
CS 252, Lecture 11: Expander Graphs

1 Introduction
Expander graphs are sparse yet highly connected graphs. That is, for every subset S of vertices of the
graph, there are a lot of edges leaving S. In other words, we cannot disconnect the graph into near-equal
pieces by cutting a few edges. This notion is useful in various contexts ranging from design of computer
networks to proving the existence of probabilistically checkable proofs.

There are many ways to define an expander graph formally: in terms of spectral expansion, vertex
expansion or edge expansion. We can also define them separately for bipartite and general graphs. However,
in this lecture, we will stick with the spectral notion of expanders. We will also consider general graphs.
This connects well with random walks and pseudorandom properties of the expanders.

Recall from the spectral graph theory lecture that the adjacency matrix A of a d-regular graph G =
(V,E) with n vertices has n eigenvalues d = λ1 ≥ λ2 ≥ . . . ≥ λn. We have also proved that the graph is
connected if and only if λ2 < d. Let λ(G) = max{|λ2|, |λn|}. Note that1

λ(G) = max
x:〈x,u〉=0

‖Ax‖
‖x‖

where u =
(

1
n ,

1
n , . . . ,

1
n

)
. Recall that we have proved earlier that λ(G) ≤ d.

Definition 1. (Expander graphs) A graph G = (V,E) is said to be an (n, d, λ)-expander if |V | = n, each
vertex of the graph has degree d, and λ(G) = λ.

The parameter d − λ(G) is known as the spectral expansion of the graph G. As we alluded to earlier,
a different way to define expander graphs is in terms of edge expansion:

min
S⊆V,|S|≤n

2

E(S, S)
|S|

Both the notions of expansion are actually closely related. We have

E(S, S)
|S|

≥ d− λ2
2 ∀S : |S| ≤ n

2 .

1Unless stated otherwise, ‖.‖ denotes the `2 norm.

1

The converse of this is also true. Graphs with good edge expansion also have good spectral expansion.
This is given by the Cheeger inequality:

∃S : E(S, S)
|S|

≤ O
(√

d(d− λ2)
)

2 Construction of expander graphs
Of course expander graphs have a lot of useful properties, but we really need to construct them so that
we can make use of them. By constructing expander graphs, we mean constructing a family of d-regular
graphs G1, G2, . . . , such that Gi has i vertices. The goal is to find a polynomial time algorithm that takes
input n, d and outputs the graph Gn in the family.

Random graphs are good expanders. In fact, one can view expander graphs as pseudorandom in the
sense that they have a lot of properties of random graphs. Random d-regular graphs actually achieve
λ2 ≤ O(

√
d). This is roughly, the best expansion that we can get. Such graphs, whose λ2 = 2

√
d− 1 are

known as Ramanujan graphs.
Even though random graphs are good expanders with high probability, finding explicit construction of

expander graphs is a challenging question. There are various known such explicit constructions:

1. (Discrete torus expanders) The first known explicit construction of expanders is due to Margulis,
Gabber and Galil, where G = (V,E) with the vertex set V = Z2

m, and a vertex (x, y) is adjacent to
the following vertices: (x ± y, y), (x ± (y + 1), y), (x, y ± x), (x, y ± (x + 1)). It is a 8-regular graph.
We can prove that λ2 of this graph is 8c for c < 1.

2. (p-cycle with inverse chords) The graph G = (V,E) with vertex set V = Zp, and edges connect each
node x with x+ 1, x− 1, x−1. The arithmetic is mod p, and set 0−1 = 0.

3 Pseudorandom properties of expander graphs
A key property of expander graphs is the so called expander mixing lemma. In a random graph with
constant degree d, the number of edges between two sets S and T is roughly equal to d|S||T |

n . Expander
graphs also mimic this property:

Theorem 2. (Expander Mixing Lemma) Let G be an (n, d, λ)-expander. Then, for any two subsets S, T
of vertices of the graph, ∣∣∣∣E(S, T)− d|S||T |

n

∣∣∣∣ ≤ λ√|S||T |
Proof. We will estimate the value of (1S)TA1T , where 1S is the indicator vector of the set S:

(1S)j =
{

0 if j /∈ S
1 if j ∈ S.

2

1T is also defined analogously. As before, let u =
(

1
n ,

1
n , . . . ,

1
n

)
. Let 1S = |S|u+ v1,1T = |T |u+ v2. Note

that 〈v1, u〉 = 〈v2, u〉 = 0. Furthermore, we get

‖v1‖ =
√

(n− |S|) 1
n2 + |S|

(
1 + n2 − 2

n

)
=

√
1
n

+ |S| − 2|S|
n
≤
√
|S|

Similarly, ‖v2‖ ≤
√
|T |.

The number of edges between S and T is equal to (1S)TA1T . We can write it as

=
(
|S|uT + vT

1

)
A (|T |u+ v2)

=
(
|S|uT + vT

1

)
(d|T |u+Av2)

= d|S||T |
n

+ d|T |vT
1 u+ |S|uTAv2 + vT

1 Av2

= d|S||T |
n

+ vT
1 Av2 (since 〈v1, u〉 = 0, uTAv2 = (Au)T v2 = d〈u, v2〉 = 0)

Thus, we get ∣∣∣∣E(S, T)− d|S||T |
n

∣∣∣∣ = vT
1 Av2

≤ ‖v1‖ ‖Av2‖ (By Cauchy Schwartz)
≤ ‖v1‖λ ‖v2‖ (since 〈v2, u〉 = 0)

≤ λ
√
|S|
√
|T |

A couple remarks:

1. Note that the above theorem is applicable even if S and T intersect. In fact, both S and T can be
the same set as well: in this case, we get a good estimate on the number of edges present inside a
given set.

2. If we set S = T to be an ε sized set, we can infer that most of the edges adjacent to S cross the set
S. This is a very useful expansion property.

4 Application of expanders to derandomization
Suppose that there is a randomized algorithm for a language L using n bits such that

1. If a string x ∈ L, then the algorithm accepts with probability 1.

2. If a string x /∈ L, then the algorithm rejects with probability at least 1
2 .

3

Our goal is to reduce the error probability 1
2 of the algorithm. A natural idea is to repeat the algorithm

multiple times. Suppose that we repeat the algorithm t times. Then, the error probability goes down to
1
2t , which is great, but the number of random bits used by the algorithm is equal to nt. Can we get the
same exponential reduction in error probability, but with smaller amount of randomness?

The idea is to cleverly reuse the randomness by making “correlated” choices, rather than picking each
set of bits independently. One way to achieve this is by performing a random walk on an expander graph.
Let G be an expander on 2n vertices, and with degree d. We first start at a random vertex v in G, using
n random bits. Next, we pick a random neighbor of v, say v1. We need log d = O(1) bits for this. Next,
we continue the random walk from v1. We repeat this process till we pick t vertices overall. The overall
random bits that we needed is equal to n+O(t).

Note that each vertex in the graph corresponds to a set of n bits. We run the algorithm using all
the t sets of random bits obtained by the random walk. If the algorithm outputs No for any of these
choices of random bits, we output No, else we output Yes. We still accept all the strings x ∈ L with
probability 1. How do we argue about the probability that we accept incorrect strings? In order to do so,
we need an estimate on the probability that a t-step random walk on expander graph stays inside a set
of size n

2 through out the walk. Turns out this probability is also exponentially small in t! Using this, we
obtained a “randomness efficient” algorithm that uses n+O(t) random bits that still gets error probability
exponentially small in t.

Now we prove the above mentioned bound:

Theorem 3. (Random walk on expander graph) Let G = (V,E) be an (n, d, λ)-expander. Let B ⊆ V be a
subset of vertices such that |B| = (1− δ)n. Then, the probability that a random walk V1, V2, . . . , Vt of t− 1
steps starting at a uniformly random vertex of G completely stays inside B is

Pr(Vi ∈ B ∀i ∈ [t]) ≤
(

1− δ
(

1− λ

d

))t−1

Proof. Let P be the projection matrix that zeroes out all the indices not in B. It is a diagonal matrix such
that

Pi,j =
{

1 if i = j, i ∈ B
0 otherwise.

Let A′ = A
d be the random walk matrix of the graph G i.e. for a probability distribution µ on the vertices,

A′µ gives the probability distribution after taking a single random walk step. Thus, the probability that
all the t vertices of the random walk are in B is equal to

Pr(Vi ∈ B ∀i ∈ [t]) =
∥∥PA′PA′ . . . PA′Pu∥∥1

Since P 2 = P , we can write the above as∥∥∥(PA′P)t−1Pu
∥∥∥

1
≤
√
n
∥∥∥(PA′P)t−1Pu

∥∥∥
where we have used Cauchy-Schwartz inequality to relate `1 and `2 norms of a vector in Rn. We now
bound the largest absolute value of eigenvalues of PA′P : Let ν = max‖x‖=1 x

TPA′Px. Let y = Px.

4

We have ν = yTA′y. As before, we write y = y‖ + y⊥, where y‖ = αu, and 〈y⊥, y‖〉 = 0. Note that∥∥∥y‖∥∥∥2
+
∥∥∥y⊥∥∥∥2

= ‖y‖2 ≤ ‖x‖2 = 1. Let 1 = (1, 1, . . . , 1). We have y‖ = αu, where α = 〈y,1〉. Thus,∥∥∥y‖∥∥∥2
= 1

n〈y,1〉
2 = 1

n〈y, P1〉
2 ≤ 1

n ‖y‖
2 ‖P1‖2 = (1− δ) ‖y‖2.

We now bound ν:

ν = yTA′y

=
(
(y‖)T + (y⊥)T

)
A′(y‖ + y⊥)

≤
∥∥∥y‖∥∥∥2

+ λ

d

∥∥∥y⊥∥∥∥2

=
∥∥∥y‖∥∥∥2

+ λ

d

(
‖y‖2 −

∥∥∥y‖∥∥∥2
)

=
(

1− λ

d

)∥∥∥y‖∥∥∥2
+ λ

d
‖y‖2

≤ ‖y‖2
((

1− λ

d

)
(1− δ) + λ

d

)
= ‖y‖2

(
1− δ

(
1− λ

d

))
≤ 1− δ

(
1− λ

d

)
Substituting it in the above probability, we get

Pr(Vi ∈ B ∀i ∈ [t]) ≤
√
n
∥∥∥(PA′P)t−1Pu

∥∥∥
≤
√
n

(
1− δ

(
1− λ

d

))t−1
‖Pu‖

=
√
n

√
1− δ
n

(
1− δ

(
1− λ

d

))t−1

≤
(

1− δ
(

1− λ

d

))t−1

5

	Introduction
	Construction of expander graphs
	Pseudorandom properties of expander graphs
	Application of expanders to derandomization

