
Introduction to Coding Theory CMU: Fall 2018

Lecture 10: Improved List Decoding of Reed Solomon Codes

Lecturer: Venkatesan Guruswami Scribe: Keerthana Gurushankar

In the previous class, we saw an algorithm for list decoding rn, k ` 1, n´ ksq Reed Solomon codes
upto n´

?
2kn errors by reducing it to the polynomial reconstruction problem. [Sud97] However,

recall that the Johnson Bound states that a code of distance k`1 can be list decoded upto n´
?
kn

errors. Our goal today is to improve the algorithm so it can list decode upto n ´
?
kn errors and

thus meet the Johnson Bound. We achieve this using polynomial reconstruction with the added
consideration of roots of high multiplicity.

1 Sudan’s Algorithm

We briefly recap the algorithm from last class for list decoding rn, k ` 1, n ´ ksq RS codes upto
n´

?
2kn errors.

Given a Reed Solomon code CRS “ tpppα1q, . . . , ppαnqq P Fn | p P FqrXs, deg p ď k ´ 1u, a vector
y P Fq to be decoded and an agreement parameter t such that y agreed with a codeword in CRS
at at least t ě

?
2kn indices, we find all polynomials f P FrXs of degree ď k for which fpαiq “ yi

at at least t values of i. Each f corresponds to a codeword pfpα1q, . . . , fpαnqq in CRS which agrees
with y at at least t indices.

We use the following algorithm to find all such polynomials.

Algorithm I: Polynomial Reconstruction

Input: F, n, k, t and n points pαi, yiq P F2

Output: All polynomials f with degree ď k such that |ti | fpαiq “ yiu| ě t.

Step 0: Set parameter D “ t
?

2knu

Step 1: Find a non-zero bivariate polynomial Q P FrX,Y s with degxpQq ` k degypQq ď D (i.e.
having p1, kq-weighted degree ď D) such that Qpαi, yiq “ 0 at all n points

Step 2: Find all linear factors py ´ fpxqq of Qpx, yq and include f in output list if deg f ď k
and fpαiq “ yi at at least t points

In this algorithm, to allow t as small as possible, we aimed to increase the number of variables
available in Step 1 (i.e. coeffecients of the bivariate polynomial Q). However, as a tradeoff, we
needed the p1, kq-weighted degree of Q to be as small as possible in Step 2. By cleverly choosing
degree constraints, we arrived at a solution for t ą

?
2kn. However, while hoping to meet the

Johnson Bound (t ą
?
kn) through further such optimizations, we posit that we unfortunately

cannot do much better with this algorithm without significantly altering the current framework.

1

Fig. 1(a): Set of points input to the polynomial reconstruction problem;
Fig. 1(b): The correct answer to Fig. 1(a)

Consider for instance, the above pathologically constructed example as justification. We take
k “ 1 and n “ m2 ` 2 for any m (m is taken to be 4 in the figure above), and try to find all
polynomials (i.e. lines, since k “ 1) passing through at least m ` 1 of the m2 ` 2 points in Fig.
1(a). Clearly there are at least 2m such lines as pictured above. However the polynomial Q from
Algorithm I, having degree D ď

?
2kn “

a

2pm2 ` 2q may have at most «
?

2m linear factors and
can thus cannot output all 2m lines. However, we note the self-intersecting nature of the curve
in Fig. 1(b) and explore generalizing the polynomial reconstruction problem to one with roots of
multiplicity specified to be possibly larger than 1.

2 Method of Multiplicity

The following result is an improvement of Algorithm I due to Guruswami and Sudan [GS98] which
list decodes Reed Solomon codes upto the Johnson Bound.

Following our nose from the example above, we ask: how might we go about characterizing curves
having high multiplicity roots? Borrowing from continuous math, we might like to define some
notion of a derivative and suggest that the first r´ 1 derivatives at a root of multiplicity r be zero.
However differentiation does not carry very smoothly to finite fields. (For instance, the naively
taken derivative of x2 in F2rXs would be 2x, which is zero!).

So we must consider a different approach. Take a polynomial having a root of multiplicity r at 0. It
must be divisible by xr and thus have no monomials of degree ă r. Indeed, this notion generalizes
when combined with the translation of roots. And thus we have the following definition.

Definition 2.1 (Multiplicity of zeros) A polynomial Qpx, yq is said to have a zero of multiplic-
ity r at the point pα, βq P F2 if the polynomial Qpα,βq defined as Qpα,βqpx, yq :“ Qpx` α, y` βq has
no monomials of total degree less than r.

With this in mind, in Algorithm I, let’s look for a bivariate polynomial Q having roots of multiplicity

2

r (to be specified) at each point pαi, yiq , rather than one simply passing through these points. We
would be increasing the degree of Q, which is undesirable from the point of Step 1, where the
additional constraints would force an increase in the degree of Q. However, in the Step 2, we
will know that the polynomial f passes through not simply roots, but in fact singularities (high
multiplicity roots) of Q. We would like to see how these trade-offs play off.

We thus sketch the following algorithm.

Algorithm II: Method of Multiplicity

Input: F, n, k, and n points pαi, yiq P F2

Output: All polynomials f with degree ď k such that |ti | fpαiq “ yiu| ě t.

Step 0: Set parameters for multiplicity r, and deg(Q) D /* to be specified later */

Step 1: Find a non-zero bivariate polynomial Q P FrX,Y s of p1, kq-weighted degree ď D having
roots of multiplicity r at each pαi, yiq

Step 2: Find all linear factors py ´ fpxqq of Qpx, yq and include f in output list if deg f ď k
and fpαiq “ yi at at least t points

In the following lemma, we show that polynomial Q of the nature required in Step 1 exists when
DpD`2q

2k ą n
`

r`1
2

˘

.

Lemma 2.2 For any given parameters n, r P N and n pairs pαi, yiq P F2, there exists a non-zero
polynomial Qpx, yq of p1, kq-weighted degree D with at least r zeroes at each of the n points pαi, yiq

if DpD`2q
2k ą n

`

r`1
2

˘

.

Proof: Each point pα, βq at which Q has a root of multiplicity r places the constraint that for all

i ` j ă r, the coefficient q
pα,βq
i,j of xiyj in Qpα,βq is zero. Since Qpα,βqpx, yq “ Qpx ` α, y ` βq, the

coefficients are given by

q
pα,βq
i,j “

ÿ

i1`kj1ďD

ˆ

i1

i

˙ˆ

j1

j

˙

qi1,j1αi
1´iβj

1´j

Notice that this is a linear transformation of the coefficients qi1,j1 of Q. Thus each point generates
`

r`1
2

˘

homogenous linear equations as constraints. Thus, the n points pαi, yiq give us a system of

n
`

r`1
2

˘

homogenous equations. The system has a non-trivial solution if the number of coefficients of

Q is strictly greater. As proven in the previous lecture, the number of coefficients of Q is ě DpD`2q
2k .

Therefore a polynomial of the required nature exists if DpD`2q
2k ą n

`

r`1
2

˘

.

We can also prove the following fact useful in Step 2.

Lemma 2.3 For any input point pαi, yiq, if f P FrXs is a polynomial such that fpαiq “ yi then
px´ αiq

r divides Qpx, fpxqq.

Proof: Since Q has a root of multiplicity r at pαi, yiq, by the definition of multiplicity of roots,

Qpαi,yiq has no monomials of total degree ă r, i.e. Qpαi,yiqpx, yq “
ř

l`měr q
pαi,yiq
l,m xlym. We can

3

write Q in terms of Qpαi,yiq as Qpx, yq “ Qpαi,yiqpx´ αi, y ´ yiq. Then

Qpx, fpxqq “ Qpαi,yiq px´ αi, fpxq ´ fpαiqq

“
ÿ

l`měr

q
pαi,yiq
l,m px´ αiq

lpfpxq ´ fpαiqq
m

Since f is a polynomial, px ´ αiq � pfpxq ´ fpαiqq. It then follows from above that px ´ αiq
r �

Qpx, fpxqq.

The above can be used to prove the following lemma which lays out conditions for the correctness
of Step 2 of our algorithm.

Lemma 2.4 If a polynomial f has with degree ď k, fpαiq “ yi for at least t values of i and rt ą D,
then y ´ fpxq � Qpx, yq

Proof: From Lemma 2.3, we have that px´αiq
r � Qpx, fpxqq when fpαiq “ yi. Taking product over

the t such values of i, the rt degree polynomial
ś

px´αiq
r divides Qpx, fpxqq which has degree D.

But in the case that rt ă D, this must imply Qpx, fpxqq ” 0 and therefore y ´ fpxq � Qpx, yq.

The lemmas we proved above combine to gives us conditions (for r,D) gives us sufficient conditions

for Algorithm II to provide the necessary output. From Lemma 2.2, DpD`1q
2 ą n

`

r`1
2

˘

guarantees
the successful completion of Step 1. Likewise from Lemma 2.4, rt ą D guarantees the completeness
of Step 2. Thus we can arrive at a complete specification for our algorithm.

Algorithm II: Method of Multiplicity

Input: F, n, k, and n points pαi, yiq P F2

Output: All polynomials f with degree ď k such that |ti | fpαiq “ yiu| ě t.

Step 0: Compute parameters r and D such that D ă rt and n
`

r`1
2

˘

ă
pD`1qpD`2q

2 . To this end,
we can in particular set

D :“ rt´ 1

r :“ 1`

[

kn`
a

k2n2 ` 4pt2 ´ knq

2pt2 ´ knq

_

Step 1: Find a non-zero bivariate polynomial Q P FrX,Y s of p1, kq-weighted degree ď D having
roots of multiplicity r at each pαi, yiq

Step 2: Find all linear factors py ´ fpxqq of Qpx, yq and include f in output list if deg f ď k
and fpαiq “ yi at at least t points

It can be shown similar to the analysis of Algorithm I, that Algorithm II can also be implemented
efficiently.

But more importantly, we must note that Algorithm II meets the Johnson Bound. Lemma 2.2 gave
us the constraint that DpD`2q

2k ą
nrpr`1q

2 ; and Lemma 2.4 gave that rt ą D. Combining the two,
we get the requirement that rtprt` 2q ą nkrpr` 1q. As we increase the value of r, the bound on t
approaches t ą

?
kn and thus we can come arbitrrily close to the Johnson Bound.

4

3 Soft Decoding

A natural generalization of the method of multiplicities is to the case of weighted curve fitting:
instead of assuming the same multiplicity r for all roots, we may weight each root with a mul-
tiplicity wi representing a confidence value on the recieved symbol and placing more emphasis
on smaller values. This connection has been explored by Koetter-Vardy [KV03], where it was
shown how to choose weights optimally based on channel observations and transitions probabili-
ties. It can be shown that the weighted polynomial reconstruction problem can be solved when
ř

wit ą
b

k
ř

`

wi`1
2

˘

.

References

[GS98] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and
algebraic-geometric codes. In Foundations of Computer Science, 1998. Proceedings. 39th
Annual Symposium on, pages 28–37. IEEE, 1998.

[KV03] Ralf Koetter and Alexander Vardy. Algebraic soft-decision decoding of reed-solomon codes.
IEEE Transactions on Information Theory, 49(11):2809–2825, 2003.

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal
of complexity, 13(1):180–193, 1997.

5

