1. (a) $\sigma(u(S)v(S) + u(T)v(T) + u(U)v(U))$.

(b) Since $\|u\|_2 = \|v\|_2 = 1$, we have $\|u\|_1, \|v\|_1 \leq \sqrt{n}$. Therefore, there are at most $2\sqrt{n}/\delta$ possibilities for each of $u(S), v(S), u(T), v(T), u(U), v(U)$. Therefore, there are at most $(2\sqrt{n}/\delta)^6$ possible $f(S,T,U)$ vectors needed for the purpose of approximation.

(c) We maintain a list L_i of $f(S,T,U)$ vectors for the first i vertices. We start from $L_0 = \{(0,0,0,0,0,0)\}$, and at each of the n iterations, we derive L_i from L_{i-1}, where $1 \leq i \leq n$. For each element $(a,b,c,d,e,f,g) \in L_{i-1}$, we consider the new vectors $(a + u_i, b + v_i, c + d, e, f, g, a, b, c + u_i, d + v_i, e, f)$ (corresponding to adding vertex i to S,T,U). Round the three new vectors to the nearest multiple of δ' (which will be chosen later), and add them to L_i.

Finally, L_n is the desired set of approximation vectors.

Now that at each iteration, we might introduce a δ' additive error. There might be a $n\delta'$ additive error in the final approximation vectors. Therefore, we need to set $\delta' = \delta/n$, and the list size is upper bounded by $(2\sqrt{n}/\delta')^6 = O(n^{1.5}/\delta)^6$.

(d) We use the natural extension of the dynamic programming described above, getting a list of at most $O(n^{1.5}/\delta)^6k$ approximating vectors (at precision δ). By choosing $k = O(1/\epsilon)$, the additive error introduced in the SVD step can be upper bounded by $\epsilon n^2/2$. The rest of the error is upper bounded by (for every partition S,T,U)

$$\left| \sum_{t=1}^{k} \sigma_t(u_t(S)v_t(S) + u_t(T)v_t(T) + u_t(U)v_t(U))
ight.$$

$$- \sum_{t=1}^{k} \sigma_t((u_t(S) + \delta_{t,1})(v_t(S) + \delta_{t,2}) + (u_t(T) + \delta_{t,3})(v_t(T) + \delta_{t,4}) + (u_t(U) + \delta_{t,5})(v_t(U) + \delta_{t,6})) \right|,$$

where $|\delta_{t,j}| \leq \delta$ are the error terms. The value above is upper bounded by

$$\sum_{t=1}^{k} \sigma_t \left(|u_t(S)v_t(S) - (u_t(S) + \delta_{t,1})(v_t(S) + \delta_{t,2})|
ight.$$

$$+ |u_t(T)v_t(T) - (u_t(T) + \delta_{t,3})(v_t(T) + \delta_{t,4})| + |u_t(U)v_t(U) - (u_t(U) + \delta_{t,5})(v_t(U) + \delta_{t,6})| \right)$$

$$= \sum_{t=1}^{k} \sigma_t \left(|\delta_{t,1}v_t(S) + \delta_{t,2}u_t(S) + \delta_{t,1}\delta_{t,2}|
ight.$$

$$+ |\delta_{t,3}v_t(T) + \delta_{t,4}u_t(T) + \delta_{t,3}\delta_{t,4}| + |\delta_{t,5}v_t(U) + \delta_{t,6}u_t(U) + \delta_{t,5}\delta_{t,6}| \right)$$

$$\leq \sum_{t=1}^{k} \sigma_t \left(|u_t(S)| + |v_t(S)| + |u_t(T)| + |v_t(T)| + |u_t(U)| + |v_t(U)| + 3\delta^2 \right)$$

$$\leq \sum_{t=1}^{k} \sigma_t \left(\delta \cdot 2\sqrt{n} + 3\delta^2 \right) \quad \text{(since } \|u\|_1, \|v\|_1 \leq \sqrt{n})$$

$$\leq \sum_{t=1}^{k} \sigma_t \cdot 3\sqrt{n}\delta \quad \text{(for large enough } n)$$
\[
\leq k\sigma_1 \cdot 3\sqrt{n}\delta \\
\leq kn^2 \cdot 3\sqrt{n}\delta.
\]

Therefore, we can upper bound this value by \(en^2/2\) by choosing \(\delta = \epsilon/(6k\sqrt{n}) = \Omega(e^2/\sqrt{n})\). This would give an algorithm with \(en^2\) additive error which runs in time \(n^{O(1)} \cdot O(n^{1.5}/\delta)^{6k} = (n/\epsilon)^{O(1/\epsilon)}\).

2. The probability that at least one of the \(x_i\)'s is one is

\[
1 - \prod_{i=1}^{n}(1 - \Pr[x_i = 1]) \leq 1 - (1 - (1 - \epsilon)/l)^l \approx 1 - 1/e^{1-\epsilon},
\]

for large enough \(l\).

Now back to our problem of estimating the number of distinct elements. Suppose we want a \((1 + \epsilon)\) approximation and there are \(l\) distinct elements. To get an estimation within \(l(1 \pm \epsilon)\) for the min-hash method, at least one of the \(l\) elements should be mapped to the first \(1/(l(1 - \epsilon))\) fraction of the hash buckets (which happens with probability \(1/(l(1 - \epsilon)) \approx (1 + \epsilon)/l\)). Even when the hash function is \(l\)-wise independent (i.e., the \(l\) elements are hashed in a fully independent way), by the exercise above, the probability that at least one of the \(l\) elements mapped to the first \(1/(l(1 - \epsilon))\) fraction of the hash buckets is at most \(1 - 1/e^{1+\epsilon}\). Therefore, with constant probability, we are not able to get a \((1 + \epsilon)\) approximation.

3. (a) The different \(f_s\)'s might cancel each other due to difference in their signs.

(b) By solving the equation

\[
\int_{t=0}^{x} 2 \cdot \frac{1}{\pi} \cdot \frac{dt}{1+t^2} = \frac{1}{2},
\]

we get the median value of \(|A|\) is \(x = 1\).

(c) Let \(z_1, z_2\) be the value such that

\[
\Pr[Z \leq z_1] = 1/2 - \epsilon, \Pr[Z \leq z_2] = 1/2 + \epsilon.
\]

Now, we only need to prove that,

\[
\Pr[z_1 \leq M \leq z_2] \geq 1 - \delta.
\]

We are going to show that \(\Pr[z_1 \leq M] \geq 1 - \delta/2\). Similarly, we can show that \(\Pr[M \leq z_2] \geq 1 - \delta/2\). By a union bound, we prove the desired statement.

To prove \(\Pr[z_1 \leq M] \geq 1 - \delta/2\), we note that

\[
\Pr[z_1 \leq M] \geq \Pr[\text{more than half of } s_i \text{'s are no less than } z_1].
\]

Since each \(s_i\) is an independent sample of \(Z\) and therefore is no less than \(z_1\) with probability \(1/2 + \epsilon\) (by the definition of \(z_1\)). By a Chernoff bound, we know that as long as \(k = C\log(1/\delta)/\epsilon^2\) for some large enough \(C\), we have

\[
\Pr[\text{more than half of } s_i \text{'s are no less than } z_1] \geq 1 - \delta/2,
\]

which implies that \(\Pr[z_1 \leq M] \geq 1 - \delta/2\).
(d) We are going to show that
\[
\int_{1-10\epsilon}^{1} 2 \cdot \frac{1}{\pi} \cdot \frac{dx}{1+x^2} > \epsilon,
\]
\[
\int_{1}^{1+10\epsilon} 2 \cdot \frac{1}{\pi} \cdot \frac{dx}{1+x^2} > \epsilon,
\]
which would imply the desired statement.

Note that for \(x \in [1-10\epsilon, 1+10\epsilon] \) and small enough \(\epsilon \), we have \(2 \cdot \frac{1}{\pi} \cdot \frac{1}{1+x^2} \geq \frac{2}{\pi} \cdot \frac{1}{3} \geq \frac{1}{6} \). Therefore,
\[
\int_{1-10\epsilon}^{1} 2 \cdot \frac{1}{\pi} \cdot \frac{dx}{1+x^2} \geq \int_{1-10\epsilon}^{1} \frac{dx}{6} = \frac{10}{6} \cdot \epsilon > \epsilon,
\]
and
\[
\int_{1}^{1+10\epsilon} 2 \cdot \frac{1}{\pi} \cdot \frac{dx}{1+x^2} \geq \int_{1}^{1+10\epsilon} \frac{dx}{6} = \frac{10}{6} \cdot \epsilon > \epsilon.
\]

(e) Let \(k = C \log(1/\delta)/\epsilon^2 \) as defined in part (c). Take \(ks \) independent samples of \(\Lambda : \{X_i^{(t)}\}_{i \leq s, t \leq k} \). Now we keep \(k \) running sums \(S_t = \sum_{i=1}^{s} a_i X_i^{(t)} \), and return the value \(\text{median}(|S_1|, |S_2|, \ldots, |S_k|) \).

Note that the algorithm runs in sub-linear space: only keeps \(k \) running sums \(S_t \) (if not considering the samples from \(\Lambda \)).

Now we are going to analyze the performance of the algorithm. Observe that each \(S_t \) is independently distributed as \(\sum_{i=1}^{s} a_i |\Lambda| \). By part (c), we know that for an independent \(\Lambda \), with probability at least \(1 - \delta \), we have
\[
1/2 - \epsilon \leq \Pr \left(\sum_{i=1}^{s} |a_i| |\Lambda| \leq \text{median}(|S_1|, |S_2|, \ldots, |S_k|) \right) \leq 1/2 + \epsilon.
\]

Now, by part (c), we know that \((1 - 10\epsilon)(\sum_{i=1}^{s} |a_i|) \leq \text{median}(|S_1|, |S_2|, \ldots, |S_k|) \leq (1+10\epsilon)(\sum_{i=1}^{s} |a_i|)\). I.e., the algorithm gives a \((1+O(\epsilon))\) approximation with probability at least \(1 - \delta \).

4. (a) For \((i_1, i_2) \neq (j_1, j_2)\), we have
\[
\langle v^{(i_1, i_2)}, v^{(j_1, j_2)} \rangle = \sum_{a \in C} (-1)^{a_{i_1} + a_{i_2} + a_{j_1} + a_{j_2}}.
\]

Note that by 4-wise independence of \(C \), this value is 0 as long as there is an element (from \([n]\)) which appears exactly once in \(i_1, i_2, j_1, j_2 \), while this is true for \((i_1, i_2) \neq (j_1, j_2)\) and \(i_1 < i_2, j_1 < j_2 \).

(b) For any set of coefficients \(\{\alpha^{(i_1, i_2)}\}_{1 \leq i_1 < i_2 \leq n} \), we have
\[
\| \sum_{i_1, i_2} \alpha^{(i_1, i_2)} v^{(i_1, i_2)} \|^2 = \sum_{i_1, i_2} \left(\alpha^{(i_1, i_2)} \right)^2 \| v^{(i_1, i_2)} \|^2 = n \cdot \sum_{i_1, i_2} \left(\alpha^{(i_1, i_2)} \right)^2,
\]
where the first equality is because of part (a). Therefore, if \(\sum_{i_1, i_2} \alpha^{(i_1, i_2)} v^{(i_1, i_2)} = 0 \), we have \(\alpha^{(i_1, i_2)} = 0 \) for all \(1 \leq i_1 < i_2 \leq n \). This means that the vectors \(\{v_{i_1, i_2}\}_{1 \leq i_1 < i_2 \leq n} \) are linearly independent over reals.

(c) Since the vectors \(\{v_{i_1, i_2}\}_{1 \leq i_1 < i_2 \leq n} \) are \(|C|\)-dimensional vectors. There can be at most \(|C|\) of them. Therefore, we have \(\binom{n}{2} \leq |C| \), i.e. \(|C| = \Omega(n^2)\).