
5 4 3 2
6 5 4 3


A random n×k Toeplitz matrix T ∈ Fn×kq is chosen by picking the entries in the first row and column
uniformly (and independently) at random.

(a) Prove the following claim: For any non-zero m ∈ Fkq , the vector T ·m is uniformly distributed
over Fnq .

(b) Briefly argue why the claim above implies that a random code defined by picking its generator
matrix as a random Toeplitz matrix with high probability achieves the Gilbert-Varshamov bound.

(c) Conclude that an [n, k]q code on the Gilbert-Varshamov bound can be constructed in time qO(n).

6. (20 points) In this problem, we will re-derive the Gilbert-Varshamov bound in a graph-theoretic view,
and then proceed to improve it (in the lower-order terms in the asymptotic view). We will restrict
ourselves to binary codes for simplicity. For integers 1 ≤ d ≤ n, consider the graph Gn,d whose
vertex set is {0, 1}n and two vertices are adjacent if their Hamming distance is less than d.



(a) Argue that any independent set of the graph Gn,d is a code of distance at least d. (Recall that an
independent set in a graph G is a subset of vertices no two of which are adjacent.)

(b) It is a well-known and easy fact that any graph G on N vertices and maximum degree ∆ has an
independent set of size at least N/(∆ + 1). Using this fact, argue a lower bound on the size of
the maximum independent set in Gn,d, and then deduce the Gilbert-Varshamov bound, namely
the existence of binary codes with distance at least d and size at least 2n∑d−1

i=0 (ni)
.

We will now slightly improve the above bound using a more sophisticated argument, via counting
triangles in the graph Gn,d. (A triangle in a graph G = (V,E) is a set {u, v, w} ⊂ V of three distinct
vertices such that all three vertices are adjancent, i.e., (u, v), (v, w), (w, u) ∈ E.)

(a) Argue that a graph on N vertices of maximum degree ∆ has at most O(N∆2) triangles.

(b) Prove that the number of triangle in graph Gn,d is at most

2n ·
∑

0≤`≤3d/2

(
n

`

)
· 3`.

Hint: Fix u and let ` count the number of coordinates where at least one of v or w disagree with
u. Prove that ` is at most 3d/2.

(c) For simplicity, we will restrict to the case d = n/5 below. Simplify the above expression in the
case where d = n/5 to show that the number of triangles in Gn,n/5 is O(N · ∆2−η) for some
η > 0.

(d) A famous result in the “probabilistic method” shows (and you don’t have to prove this), that if
a graph on N vertices of maximum degree ∆ has at most O(N ·∆2−η) triangles, then it has an
independent set of size Ω(N∆ log ∆). Use this result to conclude that there is a binary code of

block length n and distance n/5 of size Ω

(
n 2n∑n/5−1

i=0 (ni)

)
. (Note that this improves over the

GV-bound by an Ω(n) factor.)

7. (20 points) Let C be [n, k]2 linear code with aj denoting the number of codewords of C of Hamming
weight j, for 0 ≤ j ≤ n. (So a0 = 1 and

∑n
j=0 aj = 2k.) Let A(X) =

∑n
j=1 ajX

j be the
“weight-enumerator” polynomial of C (leaving out the all-zeroes codeword).

Suppose C is used for transmission on a discrete memoryless channel (X = {0, 1},Y,W ) with
maximum likelihood decoding at the receiver. That is, if y ∈ Yn is received, the decoding rule
outputs a codeword c ∈ C for which p(y|c) =

∏n
i=1W (yi|ci) is maximum (ties broken arbitrarily).

Prove that regardless of which codeword was transmitted, the resulting error probability Perr is at
most Perr ≤ A(Z(W )) where Z(W ) :=

∑
y∈Y

√
W (y|0)W (y|1).

For W corresponding to BSCp, what is the value of Z(W )? Using this and the above bound on Perr,
conclude that for every fixed p < 1/2, any asymptotically good binary can be used to communicate
on the BSCp with positive rate and decoding error probability at most 2−Ω(n).


