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Abstract— We prove the following strong hardness result
for learning: Given a distribution on labeled examples from the
hypercube such that there exists a monomial (or conjunction)
consistent with (1 − ϵ)-fraction of the examples, it is NP-hard to
find a halfspace that is correct on ( 1

2
+ϵ)-fraction of the examples,

for arbitrary constant ϵ > 0. In learning theory terms, weak
agnostic learning of monomials by halfspaces is NP-hard. This
hardness result bridges between and subsumes two previous results
which showed similar hardness results for the proper learning of
monomials and halfspaces. As immediate corollaries of our result,
we give the first optimal hardness results for weak agnostic learning
of decision lists and majorities.

Our techniques are quite different from previous hardness proofs
for learning. We use an invariance principle and sparse approxi-
mation of halfspaces from recent work on fooling halfspaces to
give a new natural list decoding of a halfspace in the context
of dictatorship tests/label cover reductions. In addition, unlike
previous invariance principle based proofs which are only known to
give Unique Games hardness, we give a reduction from a smooth
version of Label Cover that is known to be NP-hard.

Keywords-Hardness of Learning, PCPs, Agnostic Learning, Dic-
tatorship Tests.

1. INTRODUCTION

Monomials (conjunctions), decision lists, and halfspaces
are among the most basic concept classes in learning theory.
They are all long-known to be efficiently PAC learnable,
when the given examples are guaranteed to be consistent
with a function from any of these concept classes [41],
[7], [38]. However, in practice data is often noisy or too
complex to be consistently explained by a simple concept.
A general model for learning that addresses this scenario
is the agnostic learning model [20], [25]. Under agnostic
learning, a learning algorithm for a class of functions C is
required to classify the examples drawn from some unknown
distribution nearly as well as is possible by a hypothesis from
C. Learning algorithms are referred to as proper when they
output a hypothesis in C.

In this work we address the complexity of agnostic
learning of monomials by algorithms that output a halfspace

as a hypothesis. Learning methods that output a halfspace
as a hypothesis such as Perceptron [39], Winnow [33], and
Support Vector Machines [42] are well-studied in theory and
widely used in practical prediction systems. These classifiers
are often applied to labeled data sets which are not linearly
separable. Hence it is of great interest to determine the
classes of problems that can be solved by such methods
in the agnostic setting.

Uniform convergence results in Haussler’s work [20] (see
also [25]) imply that proper agnostic learning is equivalent
to the ability to come up with a function in a concept class
C that has the optimal agreement rate with the given set
of examples. This problem is referred to as the Maximum
Agreement problem for C. The Maximum Agreement prob-
lem for halfspaces is long known to be NP-complete [22]
(see also Hemisphere problem in [17]). Two natural ways
to relax the problem are: (i) allow the learning algorithm
to output a hypothesis with any non-trivial (and not neces-
sarily close to optimal) performance, and (ii) strengthen the
assumptions on the examples that are given to the learning
algorithm. In the main result of this work, we prove a strong
hardness result for agnostic learning of halfspaces with both
of these relaxations.

Theorem 1.1. For any constant ϵ > 0, it is NP-hard to find
a halfspace that correctly labels (1/2 + ϵ)-fraction of given
examples over {0, 1}n even when there exists a monomial
that agrees with a (1 − ϵ)-fraction of the examples.

Note that this hardness result is essentially optimal since
it is trivial to find a hypothesis with agreement rate 1/2 —
output either the function that is always 0 or the function
that is always 1.

Since the class of monomials is a subset of the class
of decision lists which in turn is a subset of the class of
halfspaces, our result implies an optimal hardness result
for proper agnostic learning of decision lists. In addition,
a similar hardness result for proper agnostic learning of



majority functions can be obtained via a simple reduction.

1.1. Previous work

A number of hardness results for proper agnostic learning
of monomials, decision lists and halfspaces have appeared
in the literature. The Maximum Agreement problem for
monotone monomials was shown to be NP-hard by An-
gluin and Laird [2], and NP-hardness for general mono-
mials was shown by Kearns and Li [26]. The hardness
of approximating the problem within some constant factor
(i.e., APX-hardness) was first shown by Ben-David et al.
[5]. The factor was improved to 58/59 by Bshouty and
Burroughs [9]. Finally, Feldman showed a tight inapprox-
imability result [14] (see also [15]), namely that it is NP-hard
to distinguish between the instances where (1 − ϵ)-fraction
of the labeled examples are consistent with some monomial
and the instances where every monomials is consistent with
at most (1/2 + ϵ)-fraction of the examples. Recently, Khot
and Saket [31] proved a similar hardness result even when
a t-CNF is allowed as output hypothesis for an arbitrary
constant t (a t-CNF is the conjunction of several clauses,
each of which has at most t literals; a monomial is thus a
1-CNF).

The Maximum Agreement problem for halfspaces was
shown to be NP-hard to approximate by Amaldi and Kann
[1], Ben-David et al. [5], and Bshouty and Burroughs [9] for
approximation factors 261

262 , 415
418 , and 84

85 , respectively. An op-
timal inapproximability result was established independently
by Guruswami and Raghavendra [19] and Feldman et al.
[15] showing NP-hardness of approximating the Maximum
Agreement problem for halfspaces within (1/2 + ϵ) for
every constant ϵ > 0. The reduction in [15] produced
examples with real-valued coordinates, whereas the proof
in [19] worked also for examples drawn from the Boolean
hypercube.

For the concept class of decisions lists, APX-hardness of
the Maximum Agreement problem was shown by Bshouty
and Burroughs [9].

We note that our result subsumes all these results except
[31] since we obtain the optimal inapproximability factor
and allow learning of monomials by halfspaces.

A number of hardness of approximation results are also
known for the symmetric problem of minimizing disagree-
ment for each of the above concept classes [25], [21],
[3], [8], [14], [15]. Another well-known evidence of the
hardness of agnostic learning of monomials is that even
a non-proper agnostic learning of monomials would give
an algorithm for learning DNF — a major open problem
in learning theory [32]. Further, Kalai et al. proved that
even agnostic learning of halfspaces with respect to the
uniform distribution implies learning of parities with random
classification noise — another long-standing open problem
in learning theory and coding [23].

Monomials, decision lists and halfspaces are known to be
efficiently learnable in the presence of more benign random
classification noise [2], [24], [27], [10], [6], [12]. Simple
online algorithms like Perceptron and Winnow learn halfs-
paces when the examples can be separated with a significant
margin (as is the case if the examples are consistent with a
monomial) and are known to be robust to a very mild amount
of adversarial noise [16], [4], [18]. Our result suggests that
these positive results will not hold when the adversarial noise
rate is ϵ for any constant ϵ > 0.

Kalai et al. gave the first non-trivial algorithm for agnostic
learning monomials in time 2Õ(

√
n) [23]. They also gave a

breakthrough result for agnostic learning of halfspaces with
respect to the uniform distribution on the hypercube up to
any constant accuracy (and analogous results for a number
of other settings). Their algorithms output linear thresholds
of parities as hypotheses. In contrast, our hardness result
is for algorithms that output a halfspace (which is linear
thresholds of single variables).

2. PROOF OVERVIEW

We show Theorem 1.1 by exhibiting a reduction from the
k-LABEL COVER problem, which is a particular variant of
the LABEL COVER problem. The k-LABEL COVER problem
is defined as follows:

Definition 2.1. For k > 2, a instance of k-LABEL COVER
L(G(V, E), d, R, {πv,e|e ∈ E, v ∈ e}) consists of a k-
uniform connected hypergraph G(V, E) with vertex set
V , an edge set E, and finally a set of labels [dR] =
{1, 2, . . . , dR} (Here d and R are positive integers). Every
hyperedge e = (v1, ...vk) is associated with a k-tuple of
projection functions {πvi,e}k

i=1 where πvi,e : [dR] → [R].
A vertex labeling A is an assignment of labels to vertices

A : V → [dR]. A labeling A is said to strongly satisfy an
edge e if πvi,e(A(vi)) = πvj ,e(A(vj))) for every vi, vj ∈
e. A labeling L weakly satisfies edge e if πvi,e(A(vi)) =
πvj ,e(A(vj))) for some vi, vj ∈ e.

The goal in LABEL COVER is to find a labelling that
satisfies as many consistency checks (projection constraints)
as possible.

For the sake of exposition, we first present the proof of
Theorem 1.1 assuming the Unique Games Conjecture. In
this light, we will be interested in the k-UNIQUE LABEL
COVER problem which is a special case of k-LABEL COVER
where d = 1, and all the functions {πv,e|v ∈ e, e ∈ E}
are bijections. The following strong inapproximability result
for k-UNIQUE LABEL COVER can be easily shown to be
equivalent to the Unique Games Conjecture of Khot [29].

Conjecture 2.2. For every η > 0 and a positive integer k,
there exists R0 such that for all positive integers R > R0,
given an instance L(G(V, E), 1, R, {πv,e|e ∈ E, v ∈ e}) it
is NP-hard to distinguish whether,



• (Strongly satisfiable instances) There exists a labelling
A : V → [R] that strongly satisfies 1 − kη fraction of
the edges E.

• (Near Unsatisfiable instances) There is no labeling that
weakly satisfies 2k2

Rη/4 fraction of the edges.

Given an instance L of k-UNIQUE LABEL COVER, we
will produce a set of labelled examples such that the follow-
ing holds: If L is strongly satisfiable instance, then there is
a monomial (an OR function) that agrees with 1− ϵ fraction
of the examples, while if L is a near unsatisfiable instance
then no halfspace has agreement more than 1

2 + ϵ. Clearly,
a reduction of this nature immediately implies Theorem 1.1
under the Unique Games Conjecture.

Let L be an instance of k-UNIQUE LABEL COVER with
an associated hypergraph G = (V, E) and a set of labels [R].
The examples we generate will have |V |×R coordinates, i.e.,
belong to {0, 1}|V |×R. These coordinates are to be thought
of as one block of R coordinates for every vertex v ∈ V .
We will index the coordinates of x ∈ {0, 1}|V |×R as x =
(x(ℓ)

v )v∈V,ℓ∈[R].
For every labelling A : V → [R] of the instance, there is a

corresponding OR function (a monomial) over {0, 1}|V |×R

given by,
A ↔ h(x) =

∨
v

x(A(v))
v .

Thus, using a label ℓ for a vertex v is encoded as including
the literal x

(ℓ)
v in to the disjunction. Notice that an arbitrary

halfspace over {0, 1}|V |×R need not correspond to any
labelling at all. The idea would be to construct examples
which ensure that any halfspace 1

2 + ϵ agreement somehow
corresponds to a labelling of L weakly-satisfying a constant
fraction of the edges in L.

Fix an edge e = (v1, . . . , vk). For the sake of exposition,
let us assume πvi,e is the identity permutation for every
i ∈ [k]. The general case is not anymore complicated. For the
edge e, we require a set of examples De with the following
properties:

• All coordinates x
(ℓ)
v for a vertex v /∈ e are fixed to be

zero. Restricted to these examples, the halfspace h can
be written as h(x) = sgn(

∑
i∈[k]⟨wvi , xvi⟩ − θ).

• For any label ℓ ∈ [R], the labelling L(v1) = . . . =
L(vk) = ℓ strongly satisfies the edge e. Hence, the
corresponding disjunction ∨i∈[k]x

(ℓ)
vi has agreement 1−

ϵ with the examples De.
• There exists a decoding procedure that given a half-

space h outputs a labelling Lh for L such that, if
h has agreement 1

2 + ϵ on the set of examples De,
then Lh weakly satisfies the edge e with non-negligible
probability.

For conceptual clarity, let us rephrase the above require-
ment as a testing problem. Given a halfspace h, consider a
randomized procedure that samples an example (x, b) from

the distribution De, and accepts if h(x) = b. This amounts
to a test that checks if the function h corresponds to a
consistent labelling. Further, let us suppose the halfspace
h is given by h(x) = sgn

(∑
v∈V ⟨wv, xv⟩ − θ

)
. Define

the linear function lv : {0, 1}R → R as lv(xv) = ⟨wv, xv⟩.
Then, we have h(x) = sgn(

∑
v∈V lv(xv) − θ).

For a halfspace h corresponding to a labelling L, we will
have lv(xv) = x

(L(v))
v – a dictator function. Formally, the

ℓ’th dictator function on {0, 1}R is given by F (x) = x(ℓ).
Thus, in the intended solution every linear function lv
associated with the halfspace h is a dictator function.

Now, let us again restate the above testing problem in
terms of these linear functions. For succinctness, we write li
for the linear function lvi . We need a randomized procedure
that does the following:

Given k linear functions l1, . . . , lk : {0, 1}R →
R, queries the functions at one point each
(say x1, . . . ,xk respectively), and accepts if
sgn(

∑k
i=1 li(xi) − θ) = b.

The procedure must satisfy,
• (Completeness) If each of the linear functions li is the

ℓ’th dictator function for some ℓ ∈ [R], then the test
accepts with probability 1 − ϵ.

• (Soundness) If the test accepts with probability 1
2 + ϵ,

then at least two of the linear functions are close to the
same dictator function.

A testing problem of the above nature is referred to as a
Dictatorship Testing and is a recurring theme in hardness of
approximation.

Notice that the notion of a linear function being close
to a dictator function is not formally defined yet. In most
applications, a function is said to be close to a dictator if it
has influential coordinates. It is easy to see that this notion
is not sufficient by itself here. For example, in the linear
function sgn(10100x1 + x2 − 0.5), although the coordinate
x2 has little influence on the linear function, it has the
significant influence on the halfspace.

In this light, we make use of the notion of critical index
(Definition 3.1) that was defined in [40] and has found
numerous applications in the context of halfspaces [34], [37],
[13]. Roughly speaking, given a linear function l, the idea
is to recursively delete its influential coordinates until there
are none left. The total number of coordinates so deleted is
referred to as the critical index of l. Let lτ (wi) denote the
critical index of wi, and let Lτ (wi) denote the set of lτ (wi)
largest coordinates of wi. The linear function l is said to be
close to the i’th dictator function for every i in Lτ (wi). A
function is far from every dictator if it has critical index
= 0.

An important issue is that unlike the number of influential
coordinates, the critical index of a linear function is not
bounded. In other words, a linear function can be close to
a large number of dictator functions, as per the definition



above. To counter this, we employ a structural lemma about
halfspaces that was used in the recent work on fooling halfs-
paces with limited independence [13]. Using this lemma, we
are able to prove that if the critical index is large, then one
can in fact zero out the coordinates of wi outside the t largest
coordinates for some large enough t, and the performance of
the halfspace h only changes by a negligible amount! Thus,
we first carry out the zeroing operation for all rows with
large critical index. This doesn’t affect the performance of
the halfspace h by much.

We now describe the above construction and analysis of
the dictatorship test in some more detail. It is convenient
to think of the k queries x1, . . . ,xk as the rows of a k ×
R matrix with {0, 1} entries. Henceforth, we will refer to
matrices {0, 1}k×R and its rows and columns.

We construct two distributions D0,D1 on {0, 1}k such
that for s = 0, 1, we have Prx∈Ds

[
∨k

i=1xi = s
]

> 1 − ϵ
for ϵ = ok(1) (this will ensure the completeness of the
reduction, i.e., certain monomials pass with high probabil-
ity). Further, the distributions will be carefully chosen to
have matching first four moments. This will be used in
the soundness analysis where we will use an “invariance
principle” to infer structural properties of halfspaces that
pass the test with probability noticeably greater than 1/2.

We define the distribution D̃R
s on matrices {0, 1}k×R

by sampling R columns independently according to Ds,
and then perturbing each bit with a small random noise.
We define the following test (or equivalently, example-label
pairs): Given a halfspace h on {0, 1}k×R, with probability
1/2 we check h(x) = 0 for a sample x ∈ D̃R

0 , and with
probability 1/2 we check h(x) = 1 for a sample x ∈ D̃R

1 .
Completeness By construction, each of the R disjunctions
ORj(x) = ∨k

i=1x
(j)
i passes the test with probability at least

1 − ϵ (here x
(j)
i denotes the entry in the i’th row and j’th

column of x).
Soundness For the soundness analysis, suppose h(x) =
sgn(⟨w,x⟩ − θ) is a halfspace that passes the test with
probability 1/2 + δ. The halfspace h can be written in
two ways by expanding the inner product ⟨w, x⟩ along
rows and columns, i.e., h(x) = sgn(

∑k
i=1⟨wi,xi⟩ − θ) =

sgn(
∑R

i=1⟨w(i), x(i)⟩− θ). Let us denote li(x) = ⟨wi, xi⟩.
First, let us see why the linear functions ⟨wi, xi⟩ must be

close to some dictator. Note that we need to show that two
of the linear functions are close to the same dictator.

Suppose each of the linear functions li is not close to any
dictator. In other words, for each i, no single coordinate of
the vector wi is too large (contains more than τ -fraction of
the ℓ2 mass ∥wi∥2 of vector wi ). Clearly, this implies that
no single column of the matrix w is too large.

Recall that the halfspace is given by,
h(x) = sgn(

∑
j∈[R]⟨w(j),x(j)⟩ − θ). Here

l(x) =
∑

j∈[R]⟨w(j), x(j)⟩ − θ is a degree 1 polynomial
in to which we are substituting values from two product

distributions DR
0 and DR

1 . Further, the distributions D0

and D1 have matching moments up to order 2 by design.
Using the invariance principle, the distribution of l(x) is
roughly the same, whether x is from DR

0 or DR
1 . Thus,

by the invariance principle, the halfspace h is unable to
distinguish between the distributions DR

0 and DR
1 with a

noticeable advantage.
Suppose no two linear functions li are close to the same

dictator, i.e., Lτ (wi) ∩ Lτ (wj) = ∅. In this case, we
condition on the values of x

(j)
i for j ∈ Lτ (wi) (note that

we condition on at most one value in each column so the
conditional distribution on each column still has matching
first three moments), and then apply the invariance princi-
ple using the fact on deleting the coordinates in Lτ (wi),
all the remaining coefficients of the weight vector w are
small (by definition of critical index). This implies that
Lτ (wi)∩Lτ (wj) ̸= ϕ for some two rows i, j. This finishes
the proof of the soundness claim.

The above consistency-enforcing test almost immediately
yields the Unique Games-hardness of weak learning mono-
mials by halfspaces. To prove NP-hardness, we reduce a
version of Label Cover to our problem. This requires a more
complicated consistency check, and we have to overcome
several additional technical obstacles in the proof.

The main obstacle encountered in transferring the dic-
tatorship test to a Label Cover based hardness is one that
commonly arises for several other problems. Specifically, the
projection constraint on an edge e = (u, v) maps a large set
of labels L = {ℓ1, . . . , ℓd} corresponding to a vertex u to a
single label ℓ for the vertex v. While composing the label
cover constraint (u, v) with the dictatorship test, all labels
in L have to be necessarily equivalent. In several settings
including this work, this requires the coordinates corre-
sponding to labels in L to be mostly identical! However,
on making the coordinates corresponding to L identical,
the prover corresponding to u can determine the identity
of edge (u, v), thus completely destroying the soundness of
the composition. In fact, the natural extension of the unique
games based reduction for MAXCUT [30] to a corresponding
label cover hardness fails primarily for this reason.

Unlike MAXCUT or other Unique games based reduc-
tions, in our case, the soundness of the dictatorship test is
required to hold against a specific class of functions, i.e,
halfspaces. Harnessing this fact, we execute the reduction
starting from a label cover instance whose projections are
unique on average. More precisely, a smooth label cover
(introduced in [28]) is one in which for every vertex u,
and a pair of labels ℓ, ℓ′, the labels {ℓ, ℓ′} project to the
same label with a tiny probability over the choice of the
edge e = (u, v). Technically, we express the error term
in the invariance principle as a certain fourth moment of
halfspace, and use the smoothness to bound this error term
for most edges of the label cover. It is of great interest to find
other applications where a weak uniqueness property like the



smoothness condition can be used to convert a Unique games
hardness result to an unconditional NP-hardness result.

Due to space constraints, we only present the details of
the Unique games based hardness result here, and the details
of the unconditional hardness result will appear in the full
version.

3. PRELIMINARIES

In this section, we define two important tools in our
analysis: i) Critical Index, ii) Invariance Principle.

3.1. Critical Index

The critical index which was first introduced in [40] and
played an important role in the dealing with halfspaces in
[34], [37] and very recently in [13].

Definition 3.1. Given any real vector w =
(w(1), w(2), ..w(n)) ∈ Rn. Reorder the coordinates by
decreasing absolute value, i.e., |w(i1)| > |w(i2)|... > |w(in)|
and denote σ2

t =
∑n

j=t |w(ij)|2. For 0 6 τ 6 1. The
τ -critical index of the vector w is defined to be the smallest
index k such |w(ik)| 6 τσk. If no such k exists (∀k,
|w(ik)| > τσk), the τ -critical index is defined to be +∞.
The vector w is said to be τ -regular if the τ -critical index
is 1.

A important observation from [13] is that if the critical
index of a sequence is big, it must contain some geometric
decreasing subsequence.

Lemma 3.2. (Lemma 5.5 [13]) Given a vector w =
(w(i))n

i=1 such that |w(1)| > |w(2)|... > |w(n)|, if the τ -
critical index of the vector w is larger than l, then for any
1 6 i 6 j 6 l + 1,

|w(j)| 6 σj 6 (
√

1 − τ2)j−iσi 6 (
√

1 − τ2)j−i|w(i)|/τ.

In particular, if j > i + (4/τ2) ln(1/τ) then |w(j)| 6
|w(i)|/3.

For a τ -regular vector, following lemma bound the prob-
ability that its weighted sum falls into a small interval under
some distribution of the weights. The proof of the following
lemma will appear in the full version.

Lemma 3.3. Let w ∈ Rn be a τ -regular vector w, and∑
|w(i)|2 = 1. D is a distribution over {0, 1}n. Define a

distribution D̃ on {0, 1}n as follows: To generate y from D̃,
sample x from D,

y(i) =

{
x(i) with probability 1 − γ

random bit with probability γ.
(1)

Then for any interval [a, b], we have

Pr
[
⟨w, y⟩ ∈ [a, b]

]
6 4|b − a|

√
γ

+
4τ
√

γ
+ 2e−

γ2

2τ2 .

Intuitively, ⟨w, y⟩ is τ close to the Gaussian distribution
if each y(i) is a random bit and therefore we can bound the
probability that ⟨w,y⟩ falls into [a, b]. In above lemma, each
y(i) has probability γ to be a random bit, then γ fraction of
y(i) is set to be a random bit and we can therefore bound
the probability that ⟨w, y⟩ falls into [a, b].

Definition 3.4. For a vector w ∈ Rn, define set of indices
St(w) ⊆ [n] as the set of indices containing the t largest
coordinates of w by absolute value. Suppose its τ -critical
index is lτ , define set of indices Lτ (w) = Slτ (w). In other
words, Lτ (w) is the set of indices whose deletion makes the
vector w to be τ -regular.

Definition 3.5. For a vector w ∈ Rn and a subset of indices
S ⊆ [n], define the vector Truncate(w, S) ∈ Rn as:

(Truncate(w, S))(i) =

{
w(i) if i ∈ S

0 otherwise

As is suggested by Lemma 3.2, vector with large critical
index has some geometric decreasing subsequence. Follow-
ing two lemmas are about bounding the probability that the
weighted sum of a geometric decreasing sequence falls into
a small interval. First, we restate Claim 5.7 from [13] here.

Lemma 3.6. [Claim 5.7, [13]] Let |w(1)| > |w(2)| . . . >
|w(T )| > 0 be a sequence of numbers so that |w(i+1)| 6
|w

(i)

3 | for 1 6 i 6 T − 1 . Then for any interval I =
[α − w(T )

6 , α + w(T )

6 ] of length |w(T )|
3 , there is at most one

points x ∈ {0, 1}T such that ⟨w,x⟩ ∈ I .

Lemma 3.7. Let |w(1)| > |w(2)| . . . > |w(T )| > 0 be a
sequence of numbers so that |w(i+1)| 6 |w

(i)

3 | for 1 6 i 6
T −1. D is a distribution over {0, 1}T . Define a distribution
D̃ on {0, 1}T as follows: To generate y from D̃, sample x
from D and set

y(i) =

{
x(i) with probability 1 − γ

random bit with probability γ.

Then for any θ ∈ R we have

Pr
[
⟨w,y⟩ ∈ [θ − w(T )

6
, θ +

w(T )

6
]
]

6
(
1 − γ

2

)T

Proof: By Lemma 3.6, we know that for the interval
J =

[
θ − |wT |

6 , θ + |wT |
6

]
, there is at most one point

r ∈ {0, 1}T such that ⟨w, r⟩ ∈ J . If no such r exists
then clearly the probability is zero. On the other hand,
suppose there exists such an r, then ⟨w, y⟩ ∈ J only if
(y(1)

1 , y
(2)
1 , ...y

(T )
1 ) = (r(1), ..r(T )) holds.

Conditioned on any fixing of the bits x, every bit y(j)

is an independent random bit with probability γ. Therefore,
for every fixing of x, for each i ∈ [T ], with probability
at least γ/2, y(i) is not equal to r(i). Therefore, Pr[y(1) =
r(1), y(2) = r(2), ...y(T ) = r(T )] 6

(
1 − γ

2

)T
.



3.2. Invariance Principle

While invariance principles have been shown in various
settings by [36], [11], [35], we restate a version of the
principle well suited for our application. We present a self-
contained proof for the it in the full version.

Definition 3.8. A C4-function Ψ(x) : R → R in is said to
be B-nice if |Ψ′′′′(t)| 6 B for all t ∈ R.

Definition 3.9. Two ensembles of random variables P =
(p1, ...pk) and Q = (q1, ..qk) are said to have matching
moments up to degree d if for every multi-set S ⊆ [k], |S| 6
d, we have E[

∏
i∈S pi] = E[

∏
i∈S qi]

Theorem 3.10. (Invariance Theorem) Let
A = {A{1}, . . . ,A{R}},B = {B{1}, . . . ,B{R}}
be families of ensembles of random variables with
A{i} = {a(i)

1 , . . . , a
(i)
ki
} and B{i} = {b(i)

1 , . . . , b
(i)
ki
},

satisfying the following properties:
• For each i ∈ [R], the random variables in ensembles

(A{i}, B{i}) have matching moments up to degree 3.
Further all the random variables in A,B are bounded
by 1.

• The ensembles A{i} are all independent of each other,
similarly the ensembles B{i} are independent of each
other.

Given a set of vectors l = {l{1}, . . . , l{R}}(l{i} ∈ Rki),
define the linear function l : Rk1 × . . . × RkR → R as

l(x) =
∑
i∈[R]

⟨l{i},x{i}⟩

Then for a B-nice function Ψ : R → R we have∣∣∣E
A

[
Ψ

(
l(A) − θ

)]
− E

B

[
Ψ

(
l(B) − θ

)]∣∣∣ 6 B
∑
i∈[R]

∥l{i}∥4
1

(2)
for all θ > 0. Further, define the spread function c(α)
corresponding to the ensembles A,B and the linear function
l as follows,

(Spread Function)For α > 0, Let

c(α) = max
(
sup

θ
Pr
A

[
l(A) ∈ [θ − α, θ + α]

]
,

sup
θ

Pr
B

[
l(B) ∈ [θ − α, θ + α]

])
then for all θ̃,∣∣∣E
A

[
sgn

(
l(A) − θ̃

)]
− EB

[
sgn

(
l(B) − θ̃

)] ∣∣∣∣∣ 6

O
(

1
α4

) ∑
i∈[R] ∥l{i}∥4

1 + 2c(α)

4. CONSTRUCTION OF DICTATOR TEST

In this section we describe the construction of dictator test
which will be the key gadget in the hardness reduction from
k-UNIQUE LABEL COVER.

4.1. Distributions D0 and D1

The dictator test is based on following two distributions
D0 and D1 defined on {0, 1}k.

Lemma 4.1. For k ∈ N, there exists two
probability distributions D0, D1 on {0, 1}k

such that Prx∼D0{every xi is 0} > 1 − 2√
k

,
Prx∼D1{every xi is 0} 6 1√

k
, while matching moments up

to degree 4, i.e., ∀a, b, c, d ∈ [k]

E
D0

[xa] = E
D1

[xa] E
D0

[xaxbxcxd] = E
D1

[xaxbxcxd]

E
D0

[xaxb] = E
D1

[xaxb] E
D0

[xaxbxc] = E
D1

[xaxbxc]

Proof: For ϵ = 1√
k

, take D1 to be the following
distribution:

1) with probability (1 − ϵ), randomly set exactly one of
the bit to be 1 and all the other to be 0;

2) with probability ϵ
4 , independently set every bit to be

1 with probability 1
k1/3 ;

3) with probability ϵ
4 , independently set every bit to be

1 with probability 2
k1/3 ;

4) with probability ϵ
4 , independently set every bit to be

1 with probability 3
k1/3 ;

5) with probability ϵ
4 , independently set every bit to be

1 with probability 4
k1/3 .

The distribution D0 is defined to be the following distri-
bution with parameter ϵ1, ϵ2, ϵ3, ϵ4 to be specified later:

1) with probability 1 − (ϵ1 + ϵ2 + ϵ3 + ϵ4), set every bit
to be zero;

2) with probability ϵ1, independently set every bit to be
1 with probability 1

k1/3 ;
3) with probability ϵ2, independently set every bit to be

1 with probability 2
k1/3 ;

4) with probability ϵ3, independently set every bit to be
1 with probability 3

k1/3 ;
5) with probability ϵ4, independently set every bit to be

1 with probability 4
k1/3 .

From the definition of D0,D1, we know that
Prx∼D0{every xi is 0} > 1 − (ϵ1 + ϵ2 + ϵ3 + ϵ4)
and Prx∼D1{every xi is 0} 6 ϵ = 1√

k
It remains to decide each ϵi. Notice that the moment

matching conditions can be expressed as a linear system
over the parameters ϵ1, ϵ2, ϵ3, ϵ4 as follows:

4∑
i=1

ϵi(
i

k1/3
) = (1 − ϵ)/k +

4∑
i=1

ϵ

4
(

i

k
1
3
) (3)

4∑
i=1

ϵi(
i

k1/3
)2 =

4∑
i=1

ϵ

4
(

i

k
1
3
)2 (4)

4∑
i=1

ϵi(
i

k
1
3
)3 =

4∑
i=1

ϵ

4
(

i

k
1
3
)3 (5)

4∑
i=1

ϵi(
i

k
1
3
)4 =

4∑
i=1

ϵ

4
(

i

k
1
3
)4 (6)



We then show that such a linear system has a feasible
solution ϵ1, ϵ2, ϵ3, ϵ4 > 0 and

∑4
i=1 ϵi 6 2/

√
k .

To prove this, by applying Cramer’s rule,

ϵ1 =

∣∣∣∣∣∣∣∣∣∣

(1 − ϵ)/k +
∑4

i=1
ϵ
4 ( i

k
1
3
) 2

k
1
3

3

k
1
3

4

k
1
3∑4

i=1
ϵ
4 ( i

k
1
3
)2 4

k
2
3

9

k
2
3

16

k
2
3∑4

i=1
ϵ
4 ( i

k
1
3
)3 8

k
3
3

27

k
3
3

64

k
3
3∑4

i=1
ϵ
4 ( i

k
1
3
)4 16

k
4
3

81

k
4
3

256

k
4
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

k
1
3

2

k
1
3

3

k
1
3

4

k
1
3

1

k
2
3

4

k
2
3

9

k
2
3

16

k
2
3

1

k
3
3

8

k
3
3

27

k
3
3

64

k
3
3

1

k
4
3

16

k
4
3

81

k
4
3

256

k
4
3

∣∣∣∣∣∣∣∣∣∣
With some calculation using basic linear algebra, we get

ϵ1 = ϵ/4+

∣∣∣∣∣∣∣∣∣∣
(1 − ϵ)/k 2

k
1
3

3

k
1
3

4

k
1
3

0 4

k
2
3

9

k
2
3

16

k
2
3

0 8

k
3
3

3

k
3
3

64

k
3
3

0 16

k
4
3

3

k
4
3

256

k
4
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

k
1
3

2

k
1
3

3

k
1
3

4

k
1
3

1

k
2
3

4

k
2
3

9

k
2
3

16

k
2
3

1

k
3
3

8

k
3
3

27

k
3
3

64

k
3
3

1

k
4
3

16

k
4
3

81

k
4
3

256

k
4
3

∣∣∣∣∣∣∣∣∣∣

=
1

4
√

k
+O(

1
k

2
3
).

For big enough k, we have 0 6 ϵ1 6 1
2
√

k
. By similar

calculation, we can bound ϵ2, ϵ3, ϵ4 by 1
2
√

k
. Overall, we

have ϵ1 + ϵ2 + ϵ3 + ϵ4 6 2/
√

k

We define a “noisy” version of Db (b ∈ {0, 1}) below.

Definition 4.2. For b ∈ {0, 1}, define the distribution D̃b

on {0, 1}k as follows:
• First generate x ∈ {0, 1}k according to Db.
• For each i ∈ [k],

yi =

{
xi with probability 1 − 1

k2

uniform random bit ui with probability 1
k2

Observation 4.3. Since the noise is independent uniform
random bits, when calculating some moments of y, such as
ED̃b

[yi1yi2 ...yid
], we can substitute yi by (1 − γ)xi + 1

2γ.
Therefore, degree d moment of y can be expressed as by
weighted sum of moments of x of degree up to d. Since D0

and D1 has matching moments up to degree 4, D̃0 and D̃1

also have matching moments up to degree 4.

The following Lemma asserts that conditioning the two
distributions D̃0 and D̃1 on the same coordinate xj being
fixed to have a value b, the resulting conditional distribution
of D̃0 and D̃1 still have matching moments up to degree 3.
The proof of is fairly straightforward and is deferred to the
full version.

Lemma 4.4. Given two distributions P0,P1 on {0, 1}k with
matching moments up to degree d, for any multi-set S ⊆
[k], |S| 6 d − 1, j ∈ [k] and c ∈ {0, 1}.

E
P0

[
∏
i∈S

xi | xj = c] = E
P1

[
∏
i∈S

xi | xj = c]

4.2. The Dictator Test

Let R be some positive integer. Based on the distribution
D0 and D1, we define the dictator test as follows:

1) Generate a random bit b ∈ {0, 1}.
2) Generate x ∈ {0, 1}kR from DR

b .
3) For each i ∈ [k], j ∈ [R],

y
(j)
i =

{
x

(j)
i with probability 1 − 1

k2 ;
random bit with probability 1

k2 .

4) Output the example-label pair (y, b). Equiva-
lently, ACCEPT if h(y) = b.

We can also view y as being generated as follows: i) With
probability 1

2 , generate a negative sample from distribution
D̃0

R
; ii) With probability 1

2 , generate a positive sample from
distribution D̃1

R
.

Theorem 4.5. (Completeness) For any j ∈ [R], h(y) =
∨k

i=1y
(j)
i passes with probability 1 − 3√

k
.

Proof: If x is generated from DR
0 , we know that with

probability at least 1− 2√
k

, all the bits in {x(j)
1 , x

(j)
2 ...x

(j)
k }

are set to 0. By union bound, with probability at least 1 −
2√
k
− 1

k , {y(j)
1 , y

(j)
2 ...yj

k} are all set to 0, in which case

the test passes as ∨k
i=1y

(j)
i = 0. If x is generated from

DR
1 , we know that with probability at least 1 − 1√

k
, one of

the bit in {x(j)
1 , x

(j)
2 ...x

(j)
k } is set to 1 and by union bound

one of {y(j)
1 , y2

(j)...y
(j)
k } is set to 1 with probability at least

1− 1√
k
− 1

k , in which case the test passes since ∨k
i=1y

(j)
i = 1.

Overall, the test passes with probability at least 1− 3√
k
.

4.3. Soundness Analysis

Let h(y) be a halfspace function on {0, 1}kR given by
h(y) = sgn(⟨w, y⟩ − θ). Equivalently, h(y) can be written
as

h(y) = sgn
( ∑

j∈[R]

⟨w(j), y(j)⟩ − θ
)

= sgn
( ∑

i∈[k]

⟨wi, yi⟩ − θ
)

where w(j) ∈ Rk and wi ∈ RR.
The soundness Theorem (formally stated in Theorem 4.8)

claims that if some h(y) passes above dictator test with high
probability, then we can decode each wi (i ∈ [k]) in to a
small list and at least two of the list will intersect. The
proof of the soundness theorem is by two important lemmas
(Lemma 4.6, 4.7). Briefly speaking, the first lemma states
that if a halfspace passes the test with good probability,



then two of its critical index sets Lτ (wi), Lτ (wj) (see
Definition 3.1 ) must intersect; the second Lemma states that
every halfspace can be approximated by another halfspace
with small critical index.

Lemma 4.6. (Common Influential Coordinate) For τ = 1
k6 ,

let h(y) be a halfspace such that for all i ̸= j ∈ [k], we
have Lτ (wi) ∩ Lτ (wj) = ∅ . Then∣∣∣ E

D̃R
0

[h(y)] − E
D̃R

1

[h(y)]
∣∣∣ 6 O

(1
k

)
(7)

Proof: Fix the following notation,

si = Truncate(wi, Lτ (wi)) li = wi − si

yL
i = Truncate(yi, Lτ (wi)) yL = ∪k

i=1y
L
i

We can rewrite the halfspace h(y) as h(y) = sgn
(
⟨s, yL⟩+

⟨l, y⟩ − θ
)

. Let us first normalize the halfspace h(y) such
that

∑
i∈[k] ∥li∥2 = 1. Then we condition on a possible

fixing of the vector yL. Under this conditioning and with
the distribution D̃R

0 , define the family of ensembles A =
A{1}, . . . ,A{R} as follows:

A{j} = {y(j)
i | ∀i ∈ [k] such that j /∈ Lτ (wi)}

Similarly define the ensemble B = B{1}, . . . ,B{R} with the
distribution D̃R

1 . Further let us denote l{j} = (l(j)1 , . . . , l
(j)
k ).

Now we shall apply the invariance Theorem 3.10 to the
ensembles A,B and the linear function l. For each j ∈ [R],
there is at most one coordinate i ∈ [k] such that j ∈ Lτ (wi).
Thus, conditioning on yL amounts to fixing of at most one
variable y

(i)
j in each {y(i)

j }. By Lemma 4.4, since D̃0 and
D̃1 has matching moments of degree 4, we know A{j} and
B{j} has matching moments up to degree 3. Also notice that
maxj∈[R],i∈[k] |l

(j)
i | 6 τ∥li∥2 6 τ∥l∥2 (as li is a τ -regular)

and each y
(j)
i is setting to be random bit with probability

1
k2 ; by Lemma 3.3, the linear functions l and the ensembles
A, B satisfy the following spread property:

Pr
A

[
l(A) ∈ [θ − α, θ + α]

]
6 c(α)

Pr
B

[
l(B) ∈ [θ − α, θ + α]

]
6 c(α)

where c(α) 6 8αk+4τk+2e−
1

2τ2k4 (by setting γ = 1
k2 and

|b − a| = 2α in Lemma 3.3). Using the invariance theorem
3.10, this implies:∣∣∣E

A

[
sgn

(
⟨s, yL⟩ +

∑
j∈[R]

⟨l{j}, A{j}⟩ − θ̃
)∣∣∣yL

]
−

E
B

[
sgn

(
⟨s, yL⟩ +

∑
j∈[R]

⟨l{j}, B{j}⟩ − θ̃
)∣∣∣yL

]∣∣∣
6 O

( 1
α4

) ∑
i∈[R]

∥l{i}∥4
1 + 2c(α) (8)

By definition of critical index, we have maxj∈[R] l
j
i 6

τ∥li∥2. Using this, we can bound
∑

i∈[R] ∥l{i}∥4
1 as

follows:
∑

j∈[R] ∥l{j}∥4
1 6 k4

∑
i∈[k]

∑
j∈[R] ∥l

(j)
i ∥4 6

k4
∑

i∈[k]

(
maxj∈[R] |l

(j)
i |2

)
∥li∥2

2 6 k4τ2
∑

i∈[k] ∥li∥2
2 6

k4τ2∥l∥2
2 6 1

k8 . In the final step, we used the fact that
τ = 1

k6 and ∥l∥2 = 1 by normalization. Let us fix α = 1
k3 .

The inequality (8) holds for all settings of yL. Averaging
over all settings of yL we get that (8) can be bounded by
O( 1

k ).
The set Lτ (wi) can be thought of as the set of influential

coordinates of wi. In this light, the above lemma asserts
that the unless some two vectors wi,wj have a common
influential coordinate, the halfspace h(y) cannot distinguish
between D̃R

0 and D̃R
1 .

Unlike the traditional notion of influence, it is unclear
whether the number of coordinates in Lτ (wi) is small. The
following lemma yields a way to get around this.

Lemma 4.7. (Bounding the number of influential coordi-
nates) Fix t = 4

τ2 (3 log(1/τ)+log R)+4k2 log(1/k). Given
a halfspace h(y) and ℓ ∈ [k] such that |Lτ (wℓ)| > t,
define h̃(y) = sgn(

∑
i∈[k]⟨w̃i,yi⟩ − θ) as follows: w̃ℓ =

Truncate(wℓ, St(wℓ)) and w̃i = wi for all i ̸= ℓ. Then,∣∣∣ E
D̃R

0

[h̃(y)] − E
D̃R

0

[h(y)]
∣∣∣, ∣∣∣ E

D̃R
1

[h̃(y)] − E
D̃R

1

[h(y)]
∣∣∣ 6 1

k2

Proof: Without loss of generality, we assume ℓ = 1
and |w(1)

1 | > |w(2)
1 | . . . > |w(R)

1 |. In particular, this implies
St(w1) = {1, . . . , t}. Set T = 4k2 log(1/k). Define the
subset of St(w1) as

G = {gi | gi = 1 + i⌈(4/τ2) ln(1/τ)⌉, 0 6 i 6 T}.

Therefore, by Lemma 3.2, gi is a geometrically decreasing
sequence such that gi+1 6 gi/3. Let H = S − G. Fix the
following notation:

wG
1 = Truncate(w1, G) wH

1 = Truncate(w1,H)
w>t

1 = Truncate(w1, {t + 1, . . . , n})

Similarly, define the vectors yG
1 , yH

1 , y>t
1 . Rewriting the

halfspace functions h(y), h̃(y) :

h(y) = sgn
( k∑

i=2

⟨wi, yi⟩ + ⟨wG
1 ,yG

1 ⟩ + ⟨wH
1 ,yH

1 ⟩

+ ⟨w>t
1 , y>t

1 ⟩ − θ
)

h̃(y) = sgn
( k∑

i=2

⟨wi, yi⟩ + ⟨wG
1 ,yG

1 ⟩ + ⟨wH
1 ,yH

1 ⟩ − θ
)

Notice that for any y, h(y) ̸= h̃(y) implies

∣∣ k∑
i=2

⟨wi,yi⟩+ ⟨wG
1 , yG

1 ⟩+ ⟨wH
1 , yH

1 ⟩ − θ
∣∣ 6 |⟨w>t

1 ,y>t
1 ⟩|

(9)



By Lemma 3.2, we know that

|w(gT )
1 |2 > τ2

((
√

1 − τ2)t−T )
∥w>t

1 ∥2
2

> τ2

(1 − τ2)
4

τ2 (3 log(1/τ)+log R)
∥w>t

1 ∥2
2 > R2

τ
|w>t

1 |22 (10)

Using the fact R∥w>t
1 ∥2

2 > ∥w>t
1 ∥2

1, we can get that
∥w>t

1 ∥1 6 √
τ |w(gT )

1 | 6 1
6 |w

gT

1 |. Combining above inequal-
ity with (9) we see that,

Pr
D̃0

R

[
h(y) ̸= h̃(y)

]
6 Pr

D̃0
R

[
|

k∑
i=2

⟨wi, yi⟩ + ⟨wG
1 , yG

1 ⟩ + ⟨wH
1 , yH

1 ⟩ − θ|

6 |⟨w>t
1 , y>t

1 ⟩|
]

6 Pr
D̃0

R

[∣∣ k∑
i=2

⟨wi, yi⟩ + ⟨wG
1 ,yG

1 ⟩ + ⟨wH
1 ,yH

1 ⟩ − θ
∣∣ 6 |wgT

1 |
6

]
= Pr

D̃0
R

[
⟨wG

1 , yG
1 ⟩ ∈ [θ′ − 1

6
|w(gT )

1 |, θ′ + 1
6
|w(gT )

1 |]
]

where θ′ = −
∑k

i=2⟨wi, yi⟩ − ⟨wH
1 , yH

1 ⟩ + θ. For any
fixing of the value of θ′ ∈ R, induces some arbitrary
distribution on yG. However, the 1

k2 noise introduced in yG

is completely independent. This corresponds to the setting in
Lemma 3.7, and hence we can bound the above probability
by

(
1 − 1

2k2

)T 6 1
k2 . Averaging over all values for θ′, the

result follows.

Theorem 4.8. (Soundness) Fix τ = 1
k6 and t =

4
τ2 (3 log(1/τ) + log R) + k2log(1/k). Let h(x) =
sgn(⟨w,y⟩−θ) be a halfspace such that St(wi)∩St(wj) =
∅ for all i, j ∈ [k]. Then the halfspace h(y) passes the
dictatorship test with probability at most 1

2 + O( 1
k ).

Proof: The probability of success of h(y) is given by
1
2+ 1

2

(
ED̃R

1
[h(y)]−ED̃R

0
[h(y]

)
. Therefore, it suffice to show∣∣∣ED̃R

0
[h(y)] − ED̃R

1
[h(y)]

∣∣∣ 6 O( 1
k ).

Define K = {l | Lτ (wl) > t}. We discuss the following
two cases.
1. K = ∅; i.e., ∀i ∈ [k], wi, Lτ (wi) 6 t. Then for any
i, j, St(wi) ∩ St(wj) = ∅ implies Lτ (wi) ∩ Lτ (wj) = ∅.
By Lemma 4.6, we thus have

∣∣∣ED̃R
0
[h(y)]−ED̃R

1
[h(y)]

∣∣∣ 6
O( 1

k ).
2. K ̸= ∅. Then for all l ∈ K, we set w̃ℓ =
Truncate(wℓ, St(wℓ)) and replace wℓ with w̃ℓ in h to get
a new halfspace h′. Since such replacement occur at most
k times and by Lemma 4.7 every replacement changes the
output of the halfspace on at most 1

k2 fraction of examples,
we can bound the overall change by k × 1

k2 = 1
k . That is∣∣∣ E

D̃R
0

[h′(y)] − E
D̃R

0

[h(y)]
∣∣∣, ∣∣∣ E

D̃R
1

[h′(y)] − E
D̃R

1

[h(y)]
∣∣∣ 6 1

k
(11)

Also notice that for h′, for all ℓ ∈ [k], the critical index of
|Lτ (w̃ℓ)| is less than t. This reduces the problem to Case 1,
and we conclude

∣∣∣ED̃R
0
[h′(y)] − ED̃R

1
[h′(y)]

∣∣∣ 6 O (1/k).
Along with (11) this finishes the proof.

5. REDUCTION FROM k-UNIQUE LABEL COVER

In this section, we describe a reduction from k-UNIQUE
LABEL COVER problem to agnostic learning monomials,
thus showing Theorem 1.1 under the Unique Games Con-
jecture (Conjecture 2.2).

Let L(G(V,E), 1, R, {πv,e|v ∈ V, e ∈ E}) be an instance
of k-UNIQUE LABEL COVER. The reduction will produce
a distribution over examples and label pairs: (y, b) where
y lies in {0, 1}|V |×R and label b ∈ {0, 1}. We will
index the coordinates of y ∈ {0, 1}|V |×R by y

(i)
w (for

w ∈ V, i ∈ R) and denote yw (for w ∈ V ) to be the vector
(y(1)

w , y
(2)
w , ...y

(R)
w ).

1) Sample an edge e = (v1, . . . , vk) ∈ E
2) Generate a random bit b ∈ {0, 1}.
3) Sample x ∈ {0, 1}kR from DR

b .
4) Generate y ∈ {0, 1}|V |×R as follows:

a) For each v /∈ {v1, ..vk}, yv = 0.
b) For each i ∈ [k], set yvi ∈ {0, 1}R as

follows:

y(j)
vi

=

{
x

(πvi,e(j))
i with probability 1 − 1

k2

random bit with probability 1
k2

5) Output the example-label pair (y, b).

Proof of Theorem 1.1 assuming Unique Games Con-
jecture: Fix k = 10

ϵ2 , η = ϵ3

100 and a positive integer
R > ⌈(2k29)

1
η2 ⌉ for which Conjecture 2.2 holds.

Completeness: Suppose that A : V → [R] is a labelling
that strongly satisfies 1− kη fraction of the edges. Consider
the monomial h(y) =

∨
v∈V y

(A(v))
v . For at least 1 − kη

fraction of edges e = (v1, v2...vk) ∈ E, πv1,e(A(vi)) =
. . . = πvk,e(A(vi)) = ℓ. As all coordinates of y outside
{yv1 , . . . ,yvk

} are set to 0 in step 4(a), the monomial
reduces to ∨i∈[k]y

(A(vi))
vi = ∨i∈[k]x

(ℓ)
i . By Theorem 4.5

the such a monomial agrees with every (y, b) with prob-
ability at least 1 − 3√

k
. Therefore h(y) agrees with at least

(1 − 3√
k
)(1 − kη) > 1 − 3√

k
− kη > 1 − ϵ fraction of the

example-label pairs.
Soundness: Suppose there is some halfspace h(y) =∑

v∈V ⟨wv,yv⟩ that agrees more than 1
2 + ϵ > 1

2 + 1√
k

fraction of the examples. Set t = k12(3 log(k6) + log R) +
4k2 log(1/k)) = O

(
k13 log(R)

)
(same as in Theorem 4.8).

Define the labelling A using the following strategy : for each
vertex v ∈ V , if St(wv) is nonempty, randomly pick a label
from St(wv) else pick a uniformly random label.

By an averaging argument, for at least ϵ
2 fraction of the

edges e ∈ E generated in step 1 of the reduction, h(y)



agrees with more than 1
2 + ϵ

2 of the corresponding examples.
We will refer to these edges as good. By Theorem 4.8 for
each good edge e ∈ E, there exists i, j ∈ [k], such that
πvi,e

(
St(wvi)

)
∩ πvj ,e

(
St(wvj )

)
̸= ∅. Therefore the edge

e ∈ E is weakly satisfied by the labelling A with probability
at least 1

t2 . Hence, in expectation the labelling A weakly
satisfies at least ϵ

2 ·
1
t2 = Ω( 1

k27 log2 R
) > 2k2

Rη/4 (by the choice
of R and t).
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