
Introduction to Coding Theory November 16, 2018

Coding for Insertions and Deletions

Lecturer: Bernhard Haeupler Scribe: Amirbehshad Shahrasbi

Thus far, the course has discussed several problems with the common theme of protecting
information transmissions against errors that are of symbol erasure or symbol substitution
types. Today’s lecture will be focused on another type of error that occurs in certain com-
munication or storage applications, called symbol insertions and symbol deletions.

A symbol insertion error is defined as a symbol being inserted into a string of symbols
and shifting all the following symbols one position forward and a symbol deletion error is
deleting a symbol from a string of symbols without replacing it with any sort of placeholders.
For instance, deleting the third position in string abacbc turns it into abcbc and inserting
symbol c in the second position gives acbacbc. Symbol insertions and symbol deletions,
or synchronization errors for short, are prevalent in communication situations where the
parties of the communication have no means of staying in sync or any sort of application
that involves DNAs like design of memories based on synthetic DNA strands.

Note that, as opposed to symbol erasures and symbol substitutions (Hamming-type er-
rors), insertions and deletions (synchronization errors) can potentially shift around uncor-
rupted symbols as well. This extra complication makes the problem of coding for insertions
and deletions a much harder problem. In fact, our understanding of insertion-deletion codes
significantly lags behind our thorough understanding of error correcting codes (ECCs).

1 Insertion-Deletion Codes

To properly define insertion-deletion codes, we have to introduce the notion of edit distance
first.

Definition 1 (Edit Distance) The edit distance between two strings is defined as the mi-
nimum number of insertions and deletions needed to convert one to the other. We denote
edit distance by ED().

Using the edit distance metric, one can formally define insertion-deletion codes in a similar
manner to error correcting codes: For an alphabet Σ and block length n, code C ⊆ Σn is an
insertion-deletion code with minimum distance d if

∀x, y ∈ C : ED(x, y) ≥ d.

Note that the edit distance between two strings of length n can be as large as 2n. Therefore,
the relative distance of code C is defined as d

2n . With this normalization, an insertion-deletion
code with relative distance δ can be used to correct δn insertions and deletions. Similar to
EECs, the rate of the code C is defined as |C|

n log|Σ| .
Similar to ECCs, the Singleton bound can be proved for insertion-deletion codes:

Theorem 2 (Singleton Bound for Insertion-Deletion Codes) For any insertion-deletion
code C ⊆ Σn with relative distance δ and rate r, we have r ≤ 1− δ + 1

n .

This theorem implies that, similar to ECCs, for any infinite family of insertion-deletion codes
with relative distance δ, the rate cannot exceed 1− δ.

1

2 Previous Work

We now review some of the previous work on the constructions of insertion-deletion codes.
The study of insertion-deletion codes was initiated by a work of Levenshtein in 1965 [9].

• Zuckerman and Schulman ‘99 [11]: This paper provided the first asymptotically good
efficient family of insertion-deletion codes. In other words, they provided some (small)
constants δ and r and some constant alphabet Σ and an infinite family of insertion-
deletion codes with relative distance δ and rate r over alphabet Σ. These codes can be
efficiently encoded and decoded.

• Guruswami et al. ‘16 [4, 5]: These works introduced efficient codes for high-rate and
high-distance regimes that are only polynomially off from the Singleton bound. For
sufficiently small ε > 0, the following are provided:

– A family of codes with rate r = 1− Õ (
√
ε) and relative distance δ = ε.

– A family of codes with rate r = O
(
ε5
)

and relative distance δ = 1− ε.

These codes were the state-of-the-art insertion-deletion codes until 2016 and resemble
the qualities of ECCs that were obtained via code concatenation in Forney’s doctoral thesis
in 1966 [2].

In this lecture, we introduce synchronization strings (from [7]) that can be used to find
a black-box conversion of ECCs into insertion-deletion codes with slightly worse qualities.
This will help to translate some of our highly sophisticated understanding of ECCs into the
realm of insertions and deletions. Namely, we will show that one can derive a family of codes
that can approach the Singleton bound by an arbitrarily small additive constant, i.e., codes
that ∀ε > 0, δ ∈ (0, 1) have a relative distance of δ and the rate of 1 − δ − ε or more over
some constant alphabet.

3 Indexing

We start by introducing the simple idea of indexing that is the key to reduce synchronization
errors to Hamming-type errors. Assume that Alice has a stream of symbols m1,m2, · · · ,mn

that she wants to send to Bob through a channel that suffers from synchronization errors.
Imagine that the alphabet of the channel is large enough so that she can concatenate the
position of each symbol to it, i.e., sends the string (m1, 1), (m2, 2), · · · over the channel. We
call this procedure indexing the symbols of the communication with string 1, 2, · · · , n.

Having the stream of symbols indexed with 1, 2, · · · , n, Bob will be able to simply recover
the position of the symbols he receives by looking at the index value. However, due to the
insertions and deletions that occur in the channel, Bob will not be able to (uniquely) identify
the symbols in some positions (e.g. positions 6 and 10 in Fig. 1) and also might recover some
positions incorrectly (e.g. position 3 in Fig. 1). Therefore, assuming such indexing scheme,
Alice and Bob can reduce adversary’s synchronization errors into errors that are of the more
benign erasure/substitution type. To be more precise, we define the half-error measure. We
count any combination of e symbol erasures and s symbol substitutions as e+ 2s half-errors.
It is easy to verify that an error correcting code of distance d can be used to correct from
any d half-errors. Having this notion in mind, we prove the following theorem.

Theorem 3 In the above-mentioned indexing scheme, if the channel performs k synchroni-
zation errors, the string that Bob reconstructs is up to k half-errors far from Alice’s original
message.

2

(A,1)
(F,2)
(G,3)
(A,4)
(E,5)
(F,6)
(B,7)
(D,8)
(C,9)

(B,10)
⋮

A
F
G
A
E
F
B
D
C
B
⋮

ECC ECC indexing

Recovering Positions

(A,1)
(F,2)
(G,3)
(B,3)
(A,4)
(E,5)
(F,6)
(B,7)

(A,10)
(D,8)
(C,9)

(B,10)
⋮

1
2
3
4
5
6
7
8
9

10
⋮

A
F
B
A
E
?
B
D
C
?
⋮

Figure 1: Indexing

Proof Any erasure in the reconstructed string requires at least one synchronization error
on the corresponding index in the channel and any symbol substitution (2 half-errors) requires
at least two synchronization errors on the corresponding index.

A nice complement to Theorem 3 is the following theorem that shows that the problem
of insertion-deletion coding is strictly harder than correcting Hamming-type errors.

Claim 4 Correcting from k insertions and deletions is strictly harder than correcting from
k half-errors.

Proof This can be proved by simply simulating any k half-errors with k insertions and
deletions. To do so, for any symbol substitution we delete the symbol and insert a symbol
the new value at the same position. For a symbol erasure, we delete the symbol and give
the receiver the extra information of the position where that deletion has occurred.

If Alice and Bob have access to a channel with an alphabet large enough to accommodate
the indices, they can use this scheme and Theorem 3 guarantees that they can transform the
k synchronization errors introduced by the channel to k Hamming-type errors. Then, they
can use an ECC with distance k on top of this reduction to conduct a reliable communication.
Indeed, Theorem 3 implies that one can take any ECC and index each codeword of it with
1, 2, · · · to obtain an insertion-deletion code over a larger alphabet that has the same distance
and a (slightly) smaller rate (since the number of codewords stays the same but the alphabet
size grows).

However, this method entails the following two problems: (1) Any family of codes con-
structed as such has to have an alphabet size that depends on n, and (2) even if one takes a
family of ECCs over a constant alphabet and converts it into a family of insertion-deletion
codes using this technique, the rate of the resulting family will approach to zero because by
increasing the block length the fraction of the alphabet that is used for indexing (and not
conveying actual information) tends to one.

Note that one can still take an ECC with increasing alphabet size and use this conversion
to obtain good insertion-deletion codes over super-constant alphabets. In fact, indexing the
symbols of the codowords of a Reed-Solomon code with 1, 2, · · · , n would give a family of
insertion-deletion codes that perfectly attain the Singleton bound.

3

1 7 8 7 1 3 5 4 2 1 5 7 8 3 2 1 8 1 7 3 2 3 6 9 3

1 7 8 7 1 3 5 4 2 1 5 7 8 3 2 1 8 1 7 3 2 3 6 9 3

Figure 2: An example of a self-matching. Green edges correspond to good matches and red
ones to bad matches.

To make this approach useful in the construction of families of codes over constant-sized
alphabets, we replace the string (1, 2, · · · , n) with strings over some finite alphabet that
provide a decent translation from insertions and deletions to half-errors. We introduce ε-
synchronization strings as strings that can be used in the indexing scheme to translate any
K synchronization errors to K + nε half-errors and exist over finite alphabets that are of
size Oε(1) (the alphabet size is independent of n and only depends on ε).

4 Synchronization Strings

Consider a string S of length n and a matching between two copies of S where symbols at
the ends of each edges are identical and edges do not cross each other. We call any such
matching a self-matching for S. In a self-matching for string S, an edge is called a bad edge
if it connects same positions in two copies of S and a good edge otherwise. (see Fig. 2)

Definition 5 (ε-Synchronization String) S is an ε-synchronization string if for every
self-matching of S

of bad edges < ε · (n−#of good edges) .

While synchronization strings are very useful objects in the design of insertion-deletion
codes, for the purpose of this lecture, we only use the weaker notion of ε-self-similar defined
as follows:

Definition 6 (ε-Self-Similar String) S is an ε-self-similar string if for every self-matching

of bad edges < εn.

Note that with this definition, a 0-self-similar string is a string with distinct symbols,
i.e., 1, 2, 3, · · · , n. In the rest of this section, we show that for any ε > 0 and positive integer
n, there exists an ε-self-matching string of length n. Also, we will show that using an ε-self-
matching in the indexing scheme of Section 3, gives a conversion of K synchronization errors
to K + 4

√
εn half-errors.

4.1 Existence

Lemma 7 A random string S ∈ [q]n is Θ
(

1√
q

)
-self-matching with high probability. The-

refore, taking q = Ω(ε−2), the random string over alphabet [q] is ε-self-similar with high
probability.

Proof To prove this, take the union bound over all possible non-crossing matchings of size
εn in S. Note that the number of all possible non-crossing matchings of size εn in S is no
more than

(
n
nε

)2
since any non-crossing matchings of size εn can be uniquely identified by

picking εn positions from each copies.

4

Further, the probability of string S being such that the edges of some specific matching
of size εn place between identical symbols is 1

qk
. By taking the union bound over all such

possible self-matchings, we have

Pr{Having a bad matching of size ≥ εn} ≤
(
n

εn

)2(1

q

)εn
≤
(

e

ε
√
q

)2nε

.

Therefore, if we pick q > e2

ε2
, the base becomes smaller than 1 and the probability tends

to zero as n goes to infinity.

4.2 Decoding

We now proceed to describing the decoding procedure, i.e., how Bob can recover the position
of the symbols he receives using the indexed ε-self-similar string. Assume that Alice and

Bob are using string S for indexing and Bob receives the string
{(
m̃i, S̃i

)}
i
. The algorithm

that Bob needs to use to recover the actual position of the symbols is as follows:

1. Compute the longest non-crossing matching between S and S̃.

2. For any symbol in S̃ like S̃i that is matched to some Sj , assign the received symbol S̃i
to position j.

3. Remove the symbols in S̃ that are matched.

4. Repeat this procedure 1√
ε

times.

Theorem 8 Using an ε-self-similar string in the indexing scheme of Section 3 along with
the decoding algorithm described above, Bob can recover the string sent by Alice by up to
k + 4n

√
ε half-errors where k is the number of synchronization errors that happen in the

channel.

Proof Two types of incorrect decoding of received symbols can happen in this procedure:

(1) Some symbol (Si,mi) successfully passes through the channel and arrives as (S̃j , m̃j)
at Bob’s end without being removed but S̃j gets incorrectly matched to some other S′i.

(2) Some symbol (Si,mi) successfully passes through the channel and arrives as (S̃j , m̃j)
at Bob’s end without being removed but never matches to any symbols in any of the
matchings.

Type I: Any incorrect match between a symbol in S̃ like S̃j that corresponds to Si and
some other symbol in S like Sk (where i 6= k) implies a pair of identical symbols in S
(Si = Sk). Since S is ε-self-similar, there is no more than nε such symbols. Since there is a
total of 1√

ε
rounds, the total mis-decodings of type I is no more than εn · 1√

ε
= n
√
ε.

Type II: If there are k undeleted symbols left unmatched at the end of the procedure, then
there is a monotone matching between S and the remainder of S̃ at the end of the procedure
that is of size k. This implies that the size of each of the previous matchings is at least k.
This means that we have matched at least k√

ε
in total. We have that k√

ε
≤ n⇒ k ≤ n

√
ε.

Therefore, the total number of incorrect decodings will not exceed 2n
√
ε. Note that in the

case of indexing with trivial string 1, 2, · · · , n where there is no mis-decodings, k insertions
and deletions can be converted to k half-errors. It is easy to verify that each mis-decoding
can introduce up to two more half-errors. Therefore, the total number of half-errors in the
string obtained by this decoding algorithm is k + 4n

√
ε.

5

Having the decoding guarantee of Theorem 8, one can take the following family of error
correcting code by Guruswami and Indyk [3] that approach the singleton bound by an ar-
bitrarily small additive constant and convert it to a family of insertion-deletion codes with
the same quality.

Theorem 9 (Theorem 3 from [3]) For every r, 0 < r < 1, and all sufficiently small
ε > 0, there exists a family of codes of rate r and relative distance at least (1 − r − ε) over
an alphabet of size 2O(ε−4r−1 log(1/ε)) such that codes from the family can be encoded in linear
time and can also be (uniquely) decoded in linear time from (1−r− ε) fraction of half-errors,
i.e., a fraction e of errors and s of erasures provided 2e+ s ≤ (1− r − ε).

Theorem 10 For any δ ∈ (0, 1) and sufficiently small ε > 0, there exists a family of
insertion-deletion code with distance δ that achieves a rate of 1 − δ − ε or more over an
alphabet of size exp

(
ε−4 log 1

ε

)
= Oε(1) that are encodable in linear time and decodable in

quadratic time in terms of the block length.

Proof Take a family of error correcting codes {Cn} from Theorem 9 with parameters

δC = δ + ε
3 and εC = ε

3 . Further, take εS =
(
ε
12

)2
and take a εS-self-similar string S and

index the codewords of codes in {C} to obtain the family of insertion-deletion codes {C′}.
Theorem 8 implies that in presence of nδ synchronization errors, Bob is able to reconstruct

the non-index part of Alice’s message by up to nδ + 4n
√
εS = n

(
δ + ε

3

)
= nδC half-errors.

Since the family of codes {C} have Hamming distance of nδC , Bob would be able to uniquely
decode Alice’s message. This implies that the family of codes {C′} is an insertion-deletion
code with distance δ or more.

We now find the rate of the C′. Note that by indexing, the number of codewords stay
the same but the rate drops as the size of the alphabet grows. Let us denote the alphabet
of codes C (respectively C′) with ΣC (resp. ΣC′) and the alphabet of S with ΣS . Then, the
rate of C′ can be bounded below as follows.

RC′i =
|C′i|

n log |ΣC′ |

=
|Ci|

n log |ΣC |
· n log |ΣC |
n log |ΣC′ |

= RCi ·
log |ΣC |

log |ΣC |+ log |ΣS |

= RCi ·
1

1 + log |ΣS |
log |ΣC |

= RCi ·
1

1 + o(ε)
> RCi −

ε

3
(1)

Section 4.2 follows from the fact that |ΣC | = 2O(ε−4 log(1/ε)) (according to Theorem 9) and
|ΣS | = O

(
ε−2
)

(according to Theorem 7).
Therefore, the rate of the family of codes C′ is at least

rC′ ≥ rC −
ε

3
≥
(

1− δC −
ε

3

)
− ε

3
≥ 1− δ − 3 · ε

3
= 1− δ − ε.

Finally, since codes {Ci} are encodable in linear time and indexing only adds linear
time to the encoding procedure, the resulting code also has a linear encoding complexity.
Further, since {Ci} is decodable in linear time and the extra step of decoding the indices
from Section 4.2 performs a constant number of longest common subsequence computations,
the decoding complexity of the resulting code is quadratic.

6

We finish this section by adding an interesting remark about the indexing-based con-
struction of insertion-deletion codes. Indexing the codewords of a code over alphabet ΣC
with a self-similar string over alphabet ΣS inherently wastes a |ΣS |

|ΣC |+|ΣS | fraction of the infor-
mation in each symbol. Therefore, if one wants to stay close to the singleton bound by an ε
margin, log |ΣS |

log |ΣC |+log |ΣS | has to be smaller than ε. Given that ε-self-similar strings only exist

over alphabets of size Ω(ε−1), this forces the |ΣC | and consequently the size of the alphabet
of the resulting code to be at least exponentially large in 1

ε . However, for ordinary error
correcting codes, there are families of codes that approach the singleton bound and are over
alphabets of size poly

(
ε−1
)
.

While this suggests that large alphabet size is an intrinsic shortcoming of the indexing
method, it can be proved that any family of insertion-deletion codes that approaches the
singleton bound with an ε error has to have an alphabet that is at least exponentially large
in terms of ε−1.

5 Document Exchange

The rest of this lecture is going to be on a problem closely related to insertion-deletion coding
called the document exchange problem. Assume that a server holds a file F and its client
is keeping an out dated version of F denoted by F ′. Further, assume that it is known to
both the server and the client that the edit distance of F and F ′ is no more than k. In the
document exchange problem, the goal is for the server to compute a summary SF and send
it to the client so that the client will be able to recover F using SF and its outdated version
F ′ (Rec(F ′, SF)).

Note that the server is not aware of client’s out dated file so he cannot just send the
position of the edits that are required to turn F ′ to F . However, since each of the k edits can
occur in any of the n positions, the bit-size of the summary has to be at least Ω(k log

(
n
k

)
) =

Ω(k log n
k) to guarantee a correct recovery. In 1991, Orlitsky [10] has shown that there exists a

deterministic document exchange protocol that achieves O(k log n
k) summary size. However,

designing efficient document exchange protocols (deterministic or probabilistic)that yield
small message sizes has been an interesting problem since then.

Before discussing document exchange protocols, we remark that the deterministic do-
cument exchange and insertion-deletion coding are highly related problems. A systematic
error correcting code is an error correcting code whose encoder outputs the input (systematic
part) appended by some redundant information (non-systematic part).

Having a systematic synchronization code C that corrects from k synchronization errors
with encoding and decoding functions Enc(·) and Dec(·), one can construct a deterministic
document exchange scheme with summary SF being the non-systematic part of Dec(·) and
the recovery procedure Rec(SF) = Dec(〈F ′, SF 〉). Further, having a deterministic document
exchange scheme (SF ,Rec(·)), one can simply construct a systematic synchronization code
that can correct from k synchronization errors by taking the input and appending a non-
systematic part that consists of the encoding of SF with a synchronization code that corrects
from k errors.

5.1 O
(
k log n log n

k

)
Randomized Document Exchange (Irmak et al. [8])

Take string F and split it into 4k substrings of length n
4k . Since F ′ is different from F by

up to k insertions and deletions, at least 3k of such substrings appear in F ′. Based on this
observation, we present the following interactive protocol for document exchange.

The server splits F into 4k substrings of length n
4k and uses an appropriate hash function

to compute and send over the hash value for all such substrings. The client can use those
hash values to recover the 3n uncorrupted substrings of F . We assume that the hash size is

7

Ω(log n) so with high probability, no hash collision happens during the procedure. Then, the
client sends the positions of the (up to k) substrings of F that are not recovered, the server
splits each of them into two substrings (of length n

2k) and sends the hash value for each of
those 2k new intervals. Repeating this procedure t times, the client will be able to recover F
with the exception of k substrings of length O(n

2tk). For t = log n
k , the remaining substrings

are of constant size. Then the server sends all those substrings.
This procedure has log n

k levels and in each level the server sends O (k log n) bits of
information. So, in total, O

(
k log n log n

k

)
bits of information are sent from the server to the

receiver.
The next step is to convert this interactive protocol into a document exchange scheme.

The trick is to use a systematic erasure code to convey the information that the client needs to
know in each level without knowing which parts of F has been reconstructed. More precisely,
in ith level, the server splits F into substrings of length n

2ik
, computes the hash value for

each substring H i = 〈hi1, · · · , hi2ik〉, then uses a systematic erasure code that corrects from
2k erasures to compute the non-systematic part for input H i, N i, and sends it to the client.
On the other end, at level i, the client has already constructed all of F except 2k substrings
of length n

2ik
. So, the client can compute H i by up to 2k erasures. Therefore, using the

non-systematic part N i, the client can compute the hash values for the unknown substrings
and move on to the next level. Overall, this gives an efficient randomized document exchange
scheme with message size O

(
k log n log n

k

)
.

5.2 O
(
k log n

k

)
Deterministic Document Exchange [6, 1]

The document exchange protocol described above can be improved to achieve asymptotically
optimal communication efficiency O

(
k log n

k

)
by reducing the hash sizes to some constant

independent of n. This will be possible by modifying the protocol using the following ideas
to make it resilient to hash collisions:

1. With smaller hash sizes, hash collisions will be inevitable. However, even if the client
incorrectly reconstructs a substring of F , the hash values corresponding to its substrings
in next level will not agree with server’s message. In fact, it can be shown that if server
uses a systematic ECC instead of the systematic erasure code, the client will be able
to discover and correct the incorrectly reconstructed substrings that occur due to hash
collisions in earlier levels.

2. Take into account the fact that uncorrupted substrings of F appear in F ′ in the same
order when trying to reconstruct F on the client side using hash values.

It can be proved that applying these ideas, the summary size of the document exchange
protocol can be reduced to O

(
k log n

k

)
and, further, the protocol can even be derandomi-

zed. [6, 1]

References

[1] Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document exchange
protocols, and almost optimal binary codes for edit errors. In Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS), 2018.

[2] G David Forney. Concatenated codes. 1965.

[3] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

8

[4] Venkatesan Guruswami and Ray Li. Efficiently decodable insertion/deletion codes for
high-noise and high-rate regimes. In Information Theory (ISIT), 2016 IEEE Internati-
onal Symposium on, pages 620–624. IEEE, 2016.

[5] Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Transactions on Information Theory, 63(4):1961–1970, 2017.

[6] Bernhard Haeupler. Optimal document exchange and new codes for small number of
insertions and deletions. arXiv preprint arXiv:1804.03604, 2018.

[7] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: Codes for
insertions and deletions approaching the singleton bound. In Proceedings of the Annual
Symposium on Theory of Computing (STOC), 2017.

[8] Utku Irmak, Svilen Mihaylov, and Torsten Suel. Improved single-round protocols for
remote file synchronization. In INFOCOM, pages 1665–1676, 2005.

[9] Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk SSSR 163, 4:845–848, 1965.

[10] Alon Orlitsky. Interactive communication: Balanced distributions, correlated files, and
average-case complexity. In Foundations of Computer Science, 1991. Proceedings., 32nd
Annual Symposium on, pages 228–238. IEEE, 1991.

[11] Leonard J. Schulman and David Zuckerman. Asymptotically good codes correcting
insertions, deletions, and transpositions. IEEE transactions on information theory,
45(7):2552–2557, 1999.

9

