MaxMin Allocation via
Degree Lower-bounded Arborescences

MohammadHossein Bateni' ;
Computer Science
Department
Princeton University
Princeton, NJ 08540

Moses CharikarT
Computer Science
Department
Princeton University
Princeton, NJ 08540

Venkatesan Guruswami§
Department of Computer
Science and Engineering
University of Washington

Seattle, WA 98195

mbateni@cs.princeton.edu moses@cs.princeton.edu venkat@cs.washington.edu

ABSTRACT

We consider the problem of MaxMin allocation of indivisible goods.

There are m items to be distributed among n players. Each player
i has a nonnegative valuation p;; for an item j, and the goal is
to allocate items to players so as to maximize the minimum to-
tal valuation received by each player. There is a large gap in our
understanding of this problem. The best known positive result is
an O(+/n)-approximation algorithm, while there is only a factor 2
hardness known. Better algorithms are known for the restricted as-
signment case where each item has exactly one nonzero value for
the players. We study the effect of bounded degree for items: each
item has a nonzero value for at most D players. We show that es-
sentially the case D = 3 is equivalent to the general case, and give
a 4-approximation algorithm for D = 2.

The current algorithmic results for MaxMin Allocation are based
on a complicated LP relaxation called the configuration LP. We
present a much simpler LP which is equivalent in power to the con-
figuration LP. We focus on a special case of MaxMin Allocation—
a family of instances on which this LP has a polynomially large
gap. The technical core of our result for this case comes from
an algorithm for an interesting new optimization problem on di-
rected graphs, MaxMinDegree Arborescence, where the goal is to
produce an arborescence of large outdegree. We develop an n®-
approximation for this problem that runs in n21/8) time and ob-
tain a a polylogarithmic approximation that runs in quasipolyno-
mial time, using a lift-and-project inspired LP formulation. In fact,

*A full version of this paper is available as a technical report [5].

TSupported by NSF ITR grants CCF-0205594 and CCF-0426582,
NSF CAREER award CCF-0237113, MSPA-MCS award 0528414,
and NSF expeditions award 0832797.

iSupported in part by a Gordon Wu Fellowship.

§Currently on leave visiting the Computer Science Department,
Carnegie Mellon University. Some of this work was done when
the author was a member at the School of Mathematics, Institute
for Advanced Study. Research supported in part by a Packard Fel-
lowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC’09, May 31-June 2, 2009, Bethesda, Maryland, USA.

Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

we show that our results imply a rounding algorithm for the relax-
ations obtained by ¢ rounds of the Sherali-Adams hierarchy applied
to a natural LP relaxation of the problem. Roughly speaking, the
integrality gap of the relaxation obtained from ¢ rounds of Sherali-
Adams is at most n!//. We are able to extend the latter result to
a more general class of instances. Along the way, we prove a re-
sult about the existence of a perfect matching in a probabilistically
pruned graph which may be of independent interest.

Categories and Subject Descriptors

F.2.2 [ANALYSIS OF ALGORITHMS AND PROBLEM COM-
PLEXITY]: Nonnumerical Algorithms and Problems—Computa-
tion on Discrete Structures

General Terms

Algorithms, Economics, Theory

1. INTRODUCTION

We study the MaxMin allocation problem of indivisible goods.
An instance of MaxMin Allocation consists of a set A of n players
and a set B of m items, with a non-negative utility value p;; for
each player i € A and item j € B. The utility of a player is an addi-
tive function, i.e., if player i is given a subset B; C B of items, she
gets a utility). ;cp, pij. The goal is to find an allocation of items
to players such that the minimum of the utilities of the players,
i.e., minjcq Y jep, pij, is maximized. The problem corresponding
to the dual objective, i.e., minimizing max;c4 Y. jeB; Pijs is the clas-
sic Makespan minimization problem for unrelated parallel machines
(with items corresponding to jobs and players corresponding to ma-
chines). In this work, we consider the MaxMin objective which is
natural if we think of items as rewards and look for an equitable,
fair allocation of them so that every player surpasses a certain “hap-
piness” threshold. Accordingly, this problem has also been called
the “Santa Claus” problem [2,4]]. The MaxMin Allocation problem
has received a fair bit of attention lately [2l3}/4}(6,9,/10,(11}/13].
We discuss some of the previous work next before mentioning the
contributions of this paper.

1.1 Previous work

Lenstra, Shmoys and Tardos [[12|] give a factor 2 approximation
algorithm for the MinMax version, and also show a factor % in-
approximability result. Closing this gap has been a longstanding
open problem. Despite much attention recently, there is a large gap
in our understanding of the approximability of the dual objective,
MaxMin. The best known algorithm achieves an O(,/n) approx-

imation ratio in the general case, but only a factor 2 hardness re-
sult is known. The objective function for MaxMin is rather fragile,
since a small mistake in the allocation might starve a player com-
pletely, leading to a very poor approximation ratio. This in some
sense captures the high level difficulty faced by algorithms for the
MaxMin objective.

Bezakova and Dani [|6] achieve an additive approximation for the
MaxMin Allocation using the natural LP formulation, guaranteeing
a value of at least OPT — max;; p;;. If the maximum value of some
objects are close to the optimum, then this could be a poor guar-
antee. Besides, they modify the hardness proof of [12] to show a
factor 2 inapproximability result for MaxMin Allocation.

Various special cases of the problem have also been studied. The
uniform case, when each item has the same value for every player,
i.e., pjj = p; for all i, admits a PTAS [13]. Subsequent works,
ending in [|1]], achieve PTAS for the same setting while considering
more general objective functions.

Another important special case has been the restricted assign-
ment case considered in [24.9], where each item j has some intrin-
sic value p; and a player is interested in a subset of items; more for-
mally, p;; € {p;,0} for all i, j. Bansal and Sviridenko [4] introduce
anew linear programming formulation called the Configuration LP
to study the MaxMin Allocationproblem, and by rounding this LP
are able to achieve an O(loglogn/logloglogn)-approximation for
the restricted assignment case. Feige [9] gave a non-constructive
proof that the configuration LP has O(1) integrality gap for this
special case. Subsequently, Asadpour, Feige and Saberi [2] gave
a simpler exponential time 5-approximation algorithm, proving the
integrality gap is no more than 5.

Golovin [10] presents an O(y/m)-approximation for the so-called
Big Goods/Small Goods case, which is a further special case of the
restricted assignment case (see below) where item values also need
to be either 1 or o. For the general problem, Bansal and Sviri-
denko [4] exhibit an example with integrality gap Q(+/n) for the
configuration LP. Asadpour and Saberi [3]] show that this is essen-
tially tight, by giving an algorithm to round it with an O(/nlog>n)
guarantee. This is the best currently known guarantee for the gen-
eral MaxMin Allocation problem. The best known hardness result
remains a factor of 2, and this also holds for the restricted assign-
ment case.

Khot and Ponnuswami [11] also consider a special case where
pij € {0,1,00} for all i, j—this is believed to be as hard as the
general case. They establish a tradeoff between runtime and ap-
proximation ratio. Specifically, they give an g -approximation algo-
rithm which runs in time m@Mn0® | for any given o < n/2. They
also give a (2n — 1)-approximation algorithm for a generalization
of MaxMin Allocation where utility functions are subadditive.

Ebenlendr, Krcal, and Sgall 8] recently revisited the MinMax
objective function in the case when each item has nonzero value for
(at most) two players, and further these values are the same for the
two players (called the “symmetric” version). This problem can be
equivalently viewed as a Graph Balancing problem, where one has
to orient edges of a weighted undirected graph so that the maximum
weighted in-degree is minimized. They are able to improve the
approximation factor from 2 down to 1.75, while proving the same
1.5 hardness. In light of this, it is natural to study the effect of the
bounded degree items in the MaxMin setting.

Very recently, it was brought to our attention that Chakrabarty,
Chuzhoy and Khanna [[7] study the MaxMin Allocation problem and
give an O(m®)-approximation algorithm that runs in time O(m%)
for the general case. As a result they can achieve a polylogarithmic
approximation in quasipolynomial time. As explained below, we
are able to obtain the same guarantee for an interesting special case

which is a natural intermediate point towards solving the general
case. Though our works were independent, there are some parallels
between our approaches. They also give a (2 + €)-approximation
algorithm for an instance of MaxMin Allocation that we will call
DegreeTwo. In such instances, each item has nonzero utility for at
most two players.

1.2 Contributions

We first study the approximability of the MaxMin problem when
each item has a nonzero value for at most B players. We observe
that the D = 3 case (which we call DegreeThree) is as hard to ap-
proximate as the general MaxMin problem. This result also holds
for the MinMax objective function. For DegreeTwo (i.e., D = 2),
we give a factor 4-approximation algorithm for this problem. We
stress that our algorithm works in the asymmetric case when the
item can have distinct nonzero values for the two players inter-
ested in it. This is the only positive result for the asymmetric ver-
sion besides the O(y/n) approximation algorithm [3]] for the gen-
eral MaxMin problem. We also show a modification of hardness
result in [8] gives a factor 2 inapproximability of the degree two
case, even for the symmetric case. We should note that, prior to our
work, the best approximation factor for the symmetric degree two
case is also only 4. This follows from our result, but can also be
obtained by customizing the algorithm in [4].

We also present a new LP relaxation for the MaxMin problem.
We show that this is equivalent in power to the configuration LP,
while being simpler and having a compact formulation. (Thus it
can be solved directly, unlike the complicated dual Knapsack meth-
ods needed to solve the configuration LP.)

We focus on an interesting special case of the MaxMin problem
for which the LP formulations prior to our work have a polynomial
integrality gap. For these instances, we devise a polylogarithmic
approximation that runs in quasipolynomial time (and an m® ap-
proximation in time mO(/8)) " The technical core of this result is
the development of an algorithm for an interesting new optimiza-
tion problem on digraphs: MaxMinDegree Arborescence. Given a
directed graph with designated sources and sinks, the problem re-
quires us to produce a collection of disjoint arborescences 7;, one
rooted at each source such that every non-sink vertex in 7; has out-
degree M; the goal is to maximize M. While the problem formula-
tion seems similar to the degree bounded Steiner tree problems that
have received much attention recently, the nature of the problem
is quite different and requires the development of new techniques.
Our algorithm uses a lift-and-project inspired LP relaxation with a
dependent rounding procedure that exploits the additional variables
and constraints. In fact, we show that the LP we use can be obtained
by ¢ rounds of the Sherali-Adams hierarchy applied to a basic LP
relaxation for the problem. Our techniques can be interpreted as
a rounding algorithm for the relaxation obtained after ¢ rounds of
Sherali-Adams. They imply an interesting approximation-rounds
tradeoff: the relaxation after # rounds has integrality gap at most
max (polylog(m),mP(1/1)). This is especially interesting as there
has been a lot of recent interest in understanding lift-and-project
procedures and very few positive results using lift and project are
known. The rounding algorithm itself is similar to a rounding al-
gorithm used for the group Steiner tree problem. However, our
analysis is quite different and requires bounding higher moments
for a dependent random process on a tree.

1.3 Organization

This extended abstract is organized as follows. In Section [2]
we introduce the commonly used LP relaxation for the problem,
as well as a new, simpler relaxation we propose. We briefly dis-

cuss low degree instances afterwards. Section [3] gives the factor 4-
approximation algorithm for DegreeTwo. In Section] we identify
a class of instances where the previous LP relaxations have poly-
nomially large gap and devise a polylogarithmic approximation for
them. This is the main technical contribution of our work. The core
of this result is the development of an algorithm for the MaxMinDe-
gree Arborescence problem which we introduce here. We conclude
in Section[3lwith a brief overview of extensions to the results in this
extended abstract that appear in the full version [5]] and future work
directions. The appendix has omitted proofs. Due to the lack of
space, discussion of the connection to the Sherali-Adams hierarchy
is deferred to the full version of the paper [5]].

2. PRELIMINARIES

Recall that we are given a set A of players and a set B items and
pij represents the utility of item j for player i. Such an instance is
usually considered as a weighted bipartite graph that has players on
one side and items on the other. In figures, we will use squares to
represent players and circles to depict items.

The natural LP for the problem has an unbounded integrality gap.
A more powerful LP, called the Configuration LP, was introduced
in [4], and has been crucially used in [2}|3,4}9].

DEFINITION 1 (CONFIG-LP). There is a variable x;c for each
player i and each valid configuration (aka bundle) C of items. A
bundle C C B is called valid for i if and only if }. jcc pij > M. Let
G denote the set of valid bundles for player i. Then, the Config-LP
relaxation is as follows.

(Config-LP)
Y Y xic<t VjeB (1)
i€ACEC;

C>j
Z xic=1 VicA 2)
CeG
xic=>0 VicA,Ce (. 3)

This LP has exponential size, but as noted in [4], the separation
oracle needed for the dual is the knapsack problem. So, we can
find an approximate (with arbitrary fixed precision) value for this
LP in polynomial time. Although the enhancements of Config-LP
eliminates some gap examples of the natural LP, the integrality gap
still remains as large as ©(y/n) [4].

Note that the LPs studied for this problem are used for feasibility
of a guessed value M. When dealing with Config-LP, we usually
have a threshold T = M /A and we revalue any item of value no
less than T to be M. This way, we might increase the value of the
solution by a factor of A, but we create a gap between “small” and
“big” items. One big item is enough to satisfy a player and thus we
assume a configuration is either “big” (i.e., it has only one big item)
oris “small” which means there are multiple (at least A) small items
in it. Not present in Config-LP but implied are the natural variables
Xij = Y.c5%ic, which show to what extent an item j is assigned to
a player i.

Simpler LP.

We introduce a simplified LP here with which we work. In sharp
contrast to Config-LP, it has only polynomially many variables and
constraints. Besides making arguments simpler, this gives room to
enhance the LP with additional constraints as we do in Section @
We carry out the same rounding for big items here.

S S

Figure 1: Degree reduction for an item. An item which has
degree more than three, can be replaced by a gadget as shown
here. The upper row players are the ones which are interested
in this item, possibly with different valuations ,b,...,c,d. The
bottom-row players and items are dummy new ones. It is easy
to verify at most one of the original links can be used.

DEFINITION 2 (M-LP). There is avariable x;; for each player
i and each item j. Furthermore, z;, called the small usage of player
i, indicates how much small items contribute to the utility of this
player. The notion of small/big is with respect to a specific player:
Here is the relaxation M-LP:

(M-LP)
Y xii<t1 VjeB, (4
icA

Y xijtz>1 VieA, (5
jeB
pij=M

Z pijxij =2 ziM VieA, (6)
jEB
pij<M
xij <z VicA,jEB:p;jj<M @)
Xij;:zi 20 Vi€eA,jEB. ®)

Removing constraints gives the natural LP to which we refer
by S-LP. Clearly, any Config-LP solution can be specified as a so-
lution to M-LP. One just needs to use the implied x;; values and
appropriate values for z;. We claim that the algorithms and analy-
ses of previous work using Config-LP can be tailored to use M-LP
values instead. Moreover, any solution to M-LP can be turned into
a solution of Config-LP of roughly the same value; see Theorem
2T} We do not know how to use M-LP (without losing the extra
factor two) to get the recent tight result of Chakrabarty et al. [7]] for
DegreeTwo.

We show that any instance of the problem can be converted into
an equivalent instance of DegreeThree.

THEOREM 3 (DEGREE REDUCTION). Any instance of MaxMin
A/IocatiorE] with n players and m items can be changed into an
equivalent instance of DegreeThree that has nm players and nm
items.

PROOF. Take any item of degree d, and replace it by a gadget
similar to Figure [T} i.e., make d copies of the item, one for each
of its takers (with the associated value), and also add d — 1 dummy
players, one between any two consecutive copies (with value oo).
Each of the dummy players needs to get hold of one of the item
copies to satisfy its demand. Exactly one copy will be free to serve
its real taker. [

There is a caveat here: The number of players in the degree three
instance may be significantly larger and this could affect the ap-
proximation ratio.

A similar reduction can be done for MinMax, by replacing co with
M (our guess) and noting that we want approximation guarantee
better than two.

Knowing that DegreeThree can model the general case of the
problem motivates the study of the DegreeTwo special case. S-LP
has a large gap for DegreeTwo. Customizing the algorithm of [4],
one can obtain a 4-approximation for the symmetric degree two
case. Also, implicit in [4,/9] is that the constant degree symmetric
case has a constant factor approximation algorithm. More specif-
ically, a restricted assignment instance with items having degree
at most d > 2, admits a 4d-approximation algorithm. Yet, in the
presence of asymmetry, nothing better than the general O(+/n)-
approximation algorithm of [3|] was known prior to this work.

We present a factor 2 hardness result for this special case. This
is the same as the best-known hardness for the general case.

THEOREM 4 (DEGREETWO HARDNESS). DegreeTwo cannot
be approximated to within a factor better than 2 unless P = NP.
This also holds if we restrict our instances to be symmetric.

PROOF. The reduction is from a special 3SAT where each lit-
eral appears at most twice. Let the 3SAT instance have variables
vi,...,v, and clauses @1, .. ., ¢;,. In our MaxMin Allocation instance,
we have two players for each variable, one corresponding to v, and
one for v;. There is an item of value two shared between them.
Each clause has an exclusive item of value 1 and one item shared
with any of its literals, with value 1. If some literal occurs / times
in our formula, we add 2 — [exclusive items of value 1 for it. We
claim that the value of the instance is two if and only if the given
3SAT instance is satisfiable.

If it is satisfiable, let the value 2 items be given to the true liter-
als. Each false literal takes its other items to have utility two. Any
clause has an exclusive item and at least one shared item, which
give it a utility of at least two.

Now, if we have a solution of value at least two, we let the literals
which receive big items to be true. False literals take in all their
small items. Each clause receives some shared item other besides
its exclusive item. So, that should correspond to a true literal.

If the value of the instance is not two, it is at most one, and hence
comes the gap of two. [

In the full version of the paper, we discuss a common element in
all current hardness reductions of the problem; this is a barrier for
proving hardness beyond factor 2.

3. APPROXIMATION ALGORITHM FOR
DEGREE 2

To solve an instance of DegreeTwo, we first solve the corre-
sponding M-LP (with big items rounded with A = 4). Then, we
massage the fractional solution to simplify its structure. Finally,
we do the rounding. Next we describe in more details the steps of
our algorithm which is presented in Figure[2]

Restructuring the LP solution.

Assume we are given a solution {x;,z;} to the M-LP, where all
constraints () are tight. Otherwise, we first decrease x;; values for
small items appropriately to obtain this property. We build the new
solution x;; as follows. We change all the nonintegral values to 1/2.
Next if any small variable has a value larger than 1/2, we decrease
it to 1/2. Finally, a player receiving any small item forgoes all
its big items. Set z; = MZjeB:pij<t pijxij for any player i. The
restructured solution has the following properties.

(SP1) Value of a small variable x;; is either zero or 1/2.
(SP2) Each player uses either big items or small ones.

(SP3) Itis a valid M-LP solution of value M /2.

Algorithm DEGREETWOSOLVER
Input: An instance of DegreeTwo.
Output: An assignment of value at least OPT/4.
1. Solve M-LP by repeated guessing to get {x};,z; }. When
the guess value is M (revalue any item bigger than M /4
to M).
2. Build x;; as follows:

(a) decrease xl’fj variables as much as possible without
violating the constraints;

(b) letxjj = x;;;
(c) change all the nonintegral x;; to 1/2;
(d) make sure no x;; > 1/2 for small item j; and
(e) make x;; = 0 if item j is big for player 7 but player

i has a nonzero x; ; for a small item 7.
3. Do rotations on big edges to eliminate cycles, and iden-
tify 7;’s to build the modified instance.

4. Round the fractional solution using LP-ROUND.

5. Deal with the assignment of big items in each 7;.

Figure 2: The algorithm for DegreeTwo.

The truth of and is immediate. For the last property,

note that we have a half-integral solution. There are at most two
nonzero variables for each item. If a constraint (4) is violated, then
at least one of them has to be one. However, this means that the
other one is zero, since it was so in the previous solution. The con-
straints (6) are good by definition. For the constraints (7)), observe
that x;; <1 /2 for small items. If any such constraint is violated, it
should be a z; < 1/2 and some Xjj = 1/2. So in the original solu-
tion, xl’-‘j and thus z} are both positive. Constraints (7) and (&) imply
that there are at least M different positive xfj for this player i. All
these variables have a value 1/2 in our new solution. Hence z; = 1.
This also shows that for a nonzero z;, we have z; = 1 in the new
solution, which ensures constraint (3). Now consider constraint ()
for a player with z; = 0. Either the player got only one big item
or more. In the former case, we do not change the variable value.
In the latter, there are at least two nonzero values, each 1/2, which
yield the constraint.

Having the above properties in our fractional solution, we are
ready to produce an integer assignment. We are going to use the
following result of [6].

THEOREM 5 (ALGORITHM LP-ROUND [|6]]). Given a solu-
tion to S-LP of value M where the maximum size of an item used is
P we can round the LP using the algorithm LP-ROUND fo get
a solution of value at least M — p™*,

Although the algorithm cannot give any guarantee when items are
large compared to the solution value, it will prove useful in our
algorithm.

We build a graph on players and items, where an edge connect-
ing player i and items j has weight x;;. Such an edge is called big
if item j is big for player i; otherwise, we call it small. For now,
we ignore the small edges and any player which uses them. Re-
member that by [[SPD}[(SP3)] any such player derives enough profit
from small items so as not to need any big items. We can perform
rotations as in [3]] to eliminate cycles in the graph of big edges.
Roughly speaking, we pick a small € and increase the weights of
even-indexed edges in the cycle by € and decrease those of the odd-
indexed edges by the same amount. We do this for an appropriate €

such that the weight of at least one edge drops to zero, when we can
remove it. Notice that if an edge gets weight one, in which case,
we should also stop, the adjacent edge will have weight zero. Each
component of the remaining graph will be a tree 7;. No leaf of a
tree 7; can be a player, since otherwise, that would be a player with
no small items utility and with only one big item.

We assume, without loss of generality, that any non-leaf item in
T; contributes one unit to the players in the tree. Note that because
of degree two bound, no other player can be interested in any such
item. If we pick an arbitrary leaf j of 7; and root the tree from it, we
can give any item to its child in the tree (because they have degree
two unless they are leaves) to satisfy all the players in 7;. All the
other leaves will be free. Any solution needs to use exactly one out
of the k; leaf items of each 7;. The usage of small items is at most
1/2. So, the LP usage of small items in 7; from the outside is at
most k; /2.

Now, replace each tree having k; > 2 leaves with [k; /2] <k — 1
items j; for I =1,..., [k /2]. These are meant to play the role of
the original k; — 1 remaining items. Name the original leaf items
inT;, by ji y,.--Jjj,,- Each of them, say j;, has exactly one taker
outside, say i;;; we know that the usage is exactly 1/2. The case
there is no such player is trivial. Now, we connect j;; to i; 51 and
iy with the corresponding values they had for j;72171 and j/ ,,.
The last item jy z, /) might get only one player. We let the weights
of all these edges be 1/2. There is a minor technicality here if two
players requesting some j;; are the same. Then, there should be
a single edge of weight one whose value is the larger of the two
values the player has for the two items.

Now, ignoring the big players altogether, we have a feasible S-
LP solution of value M /2, and we can round it to M /2 — M /) using
Theorem[5] After rounding, we know that at most [k; /2] < k; — 1
items from 7; have been used and so the remaining one can help
satisfy the players in 7; with value at least T = M/A. Choice of
A = 4 leads to a 4-approximation algorithm for the problem.

4. GOING BEYOND THE CONFIG-LP

In this section, we consider a special case of the MaxMin Alloca-
tion problem: The values of items are in the set {0, 1,0} and each
item has value infinity for at most one player. We call the set of
such instances InfDegreeOne. If a player i has value 1 for item j,
we say that j is a small item for i. If a player i has value o for item
J, we say that j is a large item for i.

As we will show, the LP formulation used in the best known re-
sults prior to our work for MaxMin Allocation has integrality gap of
Q(n'/0) for such instances We design an algorithm that achieves
an approximation ratio of m® in time mO(1/8) and a polylogarithmic
approximation in m©(°€™) time.

In order to do this, we strengthen the LP formulation for MaxMin
Allocation; here our simplified M-LP formulation lends itself to in-
corporating additional constraints. We begin with pointing out the
limitations of current LP formulations for these restricted instances.

LEMMA 6. M-LP (and similarly Config-LP) has a gap of Q(n'/®)
for InfDegreeOne.

PROOF. Consider the gadget H consisting of 7 + 1 players and
2T items. Player My is connected to item Jy,...,J7 and has value
1 for each of them. For 1 <t < T, item J; is big (value infinity) for
M;. Foreach 1 <t < T, player M, has value 1 for Jp41,...,Jor. It

is easy to note that there’s a fractional solution having value 1 (1/T
units of small usage) for My and value T for everybody else. In an

2A similar argument gives a gap of Q(n'/*) for InfDegreeTwo.

integral solution, however, if M(claims any a7 items of his, the
corresponding a7" players will have only 7" small items available
for them in total. So, the integral solution of the gadget would be
at most /7.

Let’s call the player M of H its distinguished player. Have T2
copies of H. Call their distinguished players Aj,...,Ar2. Attach an
item B; to any of them with value infinity. There is also one player
C which has value one for any of these new items B;. This player
can fractionally use 1/7 from any of these items and so, each A;
needs only 1/7 from inside its gadget. So, there is a fractional
solution of value 7. In an integral solution, C needs several of
his items. Suppose he claims B; along with several others. Then,
A1 needs to be satisfied internally, which gives a solution of value
at most /7. The size of the instance is 0(T3). The gap is thus

Q(n'/%). O

We further show a hardness result for these instances similar to the
previous ones. In fact, we prove this for instances in the intersection
of InfDegreeOne and DegreeTwo.

THEOREM 7. InfDegreeOne cannot be approximated to within
better than a factor two unless P= NP.

PROOF. The proof is similar to that of Theorem] The re-
duction is from a special 3SAT where each literal appears at most
twice. Let the 3SAT instance have variables vy,...,v, and clauses
01,...,0m,. In our MaxMin Allocation instance, we have three play-
ers for each variable, one corresponding to v; and one for v; the
third one is a dummy. There are two items of value infinity, each
shared between the dummy and one of the literals. These items
have value one for the dummy, which has another exclusive item
of value one. Each clause has an exclusive item of value 1 and one
item shared with any of its literals, with value 1 on both sides. If
some literal occurs / times in our formula, we add 2 —/ exclusive
items of value 1 for it. We claim that the value of the instance is
two if and only if the given 3SAT instance is satisfiable.

If it is satisfiable, let the true literals receive their infinity edges.
The dummy player of each variable takes its exclusive item and the
infinity item of the false literal. Each false literal takes its noninfin-
ity items to have utility two. Any clause has an exclusive item and
at least one item shared with a true literal, which give it a utility of
at least two.

Now, suppose we have a solution of value at least two. Notice
that the two literals corresponding to a variable cannot both claim
their infinity item. Thus, we let the literals which receive infinity
items to be true. False literals take in all their noninfinity items.
Each clause is given some item other than its exclusive item. So,
that should correspond to a true literal.

If the value of the instance is not two, it is at most one, and hence
comes the gap of two. [

4.1 The MaxMinDegree Arborescence problem

Our main technical contribution in this section is a solution to
a natural new optimization problem on directed graphs which we
introduce in this section and relate to the InfDegreeOne problem.
In a digraph, any vertex with no incoming edges is called a source.
Similarly, a vertex with no outgoing edges is called a sink.

DEFINITION 8. An M-pyramicﬂ of a digraph G is a subgraph
of G with the following properties:
1. it is an arborescence, i.e., the in-degree of every vertex is at
most 1;

3S0 named because of pyramid schemes. See
http://en.wikipedia.org/wiki/Pyramid_scheme.

2. it contains all the sources in G;
3. any sink of the arborescence is also a sink in G; and
4. the out-degree of any non-sink vertex is at least M.

Note that an M-pyramid of G need not contain all the vertices of
G. Technically, an M-pyramid is a forest of arborescences, but for
convenience, we simply say arborescence.

DEFINITION 9. In an instance of MaxMinDegree Arborescence
problem, we are given a digraph G, and the goal is to find an M-
pyramid of G that maximizes M.

We now show how to reduce MaxMin Allocation on instances in
InfDegreeOne to MaxMinDegree Arborescence. Consider an in-
stance in InfDegreeOne. We first remove from the instance, all
players that have at least two big items. We will assign items to
these players later. For the remaining instance, we build a depen-
dency graph as follows.

DEFINITION 10. The dependency graph is a directed graph G.
G has a vertex corresponding to every player in the instance, and a
vertex corresponding to every item whose utility is only 0 or 1 (i.e.,
an item whose infinity-degree is zero). If v is a vertex corresponding
to a player i,, we also associate v with the unique big item of i, (if
it exists). Thus, each vertex in G corresponds to exactly one item.
The edges in G are defined as follows: there is an edge from vertex
u to v if and only if the player corresponding to u has value 1 for
the item corresponding to v.

If there is an edge between u and v and both vertices correspond
to players (i, and i, respectively), the player i, may be assigned
the unique big item of i,, and i, must then be assigned many small
items to compensate. Note that sinks in the dependency graph are
exactly the items whose infinity-degree is zero.

LEMMA 11. Let G be the dependency graph of an InfDegreeOne
instance I. Then, the existence of an M-pyramid in G is equivalent
to the existence of an assignment of value M for I. In addition, we
can do the mapping in polynomial time.

PROOF. For aplayer i, let v; denote the vertex in the dependency
graph corresponding to player i. Also, for an item j with infinity-
degree zero, let v; denote the vertex corresponding to item j.

First, assume that we have an M-pyramid in G. We build the
assignment for MaxMin Allocation as follows. For a player i, if v;
is present in the M-pyramid, we assign i the items corresponding
to the children of v; in the M-pyramid. If v; is not present in the
M-pyramid, we assign i her big item. Observe that each player gets
items worth a value of M, since a player either gets his big item or
he receives M items (his children in the graph) each having a value
one. We claim that no item is picked by more than one player. It
is clear that no two players can claim an item, if both players value
it at one. Neither can an item be infinity for both players. Thus if
a collision is going to happen, that is between a small item of one
player and the big item of another. In this case, by definition of the
dependency graph, the latter player should also be present in the
arborescence and thus cannot get any big items at the end.

Next, suppose we have a valid assignment of value M. At first,
we make sure a player picks his big item if it is available. As long
as there is a set of players Py, P,,..., P, such that each P; gets the
big item of P, (Pr+1 = Pj, of course), change the assignment
such that each P; gets his big item. Besides, we remove the assign-
ment of a small item to a player, if the player is also assigned a big
item. The M-pyramid is built from the assignment of small items.
More precisely, the vertices of the M-pyramid consist of vertices
v; for players i who are assigned small items, as well as vertices

v; corresponding to small items j (with infinity-degree zero) that
are assigned to players. The sources have to be present in the ar-
borescence, since the corresponding players do not have any big
items. Each non-sink vertex clearly has outdegree M. We claim
that there are no cycles in the produced subgraph, which means it
is a valid M-pyramid, as desired. For the sake of contradiction, as-
sume there is a cycle Py, Pa, ..., P. Note that all the vertices of the
cycle represent players, since item vertices are sinks. By construc-
tion of the dependency graph, in the original solution, these players
should form a cyclic dependence; i.e., each gets the big item of the
next one. However, we removed such chains. [

Finally we show how to handle the players who have more than
one big item; these were removed from the instance initially.

LEMMA 12. Given an instance I of InfDegreeOne, let I’ be the
instance obtained by removing any player with more than one big
item. Given a solution of value M to I', we can obtain a solution of
value |M /2| for I in polynomial time.

PROOF. Let I be the set of all players of infinity degree larger
than one that we ignored initially. For all players with infinity de-
gree more than 2, reduce it to exactly 2 by ignoring some items that
they value at infinity.

Now consider the existing assignment of small items to players.
Let S be the set of players who have been assigned small items.
We need to assign infinity items to players in / by taking away
some small items from players in S. Build an auxiliary graph G4
with vertices corresponding to players in S. Edges in this graph
correspond to players in /. Suppose a player i in / has two items
j1 and jo that have value infinity for i. Further suppose that j;
is currently assigned to player i; € S (as a small item) and j; is
assigned to player iy € S (as a small item). Then we have an edge
(i1,i2) in G4 between the vertices corresponding to players i; and
ip. This edge is labeled with player i. Notice that i; and i may be
the same player.

In order to assign items to players in /, we will orient the edges of
graph G4. The orientation corresponds to a reassignment of items
as follows: consider an edge (i,iy) corresponding to playeri € I. If
this edge is oriented from i to i3, then i is assigned its infinity item
that is currently assigned to i and i> keeps the other infinity item
for i that i3 is currently assigned. In case i1 = i», either orientation
implies that player i grabs either of the items and i} = i, loses that
item yet keeps the other one. This ensures that every player in /
receives an infinity item. In order to ensure that players in S still
have a large number of small items assigned to them, we need to
ensure that that the out-degree of v is small compared to M for every
vertex v in Gy.

Let d, be the degree of vertex v in G4. The claim is that there
is a way to orient the edges of G4 such that every vertex v has out-
degree at most [d, /2]. Notice if the player v received M, items in
the assignment of I’, then her remaining items are at least M, —
[dy/2] > |M,/2], since d, < M,. In order to prove this claim,
we add a matching of dummy edges between the vertices of odd
degree find an Eulerian tour of G4 (with the dummy edges) and
orient the edges accordingly. Then the outdegree of a vertex v is at
most [d,/2]. O

4.2 The algorithm for MaxMinDegree Arborescence

Consider a graph G as an instance of MaxMinDegree Arbores-
cence problem. Let T be the optimal M-pyramid for the instance.
We show that there is a nearly optimal solution T* to this instance
with small depth; the depth of an acyclic directed graph is defined
as the number of edges on its longest path. Throughout this section,
we use N to denote the number of vertices in G.

LEMMA 13. Ifthere is an M-pyramid in the instance, then there

also exists an | M /2|-pyramid of depth no more than 1‘3;)%% .
2

PROOF. The proof is constructive. The vertices of T' can be
partitioned into levels. Level zero includes all the sources of G.
For i > 0, level i is the set of vertices in T that have an edge from
level i — 1. For a vertex v in T, let z(v) denote the size of a subtree
rooted at v (including v itself).

We build T* as a union of disjoint trees, one rooted at each
source. Consider the component of 7 rooted at . Remove the
[M /2] children of r having the largest subgraph sizes. For any re-
maining child v of r, we have z(v) < z(r)/[M/2]; otherwise, since
each vertex appears at most once in the tree, the number of descen-
dants of r in the largest [M /2] subtrees is at least 1 4+ [M/2]z(v) >
z(r) giving a contradiction. Now we recurse for every remaining
child of r. For a vertex v of level / that is not pruned during this
process, we have z(v) <z(r)/[M/2]'. Since z(r) <N and z(v) > 1,
we get I <logpy N = %. O

COROLLARY 14. If M > 3 then there is a degree M /2 solution
of depth O(logN).

COROLLARY 15. If M = Q(N¥) then there is a degree M /2 so-
lution of depth O(1/¢).

DEFINITION 16 (UNFOLDED TREE). There is a vertex vy in
the unfolded tree of depth A for any simple path « of length at most
h starting from a source. These will include all the paths of length
zero, which correspond to the set of sources in G. There is an edge
from vy to vy if and only if T’ = (m,e) is the concatenation of T and
some edge e. We say a vertex vy in G’ is a copy of vertex u in G if
T ends at u.

If T* has depth #, then it can be mapped to a solution on the un-
folded tree of depth 4 such that for every vertex v, at most one copy
of v is included in this solution. In the reverse direction, consider
any solution on the unfolded tree of depth % such that for every
vertex v, at most one copy of v is picked in the solution. Then
this solution can be mapped to a solution for the original instance.
Hence, we focus on solving the instance corresponding to this un-
folded tree, say G’. Note that the number of nodes in G’, denoted
by N, is O(N"T1).

Now we are looking for a solution of minimum outdegree M’ =
M /2] in G'. We write the LP as follows. Add a virtual node " that
has edges to all the sources in G’. There is a nonnegative variable x,
for each edge e. We stipulate that for any edge from 7’ to a source,
xe = 1. We denote by R the set of sources in G'. Define p(v) to
be the parent edge of v, for any vertex v of G’. For any vertex v in
G’ and a vertex V' of G, let N(v') denote the copies of V' that are
descendants of v in G'.

The complete linear program, AR-LP, is shown below. Let v €
V(G') correspond to a path @ in G. Then, x,,(,y denotes the extent
to which the path © appears in the solution.

p(v)

(AR-LP)

Y xe=Moxy Wev(@) £y 9
ecdt(v)

Y 5 S WeV(@)Y eV(G) (10)
ueN(v')
X(ry) = 1 YweR (11)
Xe 20 Ve ¢ E(G). (12)

We first show that this is a valid relaxation for the problem. Con-
sider an M-pyramid of depth % in the original graph. For any vertex
v included in the pyramid, the path from source to v can be mapped
to a path in the unfolded tree. Take the union of all such paths in
the unfolded tree and set x, = 1 for all edges in this union of paths.
For all remaining edges e, x, = 0. Note that for any original vertex
V', at most one copy of V' is included in this solution. It is easy to
verify that this solution satisfies all the constraints of AR-LP. Con-
straint (9) corresponds to the fact that every non-terminal v in the
solution, the outdegree of v is at least M. Constraint [T0] follows
from the fact that at most one copy of a vertex v is included in the
solution, and x, = 1 for all edges e along some path from a source
tov.

TREEROUND.

The rounding algorithm, TREEROUND, is as follows. We main-
tain a queue of vertices; these are vertices included in the solution
produced so far. Initially, the queue consists of all sources in the
graph. Draw vertices from this queue until the queue is empty, and
perform the following steps for each vertex drawn. Suppose v is
the vertex drawn from the queue. Recall that p(v) denotes the par-
ent edge of v. Pick a random subset of the outgoing edges from v
as follows: pick outgoing edge e with probability x, /xp(v) (where
the choices are made independently for each edge). Notice that be-
cause of (T0) and (T2) these are valid probability values. We say
that the current vertex claims every outgoing edge that is picked.
(Note that this vertex will eventually receive a subset of the edges
it claims.) Now the endpoints of the picked edges are placed on the
queue if they are not sinks of G’. Roughly speaking, the rounding
algorithm follows a chain reaction: when a node is activated, it can
trigger its children. The LP variables model these reaction chains.

By (@) each vertex picked claims a subset of vertices of expected
size at least M. By Chernoff bounds, with high probability, for
every such vertex, the actual number of claimed neighbors is Q(M)
(assuming M = Q(logN’), where N’ is the number of vertices in
G'). However, several copies of a vertex could be included in the
solution. Using union bound and Lemma [I7] we prove that with
high probability, i.e., 1 — 1 /poly(N), no more than O(logNlogN')
copies of any vertex are included in the solution produced. We first
establish this fact and then show how to produce a feasible solution
by eliminating multiple copies of the same vertex.

LEMMA 17. For any original vertex j of G, with probability

1— m, the number of copies of j included in the solution pro-
duced is O(logN'logN).

PROOF. In this discussion, ¢ is an appropriate constant param-
eter. First, we make a transformation to eliminate small x, val-
ues. For any x, < 1/N’C+1, we set its value to 0. Note that the
probability that vertex i claims vertex j is exactly x, if e = (i,).
Consider the rounding procedure applied to the old x, values ver-
sus the rounding procedure applied to the new x, values. The to-
tal variational distance between the distribution of outcomes of the
rounding procedure on the two different sets of x, values is at most
2/N’¢. Henceforth, we analyze the rounding procedure applied to
the transformed x, values; here any non-zero x, has value at least
1 / N/c+l‘

For a subtree T rooted at v, let X(T') be the random variable de-
noting the number of realized edges in T to copies of j given that
the parent edge of T is chosen in the rounding process, i.e., X(7T)
is the number of times that copies of j are included in the solu-
tion produced within T. Let S(T) = E[e®X(T)]. Let p(T) = Xp(v)>
note that p(v) is the parent edge of tree T. Let f(T) denote the
total usage of copies of a vertex jin T, i.e., f(T) = Luenv(j) Xp(u)-

Algorithm MAXMINDEGREE ARBORESCENCE SOLVER
Input: The digraph G
Output: The pyramid T

1. If M < M*, produce a solution with outdegree one. This
can be simply done using a matching algorithm.

2. Otherwise, build the unfolded tree G’ of depth H =
logN/log(M*/2).

3. Solve AR-LP for G'.

4. Round it using TREEALG: select the sources; while there
is a non-sink node v selected but not yet handled, pick
each edge e of v independently at random with probabil-

ity X, /xp(‘,).

5. By having an assignment of 1/y=1/0(logNlogN’) for
each edge of the solution of the previous step, build a
fractional solution to an LP for ¥ -matching, and obtain
an integral solution thereafter. Take the union of all edges
of the integral solution that are reachable from sources.

Figure 3: The algorithm for MaxMinDegree Arborescence
problem.

Note that the LP enforces the constraint (I0) that f(T) < p(T).
We choose o such that e* = 1+ 1/(4(c+ 1)logN’). The following
claim is proved in the appendix.

CLAIM 18. For any subtree T such that f(T) > 0,

S(T) <1+ : HD) <1 4 e UV/CHf(T))) :

- 4(c+1)logN' p(T) (c+1)logN’

Let X be the total number of copies of j included in the solu-
tion produced. We have proved that E[e®X] < 2, for oo = ©(1/((c +
1)logN")), which implies that Pr[X > c(c+1)log N’ log N] <2/N°€.

At the end, there might be vertices v of G more than one copies
of which are used. We remedy this issue by building a fractional
solution to a natural linear program of k-matching and finding an
integral solutionE] The entire algorithm is summarized in Figure
We pick the parameter M* = Q(log® N/ loglog N) according to the
desired approximation ratio. If M < M*, we can find a solution of
value one which is an M*-approximation. Otherwise, we show that
the solution produced via the algorithm is good.

LEMMA 19. If M > M* then the above algorithm runs in time
O(N™) and with high probability produces an M"-pyramid with
M" = Q(MloglogN/log> N) for G.

PROOF. We set H = logN/log(M*/2) as the depth of the un-
folded tree. Since M > M*, Lemma guarantees that there exists
an M’-pyramid in the unfolded tree of depth H for M’ = M /2. The

“In the k-matching problem, we are given a bipartite graph and each
vertex in the first partition is to receive k exclusive vertices from the
second partition. To see that the polytope is indeed integral, note
that one can build a maximum flow instance out of it by adding a
source vertex which is connected to all vertices of the first partition,
and a sink which has edges from all the second partition vertices.
Then, we can put capacity k on the edges going out of the source
and capacity one on all the other edges. Feasibility of the original
k-matching instances leads to existence of a flow that saturates all
the edges out of source.

algorithm clearly runs in time polynomial in N = N' O(H) We also
know that H = O(log N /loglogN) from the choice of M*.

We next show each vertex is good: if selected in the process,
it has enough outgoing edges. By the first set of constraints (9),
the expectation of the number of outgoing edges of such a vertex
is at least M’. A simple application of Chernoff bounds and union
bound shows that since M = Q(logN’), with high probability, say
1 — 1/poly(N’), all nontrivial outdegrees are Q(M).

There are N vertices in G whose indegree we want to bound.
From union bound and Lemma (I7), we get that with probabil-
ity 1 — 1/poly(N), no vertex of G has indegree more than y =
O(logNlogN') = O(Hlog? N) = O(log® N /loglogN).

Having shown that all indegrees are small, we build a fractional
solution to an instance of MaxMin Allocation where all the item
values are 0 and 1; it is indeed a bipartite M”-matching LP, for
M" = Q(M/vy). We just need to divide all the variables by a fac-
tor no more than the indegree upper bound, y. We have a frac-
tional solution of value M”, and the polytope is integral. Thus we
can find an integral solution of the same value, which implies an
M/0(log® N/loglogn)-pyramid for G. [

The following is an immediate corollary. We set M* = @(N?) to
get the polynomial running time or pick M* = ©(log> N/loglog N)
for the polylogarithmic approximation ratio.

THEOREM 20. For any integer t > 1, we can get a
max{Q(log> N /loglogN),2N"/* }-approximation in N°) time. In
particular, we get an Q(log® N /loglog N)-approximation in NO(logn)
time where N = O(n+m).

5. CONCLUSION

We briefly describe extensions to the results in this extended ab-
stract that appear in the full version of the paper [5]. In partial
progress towards the general case, we can extend our results to
more general instances, i.e., NoInfCycle and InfDegreeTwo. The
class of instances NoInfCycle are those whose graphic representa-
tion does not contain a cycle consisting merely of infinity edges.
Here, we have to cope with the subtleties corresponding to the han-
dling of the infinity components. Along the way, we prove a re-
sult about the existence of a perfect matching in a probabilistically
pruned graph. We show that given a fractional matching LP solu-
tion for a bipartite graph in which vertices on one side can have pos-
itive deficiency, deleting vertices with probabilities proportional to
their deficiencies leaves us with a graph admitting a perfect match-
ing. Another nuance is dealing with the event of assigning items
in an infinity component to players outside the component. Play-
ers in the infinity component may no longer be satisfiable with the
remaining items from the component and this may trigger some
of them to seek small items from outside. This is the main point
of departure from our InfDegreeOne algorithm, since these effects
may need to propagate along long chains. The bounded length of
reaction chains is crucial in our InfDegreeOne algorithm. Thus to
extend the results to InfDegreeTwo, we need to deal with this very
issue. We finally show that InfDegreeTwo instances are similar to
NolnfCycle. Were we able to eliminate the infinity cycles in some
way, we could derive the same result for the general case of MaxMin
Allocation, matching the results of [7].

The most important question left open by our work is what we
can do for DegreeThree—the general case. The recent results of
Chakrabarty et al. 7] almost settles this question. It would still be
interesting to see if our ideas can be extended to solve the general
case.

Another interesting question is whether these ideas can be car-
ried over to the MinMax problem. There, the gap between upper

and lower bounds is considerably smaller, yet improving on the
long-standing factor 2 upper bound would be very exciting. It will
also be interesting to gain a better understanding of the Sherali-

Adams lift-and-project LP for MaxMin Allocation.

In particular,

finding a tight integrality gap is a nice direction to pursue.

Getting better approximation ratios and/or running times is an-
other worthwhile direction. As the MaxMinDegree Arborescence
problem seems to capture the essence of the MaxMin Allocation
problem, a better understanding of it could lead to stronger hard-
ness results or better approximation ratios.

6.
(1]

(2]

(3]

(4]
(5]

(6]
(7]

(8]

(9]

[10]

(1]

[12]

[13]

REFERENCES

N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid.
Approximation schemes for scheduling on parallel machines.
Journal of Scheduling, 1(1):55-66, 1998.

A. Asadpour, U. Feige, and A. Saberi. Santa claus meets
hypergraph matchings. In 71th APPROX, pages 10-20, 2008.
A. Asadpour and A. Saberi. An approximation algorithm for
max-min fair allocation of indivisible goods. In 39th STOC,
pages 114-121, 2007.

N. Bansal and M. Sviridenko. The santa claus problem. In
38th STOC, pages 31-40, 2006.

M. Bateni, M. Charikar, and V. Guruswami. New
approximation algorithms for degree lower-bounded
arborescences and max-min allocation. Technical Report
TR-848-09, Computer Science Department, Princeton
University, March 2009.

I. Bezdkovd and V. Dani. Allocating indivisible goods.
SIGecom Exchange, 5(3):11-18, 2005.

D. Chakrabarty, J. Chuzhoy, and S. Khanna. On allocating
goods to maximize fairness. CoRR, abs/0901.0205, 2009.

T. Ebenlendr, M. Krcal, and J. Sgall. Graph balancing: A
special case of scheduling unrelated parallel machines. In
18th SODA, pages 483-490, 2008.

U. Feige. On allocations that maximize fairness. In /8th
SODA, pages 287-293, 2008.

D. Golovin. Max-min fair allocation of indivisible goods.
Technical Report CMU-CS-05-144, School of Computer
Science, Carnegie Mellon University, June 2005.

S. Khot and A. K. Ponnuswami. Approximation algorithms
for the max-min allocation problem. In /0th APPROX, pages
204-217, 2007.

J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation
algorithms for scheduling unrelated parallel machines.
Mathematical Programming, 46:259-271, 1990.

G. J. Woeginger. A polynomial-time approximation scheme
for maximizing the minimum machine completion time.
Operations Research Letters, 20(4):149-154, 1997.

APPENDIX

PROOF OF CLAIM[I8l The proof goes by induction on the height
of the subtree T. For convenience, we define the base case to be a
tree of height 0, where the parent edge of the tree is an edge e such

that x, > 0. For this tree f(T) =

p(T) =x., X(T) is always 1 and

1
X(T
E[e"‘ ()} o 1+74(c+1)10gN"

The base case thus follows from £(T) > 1/N'¢*1,
Consider a subtree T consisting of a root connected to subtrees

Ti,...,

Ty, viaedges ey, . .., e; respectively. Let e be the parent edge

of T. Suppose the inductive hypothesis holds for each subtree 7;,

S(T) < 1

1 f(T)
= 1+ 4(c+1)logN' p(T;) (

log (N1 £(T;))
(c+1)logN" |~

Then, as the X(7;)’s and the selections of ¢;’s conditioned on e

being selected are independent, we get
p(T)

= (- 5m)
- [+ 28 -1

l

H(] +6i)7

1

S(T)

s(1)

IN

with §; defined as

1 Nlctl T
5 - L @) () tes (VAT)
4(c+1)logN' p(T) (c+1)logN'
1 F(T)
2(c+1)logN’ p(T)’
where the last inequality is due to f(7;) < 1. Thus,
1 f(T)
P <
LY S i iogN p(7)
<
= 2(c+1)logN
< 1
- 2
Hence,
[Ta+8) < [l =%<2
Now, by Inequality (T3),
S(T) < 1+ZS +5 (Z 8,]6,2>H 1+3§;)
i1#iy
< 1+ZS +Y &Y 8.
i i'#i
Note that, by Equation (T4),
1 f(T)
1+) &;i=1+
zl." 4(c+1)logN' p(T)
1 .
+ T) log(N"*' £(T3)),
(e 1ogT)y o= T eI (D
and by Inequality (T3),
1 f(Ty)
<
léis’ = 2(c+1)logN Efi p(T)
_ 1 f(T) - /(1)
2(c+1)logN" p(T)
- 1 f(T)]d
~ 2(c+1)logN’ /Jf(n) P
_ 1 f(T)
2c+ 1)logh’ 7Ty’
Hence, by Inequality[T3]
5Y 8 < ! £(1)10g L)

iZi 4(c+1)1og?(N")p(T)

13)

15)

and we get

S(T) < 1+ZS,~+ZS,« Y &

L
= +4(c+11)logN’ Zg;
e Em o
: (10g(N’”“f(Ti)) +log J{E;;)
- ”4(c+11>10g1wﬁ;§
T P iogi @) B e T)
= 1+4(C+11)10gN’ igi (Hlo(gc(flc;lloj;(;f)))'

THEOREM 21. An M-LP solution of value M can be translated
in polynomial time to a Config-LP solution of value M /2.

PROOF. The proof is constructive. First revalue any item of
value > M/2 to M. Consequently, decrease the value of z; by
Zj:p;jZM/Z x;j, and then decrease the x;; to min(z;,x; ;) if p;; <M/2.
It can be easily verified that the new values show a valid M-LP so-
lution and each small item has value at most p™* < M /2.

We leave the assignment of big items unaffected. Take any player
i and its corresponding small items. Ideally, they should build
z; units of small configurations of value M. We show that, com-
promising on the value of configurations to be M — p™*, we can
achieve this task. We restate the set of constraints we need to work
on, and remove unnecessary indices.

Yo pjxj>zM (16)
j

Xj SZ Vj (17)
x; >0 vj. (18)

The algorithm proceeds by creating bundles and reducing x;’s and
z accordingly. At any step, it maintains that the current values of x;
and z are feasible in the above set of equations if z* and x;
are the initial values, we have made at least z* — z units of bundles
where each item j has been used for at most x;‘- —x; units. At each
step, we rename items so that x;’s are nonincreasing. We know
from (T6) and (T7) that the sum of the values of the remaining items
is atleast M; since, otherwise, Y. ; pjxj <Y ;i p; Yy xjy < zM leading
to a contradiction. Let g be the smallest index such that } <, p; >
M. We will do one of the following until z = 0, in which case we
are done.

e If x; # x1, make a bundle out of the first g — 1 items. Use this
bundle for & = min{x,_,x; — x4} units. Decrease concerning
z and the involved x; variables by 8. Notice that & > 0, since
Xg—1 = Xq > 0and x| # x4. The value of this bundle is at least
M — pmax and at most M. So the left-hand side of Inequal-
ity (T6) is reduced by at most 3M which is the decrease in the
right-hand side. By the choice of §, the maximum x; after this
operation is at most x; — 8 < z— §. Hence, Inequality is
still valid after this operation.

e If x, = x|, we say we have a plateau. Let ¢' be the largest
index where x; = x,. In this case, q' > g and we cannot sim-
ply make a bundle out of the first ¢ — 1 items, because then

the maximum x; would not change, whereas this change may
be necessary to keep (I7) satisfied. The trick is to decrease x;
for all variables equal to x| simultaneously.

To this end, we build a balanced collection of bundles which
in total contains each item of our concern (i.e., all items j such
that x; = x) exactly r times. The size of each bundle is at
most M. We then decrease the corresponding x;’s by 8 = x; —
Xg+1; 1.e., we use each configuration for §/r units. We let z =

ﬁ Y. pjx; after this operation. It is easy to see that we make

at least ﬁ Yi<qPj®> 7°1d — 2%°¥ ynits of configuration in this

step. The solution is thus feasible since z > ﬁ Yi<q Pix1 > X1
and x1 is the maximum x; value.

Building the balanced collection of bundles is done as fol-
lows. Take the group of items attaining the same maximum
value. We know that their sum of values is at least M (by
the choice of ¢). Start from the first one and include items
until we make a bundle of value at least M — ppax. Then,
start from the next element and do the same thing (possibly
wrapping around), and so on. We repeat this bundle-making
process until a bundle is repeated. This has to happen because
there would be at most m different bundles formed in such a
process. Then, we can take the collection of bundles from
the first occurrence of this bundle up until (but not including)
its second occurrence. Clearly, each item appears the same
number of times in these bundles. An example is shown in

Figure[d]

Figure 4: Making bundles in case of a plateau: items are put
in a line, and we start from the left and find maximal bundles
of value at most M. Each row in the picture shows one bundle.
Note how each bundle starts after the previous one, and how
we wrap around at the end. Plain (green) bundles (first and
last ones) are discarded. In this example, we end up with 5
bundles and each item is covered exactly twice.

Performing this two-stage procedure, we can form a Config-LP so-
lution from any M-LP solution, provided that we allow configura-
tion values to be as low as M — ppax. Finiteness follows from the
fact that at each step, either some variables go zero, or the number
of variables attaining the maximum goes up. [

So, there will be at most O(m) steps and each step adds at most
m bundles. Thus, the total number of bundles produced for each
player is bounded by O(m?) which is a polynomial.

	Introduction
	Previous work
	Contributions
	Organization

	Preliminaries
	Approximation Algorithm for Degree 2
	Going Beyond the Config-LP
	The MaxMinDegree Arborescence problem
	The algorithm for MaxMinDegree Arborescence

	Conclusion
	References

