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Abstract

Learning an unknown halfspace (also called a perceptron) from labeled examples is one of
the classic problems in machine learning. In the noise-free case, when a halfspace consistent
with all the training examples exists, the problem can be solved in polynomial time using linear
programming. However, under the promise that a halfspace consistent with a fraction (1 − ε)
of the examples exists (for some small constant ε > 0), it was not known how to efficiently find
a halfspace that is correct on even 51% of the examples. Nor was a hardness result that ruled
out getting agreement on more than 99.9% of the examples known.

In this work, we close this gap in our understanding, and prove that even a tiny amount
of worst-case noise makes the problem of learning halfspaces intractable in a strong sense.
Specifically, for arbitrary ε, δ > 0, we prove that given a set of examples-label pairs from the
hypercube a fraction (1 − ε) of which can be explained by a halfspace, it is NP-hard to find a
halfspace that correctly labels a fraction (1/2 + δ) of the examples.

The hardness result is tight since it is trivial to get agreement on 1/2 the examples. In
learning theory parlance, we prove that weak proper agnostic learning of halfspaces is hard.
This settles a question that was raised by Blum et al. in their work on learning halfspaces in the
presence of random classification noise [10], and in some more recent works as well. Along the
way, we also obtain a strong hardness result for another basic computational problem: solving
a linear system over the rationals.

1 Introduction

This work deals with the complexity of two fundamental optimization problems: solving a system
of linear equations over the rationals, and learning a halfspace from labeled examples. Both these
problems are “easy” when a perfect solution exists. If the linear system is satisfiable, then a
satisfying assignment can be found in polynomial time by Gaussian Elimination. If a halfspace
consistent with all the examples exists, then one can be found using linear programming. A natural
question that arises is the following: If no perfect solution exists, but say a solution satisfying 99%
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of the constraints exists, can we find a solution that is nearly as good (say, satisfies 90% of the
constraints)?

This question has been considered for both these problems (and many others), but our focus
here is the case when the instance is near-satisfiable (or only slightly noisy). That is, for arbitrarily
small ε > 0, a solution satisfying at least a fraction (1− ε) of the constraints is promised to exist,
and our goal is to find an assignment satisfying as many constraints as possible. Sometimes, the
problem is relatively easy to solve on near-satisfiable instances — notable examples being the Max
2SAT and Max HornSAT problems. For both of these problems, given a (1−ε)-satisfiable instance,
it is possible to find in polynomial time, an assignment satisfying a fraction 1− f(ε) of the clauses
where f(ε) → 0 as ε → 0 [28, 12]. Our results show that in the case of solving linear systems or
learning halfspaces, we are not so lucky and finding any non-trivial assignment for (1−ε)-satisfiable
instances is NP-hard. We describe the context and related work as well as our results for the two
problems in their respective subsections below.

Before doing that, we would like to stress that for problems admitting a polynomial time
algorithm for satisfiability testing, hardness results of the kind we get, with gap at the right location
(namely completeness 1 − ε for any desired ε > 0), tend to be hard to get. The most celebrated
example in this vein is H̊astad’s influential result [20] which shows that given a (1 − ε)-satisfiable
instance of linear equations modulo a prime p, it is NP-hard to satisfy a fraction (1

p + δ) fraction
of them (note that one can satisfy a fraction 1

p of the equations by simply picking a random
assignment). Recently, Feldman [16] established a result in this vein in the domain of learning
theory. He proved the following strong hardness result for weak-learning monomials: given a set of
example-label pairs a (1− ε) fraction of which can be explained by a monomial, it is hard to find a
monomial that correctly labels a fraction (1/2+δ) of the examples. Whether such a strong negative
result holds for learning halfspaces also, or whether the problem admits a non-trivial weak learning
algorithm is mentioned as a notable open question in [16], and this was also posed by Blum, Frieze,
Kannan, and Vempala [10] almost 10 years ago. In this work, we establish a tight hardness result
for this problem. We prove that given a set of example-label pairs a fraction (1− ε) of which can
be explained by a halfspace, finding a halfspace with agreement better than 1/2 is NP-hard. This
result was also established independently (for real-valued examples) in [17].

1.1 Solving linear systems

We prove the following hardness result for solving noisy linear systems over rationals: For every
ε, δ > 0, given a system of linear equations over Q which is (1− ε)-satisfiable, it is NP-hard to find
an assignment that satisfies more than a fraction δ of the equations. As mentioned above, a result
similar to this was shown by H̊astad [20] for equations over a large finite field. But this does not
seem to directly imply any result over rationals. Our proof is based on a direct reduction from the
Label Cover problem. While by itself quite straightforward, this reduction is a stepping stone to
our more complicated reduction for the problem of learning halfspaces.

The problem of approximating the number of satisfied equations in an unsatisfiable system
of linear equations over Q has been studied in the literature under the label MAX-SATISFY and
strong hardness of approximation results have been shown in [7, 15]. In [15], it is shown that unless
NP ⊂ BPP, for every ε > 0, MAX-SATISFY cannot be approximated within a ratio of n1−ε where
n is the number of equations in the system. (On the algorithmic side, the best approximation

2



algorithm for the problem, due to Halldorsson [19], achieves ratio O(n/ log n)). The starting point
of the reductions in these hardness results is a system that is ρ-satisfiable for some ρ bounded away
from 1 (in the completeness case), and this only worsens when the gap is amplified.

For the related problem of linear equations over integers Z, a strong hardness result follows
easily from H̊astad’s work [20]. Given a system of linear equations of the form x+y−z = r mod p
with the promise that there exists a solution satisfying (1−ε) fraction of the equations, it is NP-hard
to find a solution that satisfies 1

p + ε fraction of the equations. By mapping x+ y − z = r mod p
to x+ y− z−pw = r mod Z, it gives a corresponding NP-hardness result for linear equations over
integers. By choosing a large enough prime p, this reduction implies the following result: Given
a set of linear equations over integers with the promise that there is a solution satisfying (1 − ε)
fraction of equations, it is NP-hard to find one that satisfies more than a δ fraction, for all positive
ε and δ.

For the complementary objective of minimizing the number of unsatisfied equations, a problem
called MIN-UNSATISFY, hardness of approximation within ratio 2log0.99 n is shown in [7] (see also [5]).
In particular, for arbitrarily large constants c, the reduction of Arora et al. [7] shows NP-hardness
of distinguishing between (1 − γ)-satisfiable instances and instances that are at most (1 − cγ)-
satisfiable, for some γ. One can get a hardness result for MAX-SATISFY like ours by applying a
standard gap amplification method to such a result (using a O(1/γ)-fold product construction),
provided γ = Ω(1). However, as presented in [7], the reduction works with γ = o(1). It is not
difficult to modify their reduction to have γ = Ω(1). Our reduction is somewhat different, and
serves as a warm-up for the reduction for learning halfspaces, which we believe puts together an
interesting combination of techniques.

1.2 Halfspace learning

Learning halfspaces (also called perceptrons or linear threshold functions) is one of the oldest prob-
lems in machine learning. Formally, a halfspace on variables x1, . . . , xn is a Boolean function
I[w1x1 + w2x2 + · · ·+ wnxn ≥ θ] for reals w1, . . . , wn, θ (here I[E] is the indicator function for an
event E). For definiteness, let us assume that variables xi are Boolean, that is, we are learning
functions over the hypercube {0, 1}n. In the absence of noise, one can formulate the problem of
learning a halfspace as a linear program and thus solve it in polynomial time. In practice, simple in-
cremental algorithms such as the famous Perceptron Algorithm [1, 25] or the Winnow algorithm [24]
are often used.

Halfspace-based learning algorithms are popular in theory and practice, and are often applied
to labeled exampled sets which are not separable by a halfspace. Therefore, an important question
that arises and has been studied in several previous works is the following: what can one say about
the problem of learning halfspaces in the presence of noisy data that does not obey constraints
induced by an unknown halfspace?

In an important work on this subject, Blum, Frieze, Kannan, and Vempala [10] gave a PAC
learning algorithm for halfspaces in the presence of random classification noise. Here the assumption
is that the examples are generated according to a halfspace, except with a certain probability
η < 1/2, the label of each example is independently flipped. The learning algorithm in [10] outputs
as hypothesis a decision list of halfspaces. Later, Cohen [13] gave a different algorithm for random
classification noise where the output hypothesis is also a halfspace. (Such a learning algorithm
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whose output hypothesis belongs to the concept class being learned is called a proper learner.)
These results applied to PAC learning with respect to arbitrary distributions, but assume a rather
“benign” noise model that can be modeled probabilistically.

For learning in more general noise models, an elegant framework called agnostic learning was
introduced by Kearns et al. [23]. Under agnostic learning, the learner is given access to labeled
examples (x, y) from a fixed distribution D over example-label pairs X × Y . However, there is
no assumption that the labels are generated according to a function from a specific concept class,
namely halfspaces in our case. The goal of the learner is to output a hypothesis h whose accuracy
with respect to the distribution is close to that of the best halfspace — in other words the hypothesis
does nearly as well in labeling the examples as the best halfspace would.

In a recent paper [21], Kalai, Klivans, Mansour and Servedio gave an efficient agnostic learning
algorithm for halfspaces when the marginal DX on the examples is the uniform distribution on the
hypercube or sphere Sn−1, or any log-concave distribution on Rn. For any desired ε > 0, their
algorithm produces a hypothesis h with error rate Pr(x,y)∈D[h(x) 6= y] at most opt + ε if the best
halfspace has error rate opt. Their output hypothesis itself is not a halfspace but rather a higher
degree threshold function.

When the accuracy of the output hypothesis is measured by the fraction of agreements (instead
of disagreements or mistakes), the problem is called co-agnostic learning. The combinatorial core
of co-agnostic learning is the Maximum Agreement problem: Given a collection of example-label
pairs, find the hypothesis from the concept class (a halfspace in our case) that correctly labels the
maximum number of pairs. Indeed, it is well-known that an efficient α-approximation algorithm to
this problem exists iff there is an efficient co-agnostic proper PAC-learning algorithm that produces
a halfspace that has agreement within a factor α of the best halfspace.

The Maximum Agreement for Halfspaces problem, denoted HS-MA, was shown to be NP-hard
to approximate within some constant factor for the {0, 1,−1} domain in [5, 9] (the factor was
261/262 + ε in [5] and 415/418 + ε in [9]). The best known hardness result prior to work was
due to Bshouty and Burroughs [11], who showed an inapproximability factor of 84/85 + ε, and
their result applied even for the {0, 1} domain. For instances where a halfspace consistent with
(1 − ε) of the examples exists (the setting we are interested in), an inapproximability result for
HS-MA was not known for any fixed factor α < 1. For the complementary objective of minimizing
disagreements, hardness of approximating within a ratio 2O(log1−ε n) is known [7, 5]. The problem
of whether an α-approximation algorithm exists for HS-MA for some α > 1/2, i.e., whether a weak
proper agnostic learning algorithm for halfspaces exists, remained open. This question was also
highlighted in Feldman’s recent work [16] which proved that weak agnostic learning of monomials
was hard.

In this paper, we prove that no (1/2 + δ)-approximation algorithm exists for HS-MA for any
δ > 0 unless P = NP. Specifically, for every ε, δ > 0, it is NP-hard to distinguish between instances
of HS-MA where a halfspace agreeing on a (1 − ε) fraction of the example-label pairs exists and
where no halfspace agrees on more than a (1/2+δ) fraction of the example-label pairs. Our hardness
result holds for examples drawn from the hypercube. Our result indicates that for proper learning
of halfspaces in the presence of even small amounts of noise, one needs to make assumptions about
the nature of noise (such as random classification noise studied in [10]) or about the distribution
of the example-label pairs (such as uniform marginal distribution on examples as in [21]).
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A similar hardness result was proved independently by Feldman et al [17] for the case when the
examples are drawn from Rn. In contrast, our proof works when the data points are restricted to
the hypercube {0, 1}n, which is the natural setting for a Boolean function. Much of the complexity
of our reduction stems from ensuring that the examples belong to the hypercube.

2 Preliminaries

The first of the two problems studied in this paper is the following:

Definition 2.1. For constants c, s, satisfying 0 ≤ s ≤ c ≤ 1, LINEQ-MA(c, s) refers to the following
promise problem: Given a set of linear equations over variables X = {x1, . . . , xn}, with coefficients
over Q, distinguish between the following two cases:

• There is an assignment of values to the variables X that satisfies at least a fraction c of the
equations.

• Every assignment satisfies less than a fraction s of the equations.

In the problem of learning a halfspace to represent a Boolean function, the input consists of a set
of positive and negative examples all from the Boolean hypercube. These examples are embedded
in the real n-dimensional space Rn by the natural embedding. The objective is to find a hyperplane
in Rn that separates the positive and the negative examples.

Definition 2.2. Given two disjoint multisets of vectors S+, S− ⊂ {−1, 1}n, a vector a ∈ Rn, and
a threshold θ, the agreement of the halfspace a · v ≥ θ with (S+, S−) is defined to be the quantity

|{v|v ∈ S+, a · v ≥ θ}|+ |{v|v ∈ S−, a · v < θ}| .

where the cardinalities are computed, by counting elements with repetition. In the HS-MA problem,
the goal is to find a, θ such that the halfspace a · v ≥ θ maximizes this agreement.

Notice that there is no loss of generality in assuming the embedding to be {−1, 1}n. Our
hardness results translate to other embeddings as well, because the learning problem in the {−1, 1}n
embedding can be shown to be equivalent to the learning problem on most natural embeddings
such as {0, 1}n. Further, our hardness result holds even if both the inequalities {≥, <} are replaced
by strict inequalities {>,<}.

To study the hardness of approximating HS-MA, we define the following promise problem:

Definition 2.3. For constants c, s satisfying 0 ≤ s ≤ c ≤ 1, define HS-MA(c, s) to be the following
promise problem: Given multisets of positive and negative examples S+, S− ⊂ {−1, 1}n distinguish
between the following two cases:

• There is a halfspace a · v ≥ θ that has agreement at least c|S+ ∪ S−| with (S+, S−).

• Every halfspace has agreement less than s|S+ ∪ S−| with (S+, S−).

The hardness results in this paper are obtained by reductions from the Label Cover promise
problem defined below.
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Definition 2.4. An instance of LABELCOVER(c, s) represented as Γ = (U, V,E,Σ,Π) consists of
a bipartite graph over node sets U ,V with the edges E between them, such that all nodes in U are
of the same degree. Also part of the instance is a set of labels Σ, and a set of mappings πe : Σ→ Σ
for each edge e ∈ E. An assignment A of labels to vertices is said to satisfy an edge e = (u, v), if
πe(A(u)) = A(v). The problem is to distinguish between the following two cases:

• There exists an assignment A that satisfies at least a fraction c of the edge constraints Π.

• Every assignment satisfies less than a fraction s of the constraints in Π.

The reductions in this paper use the following inapproximability result for Label Cover.

Theorem 2.5. [27, 8] There exists an absolute constant γ > 0 such that for all large enough integer
constants R, the gap problem LABELCOVER(1, 1

Rγ ) is NP-hard, even when the input is restricted
to label cover instances with the size of the alphabet |Σ| = R.

From the PCP theorem [8], it is easy to show that there exists an absolute constant ε such that
LABELCOVER(1, 1 − ε) is NP-hard on instances where the size of alphabet |Σ| is restricted to a
small absolute constant (say 7). With this as the starting point, one applies the Parallel Repetition
theorem [27] to obtain hardness of label cover instances over larger alphabet. On applying k-wise
parallel repetition, the 1 vs 1− ε gap is amplified to 1 vs ck for some absolute constant c, while the
alphabet size also grows exponentially in k. This yields the above inapproximability result with
the required polynomial dependence between the alphabet size R and the soundness 1

Rγ .

Throughout this paper, we use the letter E to denote a linear equation/function, with coefficients
{0, 1,−1}. For a linear function E, we use V (E) to denote the set of variables with non-zero
coefficients in E. We shall refer to |V (E)| as the arity of E. Further, the evaluation E(A) for
an assignment A of real values to the variables is the real value obtained on substituting the
assignment in the equation E. Hence an assignment A satisfies the equation E = 0 if E(A) = 0.
For the purposes of the proof, we make the following definitions.

Definition 2.6. An equation tuple T consists of a set of linear equations E1, . . . , Ek and a linear
function E called the scaling factor.

Definition 2.7. A tuple T = ({E1, E2, . . . , Ek}, E) is said to be disjoint if the sets of variables
V (Ei), 1 ≤ i ≤ k, and V (E) are all pairwise disjoint.

Definition 2.8. An assignment A is said to satisfy an equation tuple T = ({E1, . . . , Ek}, E), if
the scaling factor is positive, i.e., E(A) > 0, and for every i, 1 ≤ i ≤ k, Ei(A) = 0. For β ≥ 0, an
assignment A is said to β-satisfy an equation Ei if |Ei(A)| ≤ β · |E(A)|. An assignment is said to
β-satisfy the tuple T if it β-satisfies all the equations {E1, . . . , Ek} and the scaling factor E(A) > 0.
Note that 0-satisfying an equation tuple is the same as satisfying it.

Definition 2.9. An assignment A is said to be C-close to β-satisfying an equation tuple T =
({E1, . . . , Ek}, E), if E(A) > 0 and |Ei(A)| > β|E(A)| for at most C values of i, 1 ≤ i ≤ k.
An assignment is said to be C-far from β-satisfying an equation tuple T if it is not C-close to
β-satisfying T .
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3 Overview of the Proof

Both the hardness results are obtained through a reduction from the Label Cover problem. Let us
fix a Label Cover instance Γ over the set of labels {1, . . . , R}.

Observe that the HS-MA problem amounts to finding an assignment satisfying the maximum
number of a set of homogeneous linear inequalities (see Definition 2.2). Specifically, each example
v ∈ S+ ∪ S− yields a homogeneous linear inequality a · v ≥ θ or a · v < θ in the variables a ∈ Rn

and θ. Although θ is permitted to take any real value, let us fix θ = 0 for the sake of exposition.

The HS-MA problem is closely tied to solving systems of linear equations over reals. Given a
homogeneous linear equation a · v = 0 over variables a = (a1, . . . , an), it can be encoded as two
linear inequalities,

a · v + δ ≥ 0 and a · v − δ < 0.

For the moment, let us suppose that δ is a variable forced to be a very small positive real number.
An assignment to a satisfies both inequalities if and only if a · v ∈ [−δ, δ]. In other words, an
assignment satisfies either two or one inequality depending on whether the equation (a · v = 0)
is approximately satisfied or not. Roughly speaking, using the above reduction, an NP-hardness
result for LINEQ-MA(c, s) should translate in to an NP-hardness result for HS-MA(1+c

2 , 1+s
2 ). In this

light, a natural approach would be encode the label cover instance as systems of linear equations,
and use this encoding to obtain NP-hardness results for both LINEQ-MA and HS-MA problems.

However, implementing the outlined reduction from Label Cover to HS-MA poses considerable
difficulties. For the above reduction from homogeneous linear equations to HS-MA, we need an
NP-hardness of distinguishing between perfectly satisfiable equations, and equations that do not
admit even an approximate solution. Further, in the above reduction, we used a variable δ taking
only small positive real values. In a general HS-MA problem, no such constraint can be forced on
the variables. More importantly, notice that all the examples v ∈ S+ ∪ S− in HS-MA are required
to be vectors in {−1, 1}n. Thus every coefficient in the system of homogeneous linear equations
must take values either −1 or 1.

We shall refer to homogeneous linear systems as equation tuples. Specifically, an equation tuple
T consists of a system of homogeneous linear equations {E1, E2, . . . , Ek} and a “scaling factor” E.
Note that a solution to homogeneous linear system can be scaled to obtain a new solution. Hence
the quality of an approximate solution is to be measured in terms of relative error, rather than
absolute value of the error. The scaling factor E associated with the tuple T serves this purpose
(see Definition 2.8).

The proof of hardness of HS-MA proceeds in three stages as described below. In the first stage,
we reduce the Label Cover instance Γ to systems of homogeneous linear equations. More precisely,
starting with the instance Γ, Verifier I generates a set of equation tuples T such that:

• If Γ is satisfiable then there is an assignment A that satisfies all the equation tuples in T .

• If Γ is an unsatisfiable instance of Label Cover, then every assignment A fails to satisfy most
of the equation tuples even approximately. Specifically, every assignment A can β-satisfy only
a tiny fraction of the tuples in T .
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The set of equation tuples T is generated as follows. For each vertex u of the Label Cover instance
Γ, we introduce R variables {u1, . . . , uR} which indicate the label assigned to vertex u, that is, ui is
1 if and only if u is assigned label i. The edge constraints in Γ can be translated to linear equations
over the variables {ui}. As each vertex u is assigned one of R labels, only one of the variables
u1, . . . , uR is non-zero in the intended solution. In other words, the intended solution is “sparse”.
Towards enforcing sparsity, Verifier I introduces constraints ui = 0 for randomly chosen variables
ui. The set T of equation tuples consists of all the tuples output by Verifier I over all its random
choices.

Fix an equation tuple T = ({E1, E2, . . . , Ek}, E). Consider the following set of 2k+1 inequalities
obtained by ±1 combinations of the equations Ei.

k∑
i=1

wiEi + E ≥ 0 and
k∑
i=1

wiEi − E < 0 for all w ∈ {−1, 1}k.

Given an assignment A, for any w ∈ {−1, 1}k, both the inequalities corresponding to w are satisfied
only if

∑
iwiEi(A) ∈ [−E(A), E(A)]. In the completeness analysis, if all equations are satisfied, i.e.,

evaluate to 0 on A, then any ±1 combination also vanishes, and in turn belongs to [−E(A), E(A)].
Turning to soundness analysis, if the assignment A does not satisfy many equations Ei even approx-
imately, then by definition, many of the values Ei(A) are large in comparison to the scaling factor
E(A). Intuitively, a random ±1 combination of large numbers(Ei(A)) is small(∈ [−E(A), E(A)])
with very low probability. Thus if the assignment A does not satisfy almost all equations Ei approx-
imately, then for almost all w ∈ {−1, 1}k, it satisfies only one of the two inequalities. Conversely,
if the assignment A satisfies more than 1

2 of the inequalities, it must satisfy almost all equations in
T approximately.

Roughly speaking, the argument in the preceding paragraph already yields a reduction from
equation tuples to HS-MA. However, there are two key issues, that are addressed in the next two
stages of the reduction : Verifier II and Verifier III.

Firstly, the equation tuples T need not be disjoint, i.e., different equations Ei can share variables.
Hence the coefficients of variables in the ±1 combination

∑
iwiEi could take values outside {−1, 1}.

Since all the inequalities in HS-MA are required to contain only {−1, 1} coefficients, we address
this issue in the second stage (Verifier II). More precisely, Verifier II takes as input the set T and
creates a set of equation tuples T ′. The tuples in T ′ are disjoint, they are all over the same set
of variables, and each variable appears in exactly one equation of every tuple. Further, in the
soundness case, almost all tuples are at least C-far from being β-satisfied. Verifier II thus plays two
roles: (i) it makes the equations in each tuple have disjoint support, and (ii) in the soundness case,
every assignment not just fails to β-satisfy most of the tuples, but is in fact C-far from β-satisfying
most of the tuples. Both these facts are exploited by Verifier III in the third stage.

The number of inequalities produced by picking all ±1 combinations of equations E1, . . . , Ek
is exponential in k. As k = Ω(n), this would make the running time of the reduction exponential.
In the third stage (Verifier III), we will present a carefully chosen polynomial sized sample space
of ±1 combinations which is sufficient to perform the soundness analysis. More formally, given a
tuple T and an assignment A, Verifier III distinguishes (by checking suitable inequalities) between
the cases when an assignment A satisfies a tuple T and when it is C-far from β-satisfying T .

The equation tuples T ∈ T ′ generated by Verifier II are given as input to Verifier III. Since the
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tuples in T are disjoint, the resulting inequalities have all the variables with coefficients {−1, 1}.
Further the inequalities generated by Verifier III are designed to have a common variable (a thresh-
old θ) on the right hand side. Hence the inequalities generated by the combined verifier (the three
stages) correspond naturally to training examples in the learning problem.

To show NP-hardness for LINEQ-MA, the set of tuples T output by Verifier I are rather easily
converted in to a set of equations. This is achieved by creating several equations for each equation
tuple T ∈ T , such that a large fraction of these are satisfied if and only if T is satisfied. The details
of this conversion are described in Section 5.

4 Verifier I

Let Γ = (U, V,E,Σ,Π) be an instance of Label Cover with |Σ| = R. This verifier produces a set of
equation tuples, which form input to the next stage in the reduction (Verifier II). For each vertex
u ∈ U ∪ V , the equation tuples have variables {u1, . . . , uR} taking values in Q. The solution that
we are targeting is an encoding of the assignment to the Label Cover instance. So if a vertex u is
assigned the label i by an assignment A, then we want ui = 1 and uj = 0 for j 6= i, 1 ≤ j ≤ R.
We construct an equation tuple for every t-tuple of variables corresponding to vertices in U , for a
suitable parameter t that will be chosen shortly.

Let W denote the set of variables W = {ui|u ∈ U, 1 ≤ i ≤ R}.
For each t-tuple X of variables from W , construct the equation tuple T as follows:

• P1: For every pair of vertices u, v ∈ U ∪ V , an equation,

R∑
i=1

ui −
R∑
j=1

vj = 0.

• P2: For each edge e = (u, v) ∈ E, the Label Cover constraints for the edge,( ∑
j∈π−1

e (i)

uj

)
− vi = 0, for all 1 ≤ i ≤ R.

• P3: For each variable w ∈ X,
w = 0.

• The scaling factor is P4:
∑R

i=1 ui for an arbitrary fixed vertex u ∈ U ∪ V .

Output the tuple T = (P1 ∪ P2 ∪ P3,P4).

Theorem 4.1. For every 0 < δ1, ε1, γ < 1, there exists sufficiently large R, t such that if Γ =
(U, V,E,Σ,Π) is an instance of Label Cover with |Σ| = R, then with the choice of β1 = 1

R3 the
following holds:

• If Γ is satisfiable, then there is an assignment A that satisfies at least 1 − ε1 fraction of the
output tuples.

9



• If no assignment to Γ satisfies a fraction 1
Rγ of the edges, then every assignment A β1-satisfies

less than a fraction δ1 of the output tuples.

Proof. Let us choose parameters c0 = ln(1/δ1) and t = 4c0R
1−γ , for R = (4c0

ε1
)1/γ . We present the

completeness and soundness arguments in turn.

Completeness: Given an assignment A to the Label Cover instance that satisfies all the edges, let
A denote the corresponding integer solution. Clearly, the integer solution A satisfies:

• All equations in P1 and P2.

•
(
1− 1

R

)
fraction of the equations in the set: {w = 0|w ∈W}.

Since t equations of the form w = 0 are present in each tuple, the assignment A satisfies at least(
1− 1

R

)t of the tuples. By the choice of parameters R and t, we have
(
1− 1

R

)t
> 1− t

R = 1− ε1.

Soundness: Suppose there is an assignment A that β1-satisfies at least a fraction δ1 of the tuples
generated. Clearly A must β1-satisfy all the equations P1 and P2, since they are common to all
the tuples. Further by definition of β1-satisfaction, the scaling factor P4(A) > 0. Normalize the
assignment A such that the scaling factor P4 is equal to 1. As all the equations in P1 are β1-satisfied,
we get

1− β1 ≤
R∑
i=1

vi ≤ 1 + β1, for all v ∈ U ∪ V. (1)

Further, we claim that the assignment A β1-satisfies at least a fraction (1 − c0
t ) of the equations

of the form w = 0 for w ∈ W . Otherwise, with t of these equations belonging to every tuple, less
than (1− c0

t )t < δ1 tuples will be β1-satisfied by A. Recall that all vertices in U have same degree.
Hence by an averaging argument, for at least half the edges e = (u, v), at least a (1− 2c0

t ) fraction
of the constraints ui = 0 are β1-satisfied. Let us call these edges good.

For every vertex, define the set of labels Pos as follows,

Pos(u) =

{
{i ∈ Σ | ui ≥ 8β1} if u ∈ U,
{i ∈ Σ | ui ≥ 8β1(R+ 1)} if u ∈ V.

The set Pos(w) is non-empty for each vertex w ∈ U ∪V , because otherwise
∑R

i=1wi < 8β1(R+ 1) ·
R ≤ 1− β1, a contradiction to (1). Further if e = (u, v) is a good edge then for at least a fraction
1− 2c0

t of the labels 1 ≤ i ≤ R, we have ui ≤ β1. Hence |Pos(u)| ≤ (2c0
t )R = Rγ

2 . Further, since all
the constraints P2 are β1-satisfied, we know that∑

i∈π−1
e (j)

ui − vj ≤ β1.

Thus for every label, j ∈ Pos(v), there is at least one label i ∈ Pos(u) such that πe(i) = j. For
every vertex w ∈ U ∪ V , assign a label chosen uniformly at random from Pos(w). For any good
edge e = (u, v), the probability that the constraint πe is satisfied is at least 1

|Pos(u)| ≥
2
Rγ . Since at

least half of the edges are good, this shows that there is an assignment to the Label Cover instance
that satisfies at least a fraction 1/Rγ of the edges.
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5 Linear equations over Rationals

Theorem 5.1. For all ε, δ > 0, the problem LINEQ-MA(1− ε, δ) is NP-hard.

Proof. The result is obtained by a simple reduction that converts each equation tuple generated
by Verifier I in to a set of equations. In fact, the notion of β-satisfiability is not necessary for the
following proof. The crucial ingredient in the proof is the following well known fact about univariate
polynomials:

Fact 5.2. A real univariate polynomial of degree at most n that is not identically zero has at most
n real roots.

Given a Label Cover instance Γ, the reduction analyzed in Theorem 4.1 is applied with ε1 = ε,
δ1 = δ

2 to obtain a set of equation tuples T . From T , a set of equations over Q is obtained as
follows:

For each tuple T = ({E1, . . . , En}, E) ∈ T , include the following set of equations :

E1 + y · E2 + . . .+ yn−1En + yn(E − 1) = 0,

for all values of y = 1, 2, . . . , t, where t = (n+1)
δ1

.

Completeness: Observe that if Γ is satisfiable then the corresponding assignment A has a scaling
factor E(A) = 1. Further for every equation tuple T that is satisfied by A, we have Ei(A) = 0 for
all 1 ≤ i ≤ n. Hence the assignment A satisfies at least (1− ε) fraction of the equations.

Soundness: Suppose there is an assignment A that satisfies at least a fraction δ = 2δ1 of the
equations. Hence for at least δ1 fraction of the tuples, at least δ1 fraction of the equations are
satisfied. Let us refer to these tuples as nice.

For an equation tuple T = ({E1, . . . , En}, E), consider the polynomial p of degree at most n
given by

p(y) = E1(A) + y · E2(A) + . . .+ yn−1En(A) + yn(E(A)− 1).

By Fact 5.2, the polynomial p has at most n real roots unless it is identically zero. Further the
polynomial p is identically zero if and only if the tuple T is completely satisfied. Hence if the tuple
T is not completely satisfied by A, then at most n

t < δ1 fraction of the equations corresponding
to T can be satisfied. Thus every nice tuple T is completely satisfied by A. So the assignment A
satisfies at least a fraction δ1 of the tuples.

The coefficients of variables in the above reduction could be exponential in n (their binary
representation could use polynomially many bits). Using an alternate reduction, we can prove a
similar hardness even if all the coefficients are integers bounded by a constant depending only on
ε, δ - thus requiring only constant number of bits per coefficient. Moreover the arity of all the
equations (i.e., the number of variables with a nonzero coefficient) can be restricted to a constant.
The proof of the following theorem is presented in Appendix A.

Theorem 5.3. For any constants ε, δ > 0, there exist B, b > 0 such that LINEQ-MA(1 − ε, δ) is
NP-hard even on linear systems where each equation has arity at most b and all coefficients are
integers bounded in absolute value by B.

11



Using a different approach, the above result has been improved in [18] to linear systems where
each equation has arity at most 3, all the coefficients are {+1,−1} and all the constants are bounded.

6 Verifier II

The main ideas in the construction of the second verifier are described below.

To obtain halfspace examples on the hypercube {−1, 1}n, our reduction requires that the equa-
tion tuples T are disjoint. But the equation tuples T output by Verifier I are not disjoint, i.e.,
there are variables that occur in more than one equation in T . This problem can be solved by
using multiple copies of each variable, and using different copies for different equations. However,
it is important to ensure that the different copies of the variables are consistent. To ensure this the
verifier does the following: it has a very large number of copies of each variable in comparison to
the number of equations. The equations of the tuple T are checked on a very small number of the
copies. On all the copies that are not used for equations in T , the verifier checks pairwise equality.
Any given copy of a variable is used to check an equation in T for only a very small fraction of cases.
For most random choices of Verifier II, the copy of the variable is used for consistency checking.
This way most of the copies are ensured to be consistent with each other.

The pairwise consistency checks made between the copies must also satisfy the disjointness
property. So the verifier picks a matching at random, and performs pairwise equality checks on
the matching. It can be shown that even if there are a small number of bad copies, they will get
detected by the matching with high probability.

If a single equation is unsatisfied in T , at least C equations need to be unsatisfied on the
output tuple. This is easily ensured by checking each equation in T on many different copies of
the variables. As all the copies are consistent with each other, if one equation is unsatisfied in T a
large number of equations in the output tuple will be unsatisfied.

Let us say the tuple T consists of equations {E1, . . . , Em} and a scaling factor E over variables
{u1, . . . , un}. Let us denote by n0 the maximum arity of an equation in T . We use superscripts
to identify different copies of the variables. Thus u(j)

i refers to the variable corresponding to jth

copy of the variable ui. Further for an equation/linear function E, the notation E(j) refers to the
equation E over the jth copies of variables V (E). By the notation Mi(j, k), we refer to the following
pairwise equality check:

Mi(j, k) : u
(j)
i − u

(k)
i = 0.

Let M,P be parameters which are even integers. The set of variables used by Verifier II consists of

• M copies for variables not in V (E),

• M + 1 copies of variables in V (E).

Given an equation tuple T = ({E1, E2, . . . , Er}, E), Verifier II checks each of the r equations
Ei on P copies of the variables. On the remaining copies, the verifier performs a set of pairwise
equality checks. We now define family of pseudorandom permutations that we will use in Verifier
II.

Definition 6.1. Two distributions D1, D2 over a finite set Ω are said to be η-close to each other
if the variation distance ‖D1 −D2‖ = 1

2

∑
ω∈Ω |D1(ω)−D2(ω)| is at most η.

12



Definition 6.2. A multiset of permutations Π of {1 . . .M} is said to be k-wise η-dependent if for
every k-tuple of distinct elements (x1, . . . , xk) ∈ {1 . . .M}, the distribution (f(x1), f(x2), . . . , f(xk))
for f ∈ Π chosen uniformly at random is η-close to the uniform distribution on k-tuples.

Let Π denote a set of 4-wise η-dependent permutations of {1, . . . ,M}. Explicit constructions

of such families of permutations of size polynomial in M (specifically
(
M
η

)O(1)
) are known, see

[26, 22].

Verifier II takes as input the set of equation tuples T generated by Verifier I. The details of
Verifier II are described below.

For each equation tuple T = ({E1, E2, . . . , Er}, E) ∈ T ,
For each s ∈ {1, . . . ,M + 1}, and a permutation π in a set Π of 4-wise η-dependent permu-
tations,

• Choose E(s) as the scaling factor. Re-number the remaining M copies of V (E) with
{1, . . . ,M} arbitrarily. Specifically, we shall index the set {E(i)|i 6= s, 1 ≤ i ≤M + 1}
with the set {1, . . . ,M}.
• Construct sets of equations P and M as follows:

P = {E(π(j))
` |1 ≤ ` ≤ r, P (`− 1) + 1 ≤ j ≤ P`},

M = {Mi(π(j), π(j + 1))|u(π(j))
i /∈ V (P), j odd}.

• Output the tuple (P ∪M, E(s)).

Theorem 6.3. For all 1 > ε2, δ2 > 0 and positive integers C, n0, there exists constants M,P, η
such that: Given a set of equation tuples T of which each tuple is of arity at most n0 and has the
same scaling factor E, the following holds:

• If an assignment A, satisfies a fraction 1 − ε2 of the tuples T ∈ T then there exists an
assignment A′ which satisfies a fraction 1− ε2 of the tuples output by the verifier.

• If no assignment β1-satisfies a fraction δ2
2 of the tuples T ∈ T , then no assignment A′ is

C-close to β = β1

9n0
-satisfying a fraction δ2 of the output tuples.

Proof. Fix the parameters M,P, η, C0 as follows,

C0 = dmax(8C, 8/δ2)e+ 1, (2)

P =
⌈

9n0

(
C +

1
δ2

)⌉
, (3)

M =
⌈

40PrC0

δ2

⌉
+ 1, (4)

η =
δ2

64C0
. (5)

The completeness proof is clear, since an assignment A′ consisting of several copies of A satisfies
the exact same tuples that A satisfies.
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Suppose an assignment A′ is C-close to β-satisfying a δ2-fraction of the output tuples. Then
for at least a fraction δ2

2 choices of input tuple T ∈ T , at least a fraction δ2
2 of the output tuples

corresponding to T are C-close to being β-satisfied by A′. Let us call these input tuples T good. For
a good tuple T , there are at least δ2

4 fraction of choices of s for which with probability more than
δ2
4 over the choice of permutation π, the output tuple is C-close to being β-satisfied (by A′). These
values of s (and the associated copy of the scaling factor E(s)) are said to be nice with respect to
T .

Lemma 6.4. Let E(s) be a nice scaling factor of T . Then, for every equation E` ∈ T , there exist
at least P − C values of j for which |E(j)

` (A′)| ≤ β|E(s)(A′)|.

Proof. Since E(s) is a nice scaling factor, for at least one permutation π ∈ Π, the assignment A′

is C-close to β-satisfying the generated tuple. Since each equation E` is checked on P different
copies, at least P − C of the copies must be β-satisfied by A′.

Lemma 6.5. For C0 = dmax(8C, 8/δ2)e+ 1, the following holds: Let E(s) be a scaling factor that
is nice with respect to some good tuple T . For every variable ui that occurs in the equations of
T (including E), all but C0 of copies of ui are 2β|E(s)(A′)| close to each other, i.e., |A′(u(j1)

i ) −
A′(u(j2)

i )| ≤ 2β|E(s)(A′)| for all j1, j2 ∈M ′ for a set M ′ with |{1, . . . ,M} −M ′| ≤ C0.

Proof. As E(s) is a nice scaling factor with respect to T , for at least a fraction δ2
4 choices of π ∈ Π

the assignment A′ is C-close to β-satisfying the output tuple P ∪M. In particular, this means that
with probability at least δ2

4 , at most C of the consistency checks in M fail to be β-satisfied.

Define a copy u
(j)
i to be far from u

(j1)
i if |A′(u(j)

i ) − A′(u(j1)
i )| > β|E(s)(A′)|. We define a

copy u
(j)
i to be bad, if it is far from at least M/2 other copies. Suppose there are more than C0

bad copies of the variable ui. For notational convenience, we can assume that the first C0 copies
{u(1)

i , u
(2)
i , . . . , u

(C0)
i } are bad. We will prove below that with high probability over the choice of

π ∈ Π, at least 2C + 1 of these bad copies will be involved in checks in M that are not β-satisfied.
This will in turn imply that more than C of the checks in M are not β-satisfied.

Observe that for every variable ui, at most Pr of its copies are used in equations in P. Further,
for a uniformly random permutation, the probability that (the index of) a fixed bad copy is the
image of a fixed j ∈ {1, . . . ,M} is 1

M . Hence the probability that a fixed bad copy is used for
an equation in P is at most Pr

M . Since Π is η-dependent, the probability that one of the C0 bad
copies u(j)

i , 1 ≤ j ≤ C0, is used for some equation in P is at most C0(PrM + η). So, except with this
probability, all bad copies are assigned to consistency checks in M.

A bad copy u(j)
i , 1 ≤ j ≤ C0 fails to β-satisfy a check inM whenever a far copy is mapped next

to it by the permutation π. Formally, let ` be such that j = π(`). The variable u(j)
i will fail a check

inM if either ` is even and u(π(`)−1)
i is far from u

(j)
i or if ` is odd and u(π(`)+1)

i is far from u
(j)
i . Let

Zj , 1 ≤ j ≤ C0 be the 0, 1 random variable indicating the event that a far copy is mapped next to
u

(j)
i by the permutation. We shall estimate the values of Eπ∈Π[Zj ] and Eπ∈Π[Zj1Zj2 ] for different

values of j, j1, j2.

Let Fj denote the set of j0, such that u(j0)
i is far from u

(j)
i . Let ` be such that j = π(`). Then
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for each j, 1 ≤ j ≤ C0 we have

E
π∈Π

[Zj ] =
1
2

Pr
π∈Π

[Zj = 1|` is odd] +
1
2

Pr
π∈Π

[Zj = 1|` is even] ≥
(1

2
+

1
2

)( |Fj |
M − 1

− η
)
≥ 1

3
.

Further for 1 ≤ j1 < j2 ≤ C0,

E
π∈Π

[Zj1Zj2 ] = Pr
π∈Π

[Zj2 = 1, Zj1 = 1].

To estimate Prπ∈Π[Zj2 = 1, Zj1 = 1], we first estimate Pr[Zj2 = 1, Zj1 = 1] where the probability
is over a uniformly random permutation π. Let l be such that π(l) = j1. We shall estimate
Pr[Zj2 = 1, Zj1 = 1] conditioned on l being odd, the other case follows along similar lines. There
are two cases:

Case 1 : π(l + 1) = j2.
This happens with probability 1

M−1 , and further in this case Zj1 = 1 implies Zj2 = 1.

Case 2: π(l + 1) 6= j2.
Let π(l′) = j2 for some l′ 6= l + 1. Given that u(j1)

i is mapped next to one of its far copies, there
are M − 3 choices for π(l′ + 1). Hence the probability that a far copy is mapped next to u(j2)

i is at
most |Fj2 |M−3 .

Hence,

Pr[Zj2 = 1|Zj1 = 1] ≤ 1
M − 1

+
(
M − 2
M − 1

)
· |Fj2 |
M − 3

,

≤ |Fj2 |+ 1
M − 3

.

Pr[Zj2 = 1, Zj1 = 1] ≤ |Fj1 |
M − 1

· |Fj2 |+ 1
M − 3

,

≤ |Fj1 ||Fj2 |
(M − 1)2

+
3

M − 3
.

Since Π is a 4-wise η-dependent family we get,

E
π∈Π

[Zj1Zj2 ] = Pr
π∈Π

[Zj2 = 1, Zj1 = 1],

≤ Pr[Zj2 = 1, Zj1 = 1] + η,

≤ |Fj1 ||Fj2 |
(M − 1)2

+
3

M − 3
+ η,

≤
(
|Fj1 |
M − 1

− η
)(

|Fj2 |
M − 1

− η
)

+
3

M − 3
+ 3η,

≤ E
π∈Π

[Zj1 ] E
π∈Π

[Zj2 ] +
3

M − 3
+ 3η.

Define the random variable X to be
∑C0

i=1 Zi. Then,

E
π∈Π

[X] =
C0∑
i=1

E
π∈Π

[Zi] ≥
C0

3
.
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The variance σ2 is given by

σ2 = E
π∈Π

[X2]− ( E
π∈Π

[X])2

=
C0∑
j1=1

(
E
π∈Π

[Z2
j1 ]− ( E

π∈Π
[Zj1 ])2

)
+

C0∑
j1=1

C0∑
j2 6=j1

(
E
π∈Π

[Zj1Zj2 ]− E
π∈Π

[Zj1 ] E
π∈Π

[Zj2 ]
)

≤ C0 + 2
(
C0

2

)(
3

M − 3
+ 3η

)
.

Therefore σ2 < 2C0, for M, 1
η sufficiently large compared to C0. Using Chebyshev’s inequality, it

follows that

Pr[X ≤ 2C] ≤ 2C0

(C0
3 − 2C)2

.

Putting these facts together, it follows that the probability over the choice of π ∈ Π (once a nice
value of s is picked) that at most C of the consistency checks inM fail to be β-satisfied is at most

C0

(
Pr

M
+ η

)
+

2C0

(C0
2 − 2C)2

<
δ2

4
,

by the choice of parameters M,C0 and η. This contradicts the niceness of the scaling factor E(s).

It must thus be the case that at most C0 copies of the variable ui are bad. Now if neither of the
copies u(j1)

i and u
(j2)
i are bad, then both A′(u(j1)

i ) and A′(u(j2)
i ) are within β|E(s)(A′)| of the the

value assigned by A′ to more than half the copies of ui. This implies that they must themselves
be within 2β|E(s)(A′)| of each other. Thus all but C0 copies of ui are 2β|E(s)(A′)| close to each
other.

Returning to the proof of Theorem 6.3, fix T ∗ to be an arbitrary good tuple. Define s0 to
be its nice value for which the corresponding scaling factor E(s0)(A′) has the smallest absolute
value. (Note that E(s)(A) > 0 for every scaling factor E(s) that is nice with respect to T ∗, hence
E(s0)(A′) > 0.) From Lemma 6.5, we know that all but C0 of the copies of every variable are
2β|E(s0)(A′)| close to each other. Delete all the bad copies (at most C0) of each variable. Further,
delete all the variables in V (E(s0)). Now define an assignment A as follows: The value of A(ui) is
the average of all the copies of ui that have survived the deletion. We claim that the assignment
A β1-satisfies all the good tuples T ′ ∈ T .

Observe that the arity of scaling factor E is at most n0, and at most C0 + 1 copies of each
variable are deleted. Since there are at least δ2

4 M nice scaling factors and δ2
4 M > n0(C0 + 1), there

exists a nice scaling factor E(s1) of T ∗ such that no variable of V (E(s1)) is deleted. Further by
definition of s0, |E(s1)(A′)| ≥ |E(s0)(A′)|.

From Lemma 6.5, for the average assignment A and any undeleted variable u(j)
i occurring in an

equation of T ∗, we have

|A(ui)−A′(u(j)
i )| ≤ 2β|E(s0)(A′)| ≤ 2β|E(s1)(A′)|. (6)
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In particular, A(ui) ≥ A′(u(s1)
i ) − 2β|E(s1)(A′)|. Using this for each of the variables in V (E(s1)),

we get
|E(A)| ≥ (1− 2β|V (E(s1))|)|E(s1)(A′)| ≥ (1− 2βn0)|E(s1)(A′)|.

Substituting back in (6), we get

|A(ui)−A′(u(j)
i )| ≤ 2β

(1− 2βn0)
|E(A)| ≤ 4β|E(A)|. (7)

Consider any good tuple T ′ ∈ T . The same argument used for T ∗ shows that there exists a scaling
factor E(j0) that is nice with respect to T ′ and none of whose variables have been deleted. Using
Equation (7) for variables u(j0)

i ∈ V (E(j0)), we have A′(u(j0)
i ) ≤ A(ui) + 4β|E(A)|. Thus,

|E(j0)(A′)| ≤ |E(A)|+ 4β · n0|E(A)|. (8)

Using Lemma 6.4, and the fact P − C > n0C0, we can conclude for every equation E` ∈ T ′, there
exists j1 such that |E(j1)

` (A′)| ≤ β|E(j0)(A′)|, and no variable of V (E(j1)
` ) is deleted. Similar to (8)

we get
|E`(A)| ≤ |E(j1)

` (A′)|+ 4β · n0|E(A)|.

Therefore,

|E`(A)| ≤ (β + 4β2n0 + 4βn0)|E(A)| ≤ 9βn0|E(A)| = β1|E(A)|,

implying that the assignment A β1-satisfies the tuple T ′. Hence the assignment A β1-satisfies all the
good tuples. Recalling that at least a fraction δ2/2 of the tuples are good, the result of Theorem 6.3
follows.

7 Verifier III

Given a equation tuple T = ({E1, . . . , En};E), Verifier III checks whether the assignment A satisfies
T or is not even C-close to β-satisfying T . Towards this, we define the following notation: For a
tuple of equations E = (E1, . . . , En), and a vector v ∈ {−1, 1}n, define E · v =

∑n
i=1 viEi.

Let Vi for an integer i, denote a 4-wise independent subset of {−1, 1}i. Polynomial size con-
structions of such sets are well known, see for example [4, Chap. 15]. The verifier has an additional
parameter m chosen to be some integer m > 16

δ23
. The details of the verifier are described below.
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• Partition the set of equations {E1, . . . , En} using n random variables that are C-wise
independent and take values {1, . . . ,m}. Let us say the parts are Ei, 1 ≤ i ≤ m.

• For each part Ei, pick a random vector, vi ∈ Vni where ni = |Ei|. Compute linear
functions Bi, 1 ≤ i ≤ m,

Bi = Ei · vi.

Construct B = (B1, B2, . . . , Bm).

• Pick a vector w uniformly at random from {−1, 1}m.

• With probability 1
2 , check one of the following two inequalities:

B · w + E ≥ θ, (9)
B · w − E < θ. (10)

Accept if the check is satisfied, else Reject.

Throughout this article, we shall choose the parameter m to be a prime number. For prime values of
m, polynomial size spaces of C-wise independent variables taking values {1, . . . ,m} can be obtained
using BCH codes with alphabet size m, and minimum distance C + 1 (See [2]).

Theorem 7.1. For every 0 < β, δ3 < 1 and all m > 16
δ23

, C > 4m
β4δ23

the following holds: Given the
equation tuple T = ({E1, . . . , En}, E) and an assignment A,

• If the assignment A satisfies T , then with θ = 0, the verifier accepts with probability 1.

• If the assignment A is C-far from β-satisfying the tuple T , then irrespective of the value of
θ, the verifier accepts with probability less than 1

2 + δ3
2 .

Proof. The proof shall make use of Lemmas 7.2 and 7.3, which we shall present later in the section.

For an assignment A that satisfies the tuple T , we have Ej(A) = 0, 1 ≤ j ≤ n, and E(A) > 0.
Hence for all the random choices of Verifier III, B is the 0 vector, and E > 0. Therefore, with the
choice θ = 0, all the checks made by the verifier succeed. (In fact, the ≥ conditions hold with a
strict inequality.)

Suppose the assignment A is C-far from β-satisfying the tuple T . If E(A) ≤ 0, then clearly at
most one of these two inequalities checked can be satisfied, and the proof is complete. Hence, we
assume E(A) > 0.

There are at least C values {Ej(A)|1 ≤ j ≤ n} that have absolute value greater than β|E(A)|.
Let us refer to these Ej as large. The probability that any of the parts Ei contains less than
B0 = d 2

β2 e large values is at most m
(
C
B0

)
(1− 1

m)C−B0 . From Lemma 7.2, for a part Ei that has at
least B0 large values,

Pr[|Bi(A)| > |E(A)|] ≥ 1
12
.

Assuming that all the parts have at least B0 large values, we bound the probability that less than
m
24 parts have |Bi(A)| > |E(A)|. Let us fix a partition {Ei} such that all parts contain at least B0

large values. For a fixed partition {Ei}, each of the events |Bi(A)| > |E(A)| are independent by the
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choice of the vectors vi. Thus for a fixed partition {Ei}, we use the Chernoff bounds and obtain

Pr
[∣∣{i : |Bi(A)| > |E(A)|}

∣∣ < m

24
{Ei}

]
≤ e−

m
96 .

Note that the above inequality holds for every fixed partition with all parts containing at least B0

large values. Hence, conditioned on the event that all parts have at least B0 large values we have

Pr
[∣∣{i : |Bi(A)| > |E(A)|}

∣∣ < m

24

]
≤ e−

m
96 .

Consider the case in which there are at least m0 = m
24 parts with |Bi(A)| > |E(A)|. In this case,

from Lemma 7.3 we can conclude

Pr
[
B · w − θ ∈ [−E(A), E(A)]

]
≤

(
m0

m0/2

)
2m0−1

.

Overall we have,

Pr
[
B · w − θ ∈ [−E(A), E(A)]

]
≤ m

(
C

B0

)(
1− 1

m

)C−B0

+ e−
m
96 +

(
m0

m0/2

)
2m0−1

.

The value of B0 = 2
β2 is fixed, so for large enough values of C,m with C > m the above probability

is less than δ3. In particular this holds for choices m > 16/δ2
3 and C > 4m/β4δ2

3 . Observe that
if B · w − θ /∈ [−E(A),+E(A)], at most one of the two checks performed by the verifier can be
satisfied. Hence the probability of acceptance of the verifier is less than 1

2 + δ3
2 .

Lemma 7.2. For all β > 0, and a constant B0 ≥ 2
β2 , if V ⊆ {−1, 1}n is a 4-wise independent

space of vectors then for any a ∈ Rn with at least B0 of its components greater than β in absolute
value,

Pr[ |a · v| > 1] ≥ 1
12
,

where the probability is over random choice of v ∈ V .

Proof. The following proof is along the lines of proof of Theorem 2.2 in [3], and we include it here
for the sake of completeness. Define a random variable x = |a ·v|2 for v chosen uniformly at random
from V . Then it can be shown that,

E[x] = ‖a‖22,
E[x2] = 3‖a‖42 − 2‖a‖44 < 3‖a‖42.

Since at least B0 components of a are larger than β, we have ‖a‖22 > B0β
2 ≥ 2. Therefore, if

Pr[|a · v| > 1] = α < 1
12 , then

E[x|x > 1] ≥ 1
α

(‖a‖22 − (1− α) · 1) >
1

2α
‖a‖22.

Using the Cauchy-Schwartz inequality, we know

E[x2|x > 1] ≥ (E[x|x > 1])2 >
1

4α2
‖a‖42.
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Therefore, we get

E[x2] ≥ E[x2|x > 1] Pr[x > 1] >
1

4α
‖a‖42 > 3|a‖42,

which is a contradiction.

The following Lemma is well-known in probability as the ‘Littlewood-Offord Problem’[14] (see
Theorem 11.1.1 in [6]).

Lemma 7.3. For every vector a ∈ Rm with at least K of its components > 1 in absolute value and
a number θ ∈ R,

Pr[θ − 1 ≤ a · v ≤ θ + 1] ≤

(
K
K/2

)
2K−1

,

where the probability is over random choice of v ∈ {−1, 1}m.

8 Hardness of HS-MA: Putting the Verifiers Together

Theorem 8.1 (Main Result). For all ε, δ > 0, the problem HS-MA(1− ε, 1
2 + δ) is NP-hard.

Proof. Given a Label Cover instance Γ, we use Verifier I with parameters δ1 = δ
4 , ε1 = ε to obtain

a set of equation tuples T . Let R = R(ε1, δ1) denote the parameter obtained in Theorem 4.1. Note
that the maximum arity of the equations in the tuples is 2R. Using the set of equation tuples T
as input, Verifier II with parameters ε2 = ε1, δ2 = δ

2 , β1 = 1
R3 and arity n0 = 2R generates a set of

equation tuples T ′. Apply Theorem 7.1 with δ3 = δ, β = 1
18R4 to check one of the equation tuples

T ∈ T ′.

Completeness: If the Label Cover instance Γ is satisfiable, Verifier I outputs a set of tuples, such that
there is an assignment satisfying 1− ε1 = 1− ε of the output tuples. Hence by applying Theorems
6.3,7.1, it is clear that there is an assignment A, that satisfies at least 1− ε of the inequalities.

Soundness: Suppose there is an assignment A, which satisfies 1
2 +δ fraction of the inequalities, then

for at least δ
2 fraction of the tuples T ∈ T ′, Verifier III accepts with probability at least 1

2 + δ
2 .

Therefore A is C-close to β-satisfying at least δ
2 = δ2-fraction of the tuples T ∈ T ′. Using Theorem

6.3, it is clear that there exists an assignment A′ which β1- satisfies at least a fraction δ2
2 = δ

4 = δ1

fraction of tuples T ∈ T . Hence by Theorem 4.1, the Label Cover instance Γ has an assignment
that satisfies at least a fraction 1

Rγ of its edges.

The number of random bits used by the Verifier I is given by O(R1−γ log n). In Verifier II, a
total of logM + O(logM + log 1

η ) = O(log n) random bits are needed. Verifier III uses at most
(C−1) log n+2

∑
log ni+m = O(log n) random bits. Hence the entire reduction from LABELCOVER

to HS-MA is a polynomial time reduction.

By choosing the parameters of the above reduction appropriately, the following stronger hard-
ness result can be shown

Theorem 8.2. For all constants κ > 0, the problem HS-MA(1− 1
logκ n ,

1
2 + 1

logκ n) is Quasi-NP-hard.
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Proof. We begin the reduction with the following quasi-NP hardness of Label Cover:

Theorem 8.3. Unless NP ⊆ DTIME(2logk n) for some constant k, the following is true: For all
constants c,m > 0, there is no 2logm n time algorithm for LABELCOVER(1, 1

Rγ ) with alphabet size
R = Θ(logc n) .

Let ε = δ = 1
logκ n . Let Γ be a Label Cover instance with alphabet size R = Θ(log2κ/γ n). The

three steps of the reduction are carried out as follows:

• Verifier I

From Theorem 4.1, Verifier I on input a Label Cover instance with alphabet size R(ε1, δ1) =
(4 ln 1/δ1

ε1
)1/γ , outputs a (1−ε1, δ1, β1)-set of equation tuples with β1 = 1/R3. By (1−ε1, δ1, β1)-

set of equation tuples, we mean the following :

– Completeness Case: (1− ε1) fraction of equation tuples are satisfied.
– Soundness Case: at most δ1 fraction of equation tuples can be β1-satisfied.

Apply the Theorem 4.1 with ε1 = ε and δ1 = δ
4 on the Label Cover instance Γ. Recall that

the alphabet size of Γ was chosen to be R = Θ(log2κ/γ n) > (4 ln 1/δ1
ε1

)1/γ . Thus we obtain a
(1− ε, δ4 ,

1
R3 )-set of equation tuples T .

The number of random bits used by Verifier I is given by O(t log n) = O(4 ln 1
δ1
R1−γ log n) =

O(log2κ/γ+1 n).

• Verifier II

From Theorem 6.3, Verifier II on input a (1− ε2,
δ2
2 , β1)-set of equation tuples with arity n0,

outputs a (1− ε2, δ2, β, C)-set of equation tuples T ′ where:

– Completeness Case: (1− ε2) fraction of tuples are satisfied.
– Soundness Case: At most δ2 fraction of tuples are C-close to being β = β1

9n0
-satisfied.

Feed Verifier II with the (1 − ε, δ4 ,
1
R3 )-set of equation tuples T . Thus we are applying

Theorem 6.3 with ε2 = ε and δ2 = δ
2 and β1 = 1/R3. Further we pick the parameter

C = 100(18)4R16 log4κ n. By construction of Verifier I, the maximum arity of the set of equa-
tions in T is n0 = 2R and the number of equations in a tuple r = nO(log logn). This implies
that β = β1

9n0
= 1

18R4 .

From Verifier II, we obtain a set of equation tuples T ′ with parameters (1−ε, δ2 , β = 1
18R4 , C =

100(18)4R16 log4κ n).

Now we analyze the total randomness used by Verifier II. Towards this, we determine the
internal parameters C0, P, η,M . Since R was chosen to be R = Θ(log2κ/γ n), we have C =
100(18)4R16 log4κ n) = O(log36κ/γ n). The other parameters of Verifier II are determined by
Equations 2, 3, 4 and 5. Firstly, we get C0 = max(8C, 8/δ2) = O(log36κ/γ n). The values of P
and 1/η are given by P = d9(2R)(C + 1

δ2
)e = O(log38κ/γ n), 1

η = 64C0/δ2 = O(log36κ/γ+κ n).

Finally the value of M = d40PrC0
δ2
e + 1 = O(nO(log logn) logκ+74κ/γ n), since r = nO(log logn).

Hence the total randomness used by Verifier II, logM +O(logM + log 1
η ) is poly logarithmic

in n.
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• Verifier III

Fix δ3 = δ and run Verifier III on one random equation tuple in the set T ′. Recall that the
set T ′ had parameters (1− ε, δ2 , β = 1

18R4 , C = 100(18)4R16 log4κ n). Observe that the choice
of C = 100(18)4R16 log4κ n > 64

δ4β4 is sufficiently large to apply Theorem 7.1. From Theorem
7.1, we get the following:

– Completeness case: there is an assignment that succeeds with probability 1− ε.
– Soundness case: Suppose there is an assignment A on which Verifier III accepts with

probability 1
2 + δ. Then at least δ

2 fraction of the tuples T ∈ T ′ are accepted with
probability at least 1

2 + δ
2 . Therefore A is C-close to β-satisfying at least δ

2 -fraction of
the tuples T ∈ T ′.

The parameters of Verifier III are given by C = log36κ/γ n and m = O(log2κ n). Thus the total
randomness used by Verifier III given by (C − 1) log n+ 2

∑
log ni +m is poly logarithmic in

n.

As the number of random bits by each of the verifiers is poly logarithmic in n, the entire
reduction runs in DTIME(2logk n) for some k. This concludes the proof of Theorem 8.2.
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A Linear Systems over Rationals

We now prove that solving linear systems remains hard for sparse systems with bounded coefficients,
specifically when the coefficients as well as the number of non-zero coefficients per equation are
both bounded by a constant. If a system has coefficients bounded in absolute value by B and each
equation involves at most b variables, we say that the system is B-bounded with arity b.

For the sake of convenience, we restate Theorem 5.3 here.

Theorem A.1. For all constants ε, δ > 0, there exist B, b > 0 such that LINEQ-MA(1 − ε, δ) is
NP-hard even on B-bounded systems of arity b.

Using a different approach, a stronger hardness result has been shown in [18]. Specifically, the
above hardness result is extended to linear systems with arity 3, the coefficients of variables in
{0, 1,−1} and all constants bounded by a function of ε, δ.

We first prove the following Gap-Amplification lemma, that is useful in the course of the proof.

Lemma A.2. If for some 0 < s < c < 1, and some constants T, l > 0, LINEQ-MA(c, s) is
NP-hard on T -bounded systems of arity `, then for any positive integer k and constant ε > 0,
LINEQ-MA(ck, sk + ε) is NP-hard on T (k/ε)k-bounded systems of arity `k.

Proof: Let I = (E,X) be an instance of LINEQ-MA with E = {E1, . . . , Er} set of equations over
variables X = {x1, . . . , xn}. Each equation is of the form Ei = 0.

Define an instance Ik = (Ek, X) as follows

1. The set of variables is the same, X.

2. For any k-tuple of equations (E1, . . . , Ek) introduce the following block of equations,

E1 + y · E2 + y2 · E3 + . . .+ yk−1Ek = 0,

for all values of y = 1, 2, . . . , t, where t = k−1
ε .
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Clearly, if the original system is T -bounded, then the new system is T (k/ε)k-bounded. Further
the number of nonzero coefficients in each of the equations produced is bounded by `k.

Completeness: There is an assignment that satisfies c fraction of the equations E, therefore the
same assignment satisfies at least ck fraction of the new constraints.

Soundness: Suppose there is an assignment A that satisfies more than sk + ε fraction of the
equations Ek. We claim that A satisfies at least s fraction of the original equations E.

Suppose not, let us say the assignment satisfies a fraction s1 of the equations in E for some
s1 < s. Then sk1 fraction of the k-tuples have all their equations satisfied. Thus for sk1 fraction of
k-tuples, the block of t equations introduced are all satisfied. For any other k-tuple with not all
equations satisfied, at most k − 1 of the equations in its block can be satisfied. Therefore at most
sk1 + k−1

t fraction of the constraints are satisfied. This is a contradiction since sk1 + ε < sk + ε.

Proof of Theorem 5.3: We employ a reduction from the LABELCOVER problem. Let (U, V,E,Σ,Π)
be an instance of Label Cover with |Σ| = R. The LINEQ-MA instance that we construct has vari-
ables u1, . . . , uR for each vertex u ∈ U ∪ V . The solution that we are targeting to obtain is an
encoding of the assignment to the label cover instance. So if a vertex u is assigned the label i by
an assignment A, then we want

ui = 1,
uj = 0 for j 6= i, 1 ≤ j ≤ R.

Towards this, we introduce a set of linear combinations of the following equations for each edge
e = (u, v).

• f0 :
∑R

i=1 ui = 1,

• f1 :
∑R

i=1 vi = 1,

• gi :
∑

j∈π−1
e (i) uj = vi for all 1 ≤ i ≤ R.

The set of constraints corresponding to an edge e = (u, v) is given by

Pe,i : f0 + yf1 + y2g1 + . . .+ yR+2gR + yR+3ui = 0 for all 1 ≤ y ≤ t = 10(R+ 1).

Completeness: Given an assignment A to the Label Cover instance that satisfies all the edges,
the corresponding integer solution satisfies:

• All equations f1, f2, g1, . . . gR for each edge e.

• For a fraction (1− 1
R) of the variables ui, ui = 0. Thus for a fraction (1− 1/R) of the labels

i ∈ Σ, all equations in Pe,i are satisfied.

Hence in total, at least (1− 1
R) fraction of the equations are satisfied.
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Soundness: Let m = 16R1−γ . Suppose there is an assignment that satisfies 1− 1
m fraction of the

equations, or equivalently which violates at most 1
m of the constraints. For at least half the edges

e, at most 2
m of the equations corresponding to e are violated. Let us call these edges as good edges.

Let e = (u, v) be a good edge. We claim that for e all the equations f0, f1, g1, . . . , gR are satisfied.
If one of the equations f0, f1, g1, . . . , gR is not satisfied, then in any Pe,i at most R + 4 of the t
equations are satisfied. Therefore at most a fraction R+4

t < 0.5 of the equations corresponding to
e are satisfied. This is a contradiction, since e is a good edge. Further, at least 1 − 8

m fraction of
equations of the form ui = 0 are satisfied, because otherwise the total fraction of equations satisfied
is less than (1− 8

m) + 8
m
R+4
t < 1− 2

m .

For every vertex u, let Pos(u) denote the set of labels i such that ui > 0. Formally,

Pos(u) = {i ∈ Σ | ui > 0}.

For every vertex u with Pos(u) non-empty, assign a label chosen uniformly at random from Pos(u).
Assign arbitrary labels to the remaining vertices. Observe that if e = (u, v) is a good edge, then
Pos(u) and Pos(v) are both non-empty, because the constraints

∑
i ui = 1 and

∑
j vj = 1 are

satisfied. Since at most 8
m fraction of the constraints ui = 0 are violated, |Pos(u)| ≤ R · 8

m = Rγ

2 .
Furthermore, for any choice of the label lv from Pos(v), there is some label in Pos(u) that maps to
lv, because the constraint

∑
j∈π−1

e (i) uj = vi is satisfied for edge e. Therefore the probability that
the random assignment satisfies the constraint πe is satisfied is at least 1

|Pos(u)| ≥
2
Rγ . Since at least

half the edges are good, this implies that there is an assignment that satisfies at least a fraction
1
2 ·

2
Rγ = 1

Rγ of the edges.

Therefore we have shown that LINEQ-MA(1 − 1
R , 1 −

1
16R1−γ ) is NP-hard on (10(R + 1))R+3-

bounded systems with arity 10R(R+ 1), for all large enough R. Now we use the gap amplification
Lemma A.2 with k = O(R1−γ) to obtain a gap of 1− ε, δ for any small ε, δ on B-bounded systems
with arity b where B, b are constants depending on ε, δ.
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