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Abstract

Error-correcting codes are combinatorial objects designed to cope with the problem of reli-
able transmission of information on a noisy channel. A fundamental algorithmic challenge
in coding theory and practice is to efficiently decode the original transmitted message even
when a few symbols of the received word are in error. The naive search algorithm runs
in exponential time, and several classical polynomial time decoding algorithms are known
for specific code families. Traditionally, however, these algorithms have been constrained
to output a unique codeword. Thus they faced a “combinatorial barrier” and could only
correct up to d/2 errors, where d is the minimum distance of the code.

An alternate notion of decoding called list decoding, proposed independently by Elias
and Wozencraft in the late 50s, allows the decoder to output a list of all codewords that
differ from the received word in a certain number of positions. Even when constrained to
output a relatively small number of answers, list decoding permits recovery from errors well
beyond the d/2 barrier, and opens up the possibility of meaningful error-correction from
large amounts of noise. However, for nearly four decades after its conception, this potential
of list decoding was largely untapped due to the lack of efficient algorithms to list decode
beyond d/2 errors for useful families of codes.

This thesis presents a detailed investigation of list decoding, and proves its potential,
feasibility, and importance as a combinatorial and algorithmic concept. We prove several
combinatorial results that sharpen our understanding of the potential and limits of list
decoding, and its relation to more classical parameters like the rate and minimum distance.
The crux of the thesis is its algorithmic results, which were lacking in the early works on
list decoding. Our algorithmic results include:

• Efficient list decoding algorithms for classically studied codes such as Reed-Solomon
codes and algebraic-geometric codes. In particular, building upon an earlier algorithm
due to Sudan, we present the first polynomial time algorithm to decode Reed-Solomon
codes beyond d/2 errors for every value of the rate.
• A new soft list decoding algorithm for Reed-Solomon and algebraic-geometric codes,

and novel decoding algorithms for concatenated codes based on it.
• New code constructions using concatenation and/or expander graphs that have good

(and sometimes near-optimal) rate and are efficiently list decodable from extremely
large amounts of noise.
• Expander-based constructions of linear time encodable and decodable codes that can

correct up to the maximum possible fraction of errors, using unique (not list) decoding.

Thesis Supervisor: Madhu Sudan
Title: Associate Professor
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Chapter 1

Introduction

In the everyday situation where one party wishes to communicate a message to another
distant party, more often than not, the intervening communication channel is “noisy” and
distorts the message during transmission. The problem of reliable communication of infor-
mation over such a noisy channel is a fundamental and challenging one. Error-correcting
codes (or simply, codes) are objects designed to cope with this problem. They are now
ubiquitous and found in all walks of life, ranging from basic home and office appliances like
compact disc players and computer hard disk drives to deep space communication.

The theory of error-correcting codes, which dates back to the seminal works of Shan-
non [Sha48] and Hamming [Ham50], is a rich, beautiful and to-date flourishing subject that
benefits from techniques developed in a wide variety of disciplines such as combinatorics,
probability, algebra, geometry, number theory, engineering, and computer science, and in
turn has diverse applications in a variety of areas.

This thesis studies the performance of error-correcting codes in the presence of very large
amounts of noise, much more than they were “traditionally designed” to tolerate. This
situation poses significant challenges not addressed by the classical decoding procedures.
This thesis addresses these challenges with a focus on the algorithmic issues that arise
therein. Specifically, we establish limits on what can be achieved in such a high-noise
situation, and present algorithms for classically studied codes that decode significantly more
errors than all previously known methods. We also present several novel code constructions
designed to tolerate extremely large amounts of noise, together with efficient error-correcting
procedures. The key technical notion underlying our work is “List Decoding”. This notion
will be defined, and our contributions will be explained in further detail, later on in this
chapter.

1.1 Basics of Error-correcting codes

Informally, error-correcting codes provide a systematic way of adding redundancy to a
message before transmitting it, so that even upon receipt of a somewhat corrupted message,
the redundancy in the message enables the receiver to figure out the original message that
the sender intended to transmit.

The principle of redundant encoding is in fact a familiar one from everyday language.
The set of all words in English is a small subset of all possible strings, and a huge amount
of redundancy is built into the valid English words. Consequently, a misspelling in a word
usually changes it into some incorrect word (i.e., some letter sequence that is not a valid
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word in English), thus enabling detection of the spelling error. Moreover, the resulting
misspelled word quite often resembles the correct word more than it resembles any other
word, thereby permitting correction of the spelling error. The “ispell” program used to
spell-check this thesis could not have worked but for this built-in redundancy of the English
language! This simple principle of “built-in redundancy” is the essence of the theory of
error-correcting codes.

In order to be able to discuss the context and contributions of this thesis, we need to
define some basic notions concerning error-correcting codes.1 These are discussed below.

• Encoding. An encoding function with parameters k, n is a function E : Σk → Σn that
maps a message m consisting of k symbols over some alphabet Σ (for example, the
binary alphabet Σ = {0, 1}) into a longer, redundant string E(m) of length n over Σ.
The encoded string E(m) is referred to as a codeword.

• Error-Correcting code. The error-correcting code itself is defined to be the image of
the encoding function. In other words, it is the set of all codewords which are used
to encode the various messages.

• Rate. The ratio of the number of information symbols to the length of the encoding
— the quantity k/n in the above definition — is called the rate of the code. It is an
important parameter of a code, as it is a measure of the amount of redundancy added
by the encoding.

• Decoding. Before transmitting a message, the sender of the message first encodes it
using the error-correcting code and then transmits the resulting codeword along the
channel. The receiver gets a possibly distorted copy of the transmitted codeword, and
needs to figure out the original message which the sender intended to communicate.
This is done via a decoding function, D : Σn → Σk, that maps strings of length n
(i.e., noisy received words) to strings of length k (i.e., what the decoder thinks was
the transmitted message).

• Distance. The minimum distance (or simply, distance) of a code quantifies how “far
apart” from each other different codewords are. Define the distance between words as
the number of coordinates at which they differ. The (minimum) distance of a code is
then defined to be the smallest distance between two distinct codewords.

Historical Interlude: We now briefly discuss the history behind the definition of these
concepts. The notions of encoding, decoding, and rate appeared in the work of Shan-
non [Sha48]. The notions of an error-correcting code itself, and that of the distance of a
code, originated in the work of Hamming [Ham50].

Shannon proposed a stochastic model of the communication channel, in which distor-
tions are described by the conditional probabilities of the transformation of one symbol into
another. For every such channel, Shannon proved that there exists a precise real number,
which he called the channel’s capacity, such that in order to achieve reliable communication
over the channel, one has to use a encoding function with rate less than its capacity. He also
proved the converse result — namely, for every rate below capacity, there exist encoding
and decoding schemes which can used to achieve reliable communication, with a probabil-
ity of miscommunication as small as one desires. This remarkable result, which precisely
characterized the amount of redundancy needed to cope with a noisy channel, marked the
birth of information theory and coding theory.

1Here we only define the most basic notions. Further definitions appear in Chapter 2.
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Figure 1-1: A code of minimum distance d. Spheres of radius (d−1)/2 around the codewords
are all disjoint.

However, Shannon only proved the existence of good coding schemes at any rate below
capacity, and it was not at all clear how to perform the required encoding or decoding
efficiently. Moreover, the stochastic description of the channel did not highlight any simple
criterion of when a certain code is good.

Intuitively, a good code should be designed so that the encoding of one message will not
be confused with that of another, even if it is somewhat distorted by the channel. Now, if
the various codewords are all far apart from one another, then even if the channel distorts
a codeword by a small amount, the resulting string will still resemble the original codeword
much more than any other codeword, and can therefore be “decoded” to the correct code-
word. In his seminal work, Hamming [Ham50] realized the importance of quantifying how
far apart various codewords are, and defined the above notion of distance between words,
which is now appropriately referred to as Hamming distance. He also formally defined the
notion of an error-correcting code as a collection of strings no two of which are close to
each other, and defined the (minimum) distance of a code as the smallest distance between
two distinct codewords. This notion soon crystallized as a fundamental parameter of an
error-correcting code. Figure 1-1 depicts an error-correcting code with minimum distance d,
which, as the figure illustrates, implies that Hamming balls of radius (d− 1)/2 around each
codeword are all disjoint. In this model, an optimal code is one with the largest minimum
distance among all codes that have a certain number of codewords. As Figure 1-1 indi-
cates, finding a good code in this model is a particular kind of “sphere-packing” problem.
Unlike Shannon’s statistical viewpoint, this combinatorial formulation permitted a variety
of techniques from combinatorics, algebra, geometry, and number theory to be applied in
attempts to solve the problem. In turn, this led to the burgeoning of coding theory as a
discipline.

1.2 The Decoding Problem for Error-correcting Codes

The two main algorithmic tasks associated with the use of an error-correcting code are
implementing the encoding function E and the decoding function D. The former task is
usually easy to perform efficiently, since the “construction” of a code often works by giving
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Figure 1-2: A code of distance d cannot correct d/2 errors. The figure shows a received
word r at a distance of d/2 from two codewords corresponding to the encodings of m1 and
m2. In such a case, r could have resulted from d/2 errors affecting either E(m1) or E(m2).

such an encoding procedure.
For the decoding problem, we would ideally like D(E(m)+noise) = m for every message

m, and every “reasonable” noise pattern that the channel might effect. Now, suppose that
the error-correcting code has minimum distance d (assume d is even) and m1,m2 are two
messages such that the Hamming distance between E(m1) and E(m2) is d. Then, assume
that E(m1) is transmitted and the channel effects d/2 errors and distorts E(m1) into a word
r that is right in between E(m1) and E(m2) (see Figure 1-2). In this case, upon receiving
r, the decoder has no way of figuring out which one of m1 or m2 was the intended message,
since r could have been received as a result of d/2 errors affecting either E(m1) or E(m2).

Therefore, when using a code of minimum distance d, a noise pattern of d/2 or more
errors cannot always be corrected. On the other hand, for any received word r, there can
be only one codeword within a distance of (d− 1)/2 from r. This follows using the triangle
inequality (since Hamming distance between strings defines a metric). Consequently, if
the received word r has at most (d − 1)/2 errors, then the transmitted codeword is the
unique codeword within distance (d − 1)/2 from r (see Figure 1-3). Hence, by searching
for a codeword within distance (d − 1)/2 of the received word, we can recover the correct
transmitted codeword as long the number of errors in the received word is at most (d−1)/2.

Due to these facts, a well-posed algorithmic question that has been the focus of most
of the classical algorithmic work on efficient decoding, is the problem of decoding a code of
minimum distance d up to (d − 1)/2 errors. We call such a decoding unique/unambiguous
decoding in the sequel. The reason for this terminology is that the decoding algorithm
decodes only up to a number of errors for which it is guaranteed to find a unique codeword
within such a distance of the received word.

The obvious unique decoding algorithms which search the vicinity of the received word
for a codeword are inefficient and require exponential runtime. Nevertheless, a classic body
of literature spanning four decades has now given efficient unique decoding algorithms for
several interesting families of codes. These are among the central and most important
results in algorithmic coding theory, and are discussed in detail in any standard coding
theory text (eg., [MS81, vL99]).
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Figure 1-3: A code of distance d can correct up to (d− 1)/2 errors. For the received word
r, E(m) is the unique codeword within distance (d− 1)/2 from it, so if fewer than (d− 1)/2
errors occurred, r can be correctly decoded to m.

We are interested in what happens when the number of errors is greater than (d− 1)/2.
In such a case the unique decoding algorithms could either output the wrong codeword
(i.e., a codeword other than the one transmitted), or report a decoding failure and not
output any codeword. The former situation occurs if the error pattern takes the received
word within distance (d − 1)/2 of some other codeword. In such a situation, the decoding
algorithm, though its answer is wrong, cannot really be faulted. After all, it found some
codeword much closer to the received word than any other codeword, and in particular the
transmitted codeword, and naturally places its bet on that codeword. The latter situation
occurs if there is no codeword within distance (d− 1)/2 of the received word, and it brings
out the serious shortcoming of unique decoding, which we discuss below.

It is true that some patterns of d/2 errors, as in Figure 1-2, are uncorrectable due
to there being multiple codewords at a distance d/2 from the received word. However, the
situation in Figure 1-2 is quite pathological and it is actually the case that for most received
words there will be only a single codeword that is closest to it. Moreover, the sparsity of
the codewords implies that most words in the ambient space fall outside the region covered
by the (disjoint) spheres of radius (d − 1)/2 around the codewords. Together, these facts
imply that most received words have a unique closest codeword (and thus it is reasonable to
expect that the decoding algorithm correct them to their closest codeword), and yet unique
decoding algorithms simply fail to decode them. Indeed, as Shannon’s work [Sha48] already
pointed out, for “good” codes (namely, those that approach capacity), if errors happen
randomly according to some reasonable probabilistic model, then with high probability the
received word will not be correctable by unique decoding algorithms!

In summary, on a overwhelming majority of error patterns, unique decoding uses the
excuse that there is no codeword within a distance (d−1)/2 from the received word to com-
pletely give up on decoding those patterns. This limitation is in turn due to the requirement
that the decoding always be unique or unambiguous, which, as argued earlier, means there
are some (pathological) patterns of d/2 errors which are not correctable. It turns out that
there is a meaningful relaxation of unique decoding which circumvents this predicament and
permits one to decode beyond the perceived “half-the-distance barrier” faced by unique de-
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coding. This relaxed notion of decoding, called list decoding, is the subject of this thesis,
and we turn to its definition next.

1.3 List Decoding

1.3.1 Definition

List decoding was introduced independently by Elias [Eli57] and Wozencraft [Woz58] in
the late 50’s. List decoding is a relaxation of unique decoding that allows the decoder to
output a list of codewords as answers. The decoding is considered successful as long as the
codeword corresponding to the correct message is included in the list. Formally, the list
decoding problem for a code E : Σk → Σn is defined as follows: Given a received word
r ∈ Σn, find and output a list of all messages m such that the Hamming distance between
r and E(m) is at most e. Here e is a parameter which is the number of errors that the
list decoding algorithm is supposed to tolerate. The case e = (d − 1)/2 gives the unique
decoding situation considered earlier.

List decoding permits one to decode beyond the half-the-distance barrier faced by unique
decoding. Indeed, in the situation of Figure 1-2, the decoder can simply output both the
codewords that are at a distance of d/2 from the received word. In fact, list decoding
remains a feasible notion even when the channel effects e� d/2 errors.

An important parameter associated with list decoding is the size of the list that the
decoder is allowed to output. Clearly with a list size equal to one, list decoding just reduces
to unique decoding. It is also undesirable to allow very large list sizes. This is due to at least
two reasons. First, there is the issue of how useful a very large list is, since it is reasonable
that the receiver might finally want to pick one element of the list using additional rounds of
communication or using some tie-breaking criteria. Second, the decoding complexity is at
least as large as the size of the list that the algorithm must output in the worst-case. Since
we want efficient, polynomial time, decoding procedures, the list size should be at most a
polynomial in the message length, and ideally at most a constant that is independent of the
message length.

It turns out that even with a list size that is a small constant (say, 20), any code of
distance d can be list decoded well beyond d/2 errors (for a wide range of distances d).
The bottom line, therefore, is that allowing the decoder to output a small list of codewords
as answers opens up the possibility of doing much better than unique decoding. In other
words, list decoding is combinatorially feasible.

1.3.2 Is list decoding a useful relaxation of unique decoding?

But the above discussion does not answer the obvious question concerning list decoding
that comes to one’s mind when first confronted with its definition: how useful is the notion
of list decoding itself? What does one do with a list of answers, and when too many errors
occur, why is receiving an ambiguous list of answers better than receiving no answer at all?
We now proceed to answer these questions.

Firstly, notice that list decoding only gives more options than unique decoding. One
can always go over the list output by the algorithm and check if there is any codeword
within distance (d−1)/2 of the received word, thereby using it to perform unique decoding.
But the advantage of list decoding is that it also enables meaningful decoding of received
words that have no codeword within distance (d − 1)/2 from them. As discussed earlier,
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since the codewords are far apart from one another and sparsely distributed, most received
words in fact fall in this category. For a large fraction of such received words, one can show
that in fact there is at most one codeword within distance e from them, for some bound e
which is much greater than d/2. Therefore, list decoding up to e errors will usually (i.e., for
most received words) produce lists with at most one element, thereby obviating the need of
dealing with more than one answer being output! In particular, for a channel that effects
errors randomly, this implies that with high probability, list decoding, when it succeeds,
will output exactly one codeword.

Furthermore, if the received word is such that list decoding outputs several answers,
this is certainly no worse than giving up and reporting a decoding failure (since we can
always choose to return a failure if the list decoding does not output a unique answer).
But, actually, it is much better. Since the list is guaranteed to be rather small, using an
extra round of communication, or some other context or application specific information,
it might actually be possible to disambiguate between the answers and pick one of them
as the final output. For example, the “ispell” program used to spell-check this thesis often
outputs a list of correct English words that are close to the misspelled word. The author of
the document can then conveniently pick one of the words based on what he/she actually
intended. As another example, consider the situation where a spacecraft transmits the
encoding of, say a picture of Saturn, back to the Earth. It is possible that due to some
unpredictable interference in space, the transmission gets severely distorted and the noise
is beyond the range unique decoding algorithms can handle. In such a case, it might be
unreasonable to request a retransmission from the spacecraft. However, if a list decoding
algorithm could recover a small list of candidate messages from the received data, then odds
are that only one member of the list will look anything like a picture of Saturn, and we will
therefore be able to recover the original transmitted image.

Also, we would like to point out that one can always pick from the list the codeword
closest to the received word, if there is a unique such codeword, and output it. This gives the
codeword that has the highest likelihood of being the one that was actually transmitted, even
beyond the half-the-distance barrier. Finding such a codeword is referred to as maximum
likelihood decoding in the literature. See the “interlude” at the end of this section for further
discussion about this point, but in a nutshell, list decoding permits one to perform maximum
likelihood decoding as long as the number of errors effected by the channel is bounded by
the maximum number of errors that the list decoding algorithm is designed to tolerate.

Finally, error-correcting codes and decoding algorithms play an important role in several
contexts outside communication, and in fact they have become fundamental primitives in
theoretical computer science. As we will see in this thesis, in many cases list decoding
enhances the power of this connection between coding theory and computer science.

Interlude: Maximum likelihood decoding (MLD) is an alternate notion of decoding con-
sidered in the literature. The goal of MLD is to output the codeword closest in Hamming
distance to the received word (ties broken arbitrarily). This is considered by many to be the
“holy grail” of decoding, since it outputs the codeword with the highest likelihood of being
the one that was actually transmitted. MLD clearly generalizes unique decoding, since if
there is a codeword within distance (d− 1)/2 of the received, it must be the unique closest
codeword. List decoding and MLD are, however, incomparable in power. List decoding can
be used to perform MLD as long as the number of errors is bounded by the amount that
the list decoding algorithm was designed to tolerate. In such a case, list decoding is in fact
a more general primitive since it gives all close-by codewords, including the closest one(s),
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while a MLD algorithm rigidly makes up its mind on one codeword. On the other hand,
MLD does not assume any bound on the number of errors, while list decoding, owing to
the requirement of small list size in the worst-case, does. The main problem with MLD is
that it ends up being computationally intractable in general, and extremely difficult to solve
even for particular families of codes. In fact, the author is unaware of any non-trivial code
family for which maximum likelihood decoding is solvable in polynomial time. In contrast,
list decoding, as this thesis demonstrates, is algorithmically tractable for several interesting
families of codes. End Interlude

1.3.3 The challenge of list decoding

The real problem with list decoding was not that it was not considered to be useful, but that
there were no known algorithms to efficiently list decode well beyond half-the-distance for
any useful family of error-correcting codes (even though it was known that, combinatorially,
list decoding offered the potential of decoding many more than d/2 errors using small lists).
The naive brute-force search algorithms all take exponential time, and we next give some
idea of why efficient list decoding algorithms have remained so elusive, despite substantial
progress on efficient unique decoding.

Classical unique decoding algorithms decode only up to half-the-distance. In particular,
they can never decode when more than half the symbols are in error. List decoding, on the
other hand, aims to handle errors well beyond half-the-distance, and consequently, must
even deal with situations where more than half the symbols are in error, including cases
where the noise is overwhelming and far out-weighs the correct information. In fact, list
decoding opens the potential of decoding when the noise is close to 100%. Realizing the
potential of list decoding in the presence of such extreme amounts of noise poses significant
algorithmic challenges under which the ideas used in the classical decoding procedures break
down.

1.3.4 Early work on list decoding

The early work on list decoding focused only on statistical or combinatorial aspects of list
decoding. We briefly discuss these works below. The initial works by Elias [Eli57] and
Wozencraft [Woz58], which defined the notion of list decoding, proved tight bounds on the
error probability achievable through list decoding on certain probabilistic channels. Results
of a similar flavor also appear in [SGB67, For68, Ahl73]. Elias [Eli88] also generalized the
zero error capacity of Shannon [Sha56] to list decoding and obtained bounds on the zero
error capacity of channels under list decoding with lists of certain size.

The focus in the 80’s shifted to questions of a more combinatorial nature, and considered
the worst-case list decoding behavior of codes. The central works in this vein are [ZP82,
Bli86, Eli91]. These established bounds on the number of errors that could be corrected
by list decoding using lists of a certain fixed size, for error-correcting codes of a certain
rate. This is in the spirit of the questions that this thesis investigates. However, none of
these results presented any non-trivial list decoding algorithms.2 Thus, despite being an
extremely useful generalization of unique decoding, the potential of list decoding was largely
untapped due to the lack of good algorithms.

2Here triviality is used to rule out both brute-force search algorithms and unique decoding algorithms.
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Figure 1-4: Contributions of this thesis: a high level view

1.4 Contributions of this thesis

This thesis presents a systematic and comprehensive investigation of list decoding, with a
focus on algorithmic results. Presenting our contributions in sufficient detail would require
several more definitions. Therefore, we only give a high level description of the contributions
of the thesis here, deferring a detailed discussion of the contributions of the individual
chapters and how they fit together to the next chapter. Figure 1-4 gives a bird’s eye view
of the kind of results in this thesis. The following description is probably best read with
Figure 1-4 in mind.

The first part of thesis investigates certain combinatorial aspects of list decoding. We
study the trade-offs between the list decodability of a code and the more classical param-
eters like rate and minimum distance. The results yield a significant sharpening of our
understanding of the potential and limits of list decoding. Our combinatorial results are
important in their own right and also because they set the stage for, and are repeatedly
appealed to or used in, several subsequent results. The crux of the thesis is its algorithmic
results, which comprise the second part of the thesis.

The highlight here is a list decoding algorithm for Reed-Solomon codes (Chapter 6).
Reed-Solomon codes are among the most important and widely studied families of codes, and
several classical unique decoding algorithms are known for them (cf. [MS81, Chapters 9,10]).
However, despite over four decades of research, there was no known algorithm to efficiently
list decode Reed-Solomon codes well beyond d/2 errors where d is the minimum distance.
In Chapter 6 of this thesis, we present the first polynomial time list decoding algorithm that
corrects more than d/2 errors for every value of the rate. This result builds upon an earlier
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breakthrough result of Sudan [Sud97a] who gave such an algorithm for Reed-Solomon codes
of low rate. Our result list decodes up to what might well be the true list decoding potential
of Reed-Solomon codes. We also generalize the algorithm to algebraic-geometric codes. The
novelty of our technique enables us to also get a more general soft list decoding algorithm,
which can take advantage of reliability information on the various symbols. This is the
first non-trivial soft decoding algorithm with a provable performance guarantee for Reed-
Solomon codes since the classic 1966 work of Forney [For66b] on Generalized Minimum
Distance (GMD) decoding.

Using our decoding algorithms for Reed-Solomon codes at the core, we also obtain
several other non-trivial list decoding algorithms. These include novel algorithms for list
decoding of several concatenated codes.3 As a result we obtain constructions of binary codes
which are efficiently list decodable from extremely large amounts of noise, and which have
rate reasonably close to the best possible for such codes. (Prior to our work, there was no
known construction of such codes with a positive rate, no matter how low the rate.) We
also introduce novel code constructions by combining algebraic list decodable codes with
“highly expanding” graphs, and thereby get new list decodable codes which improve these
bounds further.

Using an expander-based construction in the same spirit as our construction for list
decoding, we also get a significant improvement over a prior result for unique decoding.
(This shows that techniques developed for list decoding might sometimes also yield new
insights towards solving classically studied questions like unique decoding.) Specifically,
we prove that for every ε > 0, there are linear time encodable and decodable binary codes
which can be uniquely decoded up to a fraction (1/4−ε) of errors. This fraction of errors is
the best possible for unique decoding of binary codes. Therefore, we achieve the maximum
possible error-resilience together with the optimal (up to constant factors) encoding and
decoding times. In addition, the rate of our codes is also, in a sense that can be made
precise, asymptotically the best one could hope for. The only prior known linear time
codes, due to Spielman [Spi96], could only correct a tiny constant fraction of errors (of the
order of 10−6).

List decoding, while primarily a coding-theoretic notion, has also found applications
to other areas of theoretical computer science like complexity theory, cryptography, and
algorithms. For these applications unique decoding does not suffice, and moreover, for
several of them one needs efficient list decoding algorithms. In Chapter 12 of this thesis,
we survey some of these “extraneous” applications of list decoding.

Despite its conception more than four decades ago, the long hiatus before efficient algo-
rithms were found means that list decoding is still a subject in its infancy. To the author’s
best knowledge, this thesis represents the first comprehensive survey of list decoding. In-
spite of the length of the thesis, we have attempted a cohesive presentation that hopefully
succeeds in highlighting the various aspects of list decoding and how they all fit together
nicely. There is lot more work to be done on the subject, and it is our hope that this thesis
will inspire at least some of it.

3Concatenated codes are obtained by combining two codes. The message is first encoded according to
the first code, and then each symbol of the resulting codeword is encoded using the second code. A more
detailed description will appear in the next chapter.
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1.5 Background assumed of the reader

This thesis faces the situation of having at least two audiences: computer scientists and
coding theorists. Hopefully the style of the thesis will be accessible to people with either
background. However, the author being a computer scientist by training, the thesis is
probably more in line with the language and style of presentation that computer scientists
are used to. The only real background required to read the thesis are basic algebra (comfort
with finite fields and the like), some amount of probability and combinatorics, etc. Also,
the focus of the bulk of the thesis is quite algorithmic, and hence comfort with the analysis
of asymptotic complexity of algorithms would be a big plus.

Some portions of the thesis, by the very nature of the topic they discuss, are necessarily
somewhat heavy on rather technical and/or algebraic matter. These include: Chapter 4
on the combinatorial limitations of list decoding, the portion of Chapter 6 that deals with
algebraic-geometric codes, and Chapter 7 on the decoding of ideal-based codes. In all these
cases, we have attempted to clearly state the necessary facts/theorems that we borrow from
algebra. Assuming these facts the rest of the presentation should be generally accessible.
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Chapter 2

Preliminaries and Thesis Structure

In Galois Fields, full of flowers
primitive elements dance for hours
climbing sequentially through the trees
and shouting occasional parities.

- S.B. Weinstein (IEEE Transactions on Information Theory, March 1971)

In this chapter, we review the basic definitions relating to error-correcting codes and
standardize some notation. We then give a brief description of the fundamental code families
and constructions that will be dealt with and used in this thesis. Finally, we discuss the
structure of the thesis and the main results which are established in the technical chapters
that follow, explaining in greater detail how the results of the various chapters fit together.

2.1 Preliminaries and Definitions

In order to avoid introducing too much formalism and notation this early on, we only discuss
the most fundamental definitions and will defer a formal treatment of further definitions
until they are needed.

2.1.1 Basic definitions for codes

Code, Blocklength, Alphabet size:

Let q ≥ 2 be an integer, and let [q] = {1, 2, . . . , q}.

• An error-correcting code (or simply, code) C is a subset of [q]n for some positive
integers q, n. The elements of C are called the codewords in C.

• The number q is referred to as the alphabet size of the code, or alternatively we say
that C is a q-ary code. When q = 2, we say that C is a binary code.

• The integer n is referred to as the blocklength of the code C.

Dimension and Rate:

• The dimension of a q-ary code C of size M = |C|, is defined to be logqM . (The
reason for the term “dimension” will be clear once we discuss linear codes shortly.)
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• The rate of a q-ary code C of size M , denoted R(C), is defined to be the normalized
quantity logqM

n .

It is often convenient to view a code C ⊆ [q]n of size M as a function C : [M ]→ [q]n. Under
this view the elements of [M ] are called messages, and for a message x ∈ [M ], its associated
codeword is the element C(x) ∈ [q]n. Often we will take M to be a perfect power of q, say
M = qk, where k is the dimension of the code (this will always be the case, for example,
for linear codes which will be discussed shortly). In such a case it is convenient to identify
the message space [M ] with [q]k, and view messages as strings of length k over [q]. Viewed
this way, a q-ary error-correcting code provides a systematic way to add redundancy to a
string of length k over [q] and encode it into a longer string of n symbols over [q].

(Minimum) Distance and Relative Distance: For strings x,y ∈ [q]n where x =
〈x1, x2, . . . , xn〉 and y = 〈y1, y2, . . . , yn〉, the Hamming distance between them, denoted
∆(x,y), is defined to be the number of coordinates where they differ, that is, the number
of i’s, 1 ≤ i ≤ n, for which xi 6= yi.

• The minimum distance (or simply distance) of a code C, denoted dist(C), is the
minimum Hamming distance between two distinct codewords of C. Formally,

dist(C) = min
c1,c2∈C
c1 6=c2

∆(c1, c2) .

• The relative distance of a code C, denoted δ(C), is defined to be the normalized
quantity dist(C)

n , where n is the blocklength of C.

Notation: We refer to a general q-ary code of blocklength n, dimension k, and minimum
distance d, as an (n, k, d)q-code. We will often omit the distance parameter and refer to a
q-ary code of blocklength n and dimension k as an (n, k)q code. When the alphabet size is
clear from the context we will omit the subscript q.1

2.1.2 Code families

Since the main thrust of this paper is the asymptotic performance of the codes, we define
analogs of the quantities above for infinite families of codes. An infinite family of q-ary
codes is a family C = {Ci|i ∈ Z} where Ci is an (ni, ki)q code with ni > ni−1. We define
the rate of an infinite family of codes C to be

R(C) = lim inf
i

{
ki
ni

}
.

We define the (relative) distance of an infinite family of codes C to be

δ(C) = lim inf
i

{
dist(Ci)
ni

}
.

1This might appear non-standard to readers already familiar with coding theory who are probably used
to the notation [n, k, d]q-code. But this is normally used only for linear codes, and we use (n, k, d)q-code to
refer to a general, non-linear code with these parameters. For linear codes, which we define next, we will
stick to the standard notation.
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Asymptotically good code families

Definition 2.1 A family C of codes is said to be asymptotically good if both its rate and
relative distance are positive, i.e., if R(C) > 0 and δ(C) > 0.

By abuse of notation, we will use the phrase “asymptotically good codes” when referring
to codes which belong to an asymptotically good code family. The study of the trade-off
between the rate and relative distance for asymptotically good codes is one of the main
objectives of (asymptotic) combinatorial coding theory.

2.1.3 Linear Codes

Let q be a prime power. Throughout, we denote a finite field with q elements by Fq or
GF(q) interchangeably. We assume when necessary that the field Fq can be identified with
[q] in some canonical way.

• A linear code C of blocklength n is a linear subspace (over some field Fq) of Fnq .

Clearly, a linear code over Fq has qk elements, where k is the dimension of the code
as a vector space over Fq. The dimension of a q-ary linear code C is thus the same as its
dimension when considered as a vector space over Fq (hence the terminology “dimension”
for the quantity logq |C|).

As is standard notation, we refer to a q-ary linear code of blocklength n, dimension k
and distance d, as an [n, k, d]q code. We will omit the distance parameter when we do not
need to refer to it, and omit the subscript when the alphabet size is clear from the context.

For linear codes, the all-zeroes string is always a codeword. Hence the distance of a linear
code equals the minimum Hamming weight of a non-zero codeword, where the Hamming
weight of a string is defined as the number of coordinates in which it has a non-zero symbol.

An [n, k]q linear code can be specified in one of two equivalent ways: using the generator
matrix or the parity check matrix.

• An [n, k]q linear code C can always be described as the set {Gx : x ∈ Fkq} for an n×k
matrix G; such a G is called a generator matrix of C.

• An [n, k]q linear code C can also be specified as the subspace {y : y ∈ Fnq and Hy = 0}
for an (n− k)× n matrix H; such an H is called a parity check matrix of C.

The above representations of a linear code immediately imply the following for any [n, k]q
linear code:

- (Representation:) It can be succinctly represented using O(n2) space (by storing either
the generator or parity check matrices).

- (Encoding:) A message x ∈ Fkq can be encoded into its corresponding codeword using
O(nk) field operations (by multiplying it with the generator matrix of the code).

The weight distribution of a linear code C of blocklength n is defined to be the vector
(A0, A1, . . . , An), where Ai is the number of codewords of C of Hamming weight i, for
0 ≤ i ≤ n. Note that A0 = 1, and if d is the distance of C, then A1, A2, . . . , Ad−1 = 0.

Given a linear code C ⊆ Fnq , one can define a relation, say ∼, between elements of Fnq as
follows: y ∼ z iff y− z ∈ C. Since the code is linear, it is easy to check that this defines an
equivalence relation. Consequently, it defines a partition of the space Fnq into equivalence
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classes. These equivalence classes are called the cosets of the code C.2 One of these cosets
will be the code C itself. The weight distribution of cosets of a linear code in fact provide
detailed information about the combinatorial list decodability properties of a code. For
sake of simplicity though, we state and prove all our combinatorial results using only the
language of list decoding (which we shortly develop in Section 2.1.4).

Additive Codes: A class of codes that lie in between linear and general non-linear codes
in terms of “structure” are additive codes. These are codes over Fq which are closed under
codeword addition; i.e., if x and y are codewords then so is x+ y. (For linear codes, we will
have the additional property that if x is a codeword then so is αx for every α ∈ Fq — here
αx stands for the string obtained by coordinate-wise multiplication of x by α.) Note that
for binary codes, additive codes define the same class as linear codes.

2.1.4 Definitions relating to List Decoding

Recall that under list decoding, the aim, given a received word, is to output a list of all
codewords that lie within a Hamming ball of certain radius around the received word.
The radius of the ball corresponds to the number of errors corrected by the list decoding
procedure. Hence it is of interest to quantify the maximum number of codewords in a ball
of certain radius, or equivalently, to quantify the largest number of errors that can be list
decoded with lists of a certain size. We do this by defining the “list decoding radius” of a
code below.

Let q ≥ 2 be the alphabet size of a code C of blocklength n. For a non-negative integer
r and x ∈ [q]n, let Bq(x, r) denote the Hamming ball of radius r around x, i.e.,

Bq(x, r) = {y ∈ Fnq | ∆(x,y) ≤ r} .

For the case q = 2, we will usually omit the subscript and refer to such a ball as simply
B(x, r).

Definition 2.2 ((e, L)-list decodability) For positive integers e, L, a code C ⊆ F
n
q is

said to be (e, L)-list decodable if every Hamming ball of radius e has at most L codewords,
i.e. ∀ x ∈ Fnq , |Bq(x, e) ∩ C| ≤ L.

Definition 2.3 (List Decoding Radius) For a code C of blocklength n and an integer
L ≥ 1, the list of L decoding radius of C, denoted radius(C,L) is defined to be the maximum
value of e for which C is (e, L)-list decodable. We also define the normalized list-of-L
decoding radius, denoted LDRL(C), as

LDRL(C) =
radius(C,L)

n
.

As before we would like to extend this definition for families of codes, since our aim is
to study the asymptotic performance of codes. To do this, it makes sense to allow the list
size to be a function of the blocklength. Accordingly we have the following definition.

2This terminology is borrowed from group theory, and the cosets of C defined above are precisely the
group-theoretic cosets of C when it is viewed as an additive subgroup of Fnq .
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Definition 2.4 [List Decoding Radius for code families] For an infinite family of codes
C = {Ci}i≥1 where Ci has blocklength ni, and a function ` : Z+ → Z

+, define the list of `
decoding radius of C, denoted LDR`(C), to be

LDR`(C) = lim inf
i

{
radius(Ci, `(ni))

ni

}
.

When ` is the constant function that takes on the value L on every input blocklength, we
denote LDR`(C) as simply LDRL(C).

Remark: It will be clear from the context whether the LDR function is being applied to a
code or to a code family, and also whether it is applied to a constant list size or to a list
size which is a growing function of the blocklength.

Some “informal” usages:

Sometimes we also refer to the phrase “list decoding radius” without an explicit
mention of the list size. In such cases we imply the list decoding radius for a list size
which is some polynomially growing function of the blocklength, i.e., for `(n) = nc for some
constant c (in fact, in almost every such reference in this thesis setting c = 2 will suffice).

We will also use the adjectives “list decodable up to a fraction α of errors” or “list
decodable up to (relative) radius α” to refer to codes or code families whose list decoding
radius is at least α. We will say a list decoding algorithm can “correct” a fraction α of
errors (or e errors), if it can perform list decoding up to a fraction α of errors (or up to a
radius of e).

2.1.5 Commonly used notation

Much of the notation we use is standard. Throughout the thesis both log x and lg x will
denote the logarithm of x to the base 2. We denote the natural logarithm of x by lnx.
For bases other than 2 and e, we explicitly include the base in the notation; for example
logarithm of x to the base q will be denoted by logq x.

For a real number x, bxc will denote the largest integer which is at most x, and dxe will
denote the smallest integer which is at least x.

For x in the range 0 ≤ x ≤ 1, and an integer q ≥ 2, we denote by Hq(x) the q-ary
entropy function, i.e., Hq(x) = x logq(q − 1) − x logq x − (1 − x) logq(1 − x). When q = 2,
we denote the binary entropy function H2(x) as simply H(x).

For a finite set S, we denote the number of elements that belong to S by |S|.

2.2 Basic Code Families

In this section, we describe the central code families which will be studied in this thesis and
also be used as building blocks in several of the new code constructions contributed by this
thesis.

2.2.1 Reed-Solomon codes

Reed-Solomon codes are an extremely important and well-studied family of linear codes.
They are based on the properties of univariate polynomials over finite fields. Formally, an
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[n, k+1]q Reed-Solomon code, with k < n and q ≥ n, is defined as follows. Let α1, α2, . . . , αn
be n distinct field elements in Fq (since q ≥ n, it is possible to pick such αi’s). The message
space consists of polynomials p ∈ Fq[x] with degree at most k, and a “message” p is encoded
as:

p 7→ 〈p(α1), p(α2), . . . , p(αn)〉 .

Note the message space can be identified with Fk+1
q in the obvious way: view 〈m0,m1, . . . ,mk〉

as the polynomial m0 +m1x+ . . .+mkx
k.

The following basic proposition follows from the well-known fact from algebra that two
degree k polynomials over a field can agree on at most k places.

Proposition 2.1 The above code is an [n, k + 1, d = n− k]q code.

The singleton bound in coding theory says that the sum of the distance and dimension of
a code can be at most n+1, where n is the blocklength of the code (cf. [vL99, Section 5.2]).
Hence, Reed-Solomon codes “match” the singleton bound. Such codes are called Maximum
Distance Separable (MDS), since they have the maximum possible distance for a given
blocklength and dimension. The MDS property together with the nice algebraic structure
of Reed-Solomon codes that facilitates the design of efficient decoding algorithms, have made
it one of the most fundamental code families. Reed-Solomon codes have found a wide variety
of applications in coding theory and computer science, as well as several applications in the
“real world” – examples include compact disc players, disk drives, satellite communications,
and high-speed modems such as ADSL, to name a few (see [WB99] for detailed information
on the various applications of Reed-Solomon codes).

2.2.2 Reed-Muller codes

Reed-Muller codes are a generalization of Reed-Solomon codes obtained by taking for mes-
sage space all `-variate polynomials over some finite field Fq with total degree at most m,
subject to the condition that no variable takes on a degree of q or more. A polynomial is
again encoded by evaluating it at n distinct elements of F`q, where n is the blocklength of the
code (note that this requires n ≤ q`). Setting ` = 1 we get the construction of Reed-Solomon
codes. The degree parameter m is often referred to as the order of the Reed-Muller code.
Reed-Muller codes are clearly linear codes. When m < q, their dimension equals

(
m+`
m

)
,

and using what is now famous as the Schwartz-Zippel Lemma, it follows that their relative
distance is at least (1−m/q).3

Hadamard codes

Of special interest are Reed-Muller codes of order 1, i.e., codes based on multilinear polyno-
mials, also known as simplex codes (a detailed discussion of these codes appears in [MS81,
Chap. 14]). A variant of these, based on homogeneous polynomials with no constant term,
are commonly referred to as Hadamard codes. Formally, a Hadamard code of dimension
` over Fq is defined as follows. A message x ∈ F`q is mapped to the string 〈x · z〉z∈F`q of
length q` (here by x · z we mean the dot product of the vectors x and z over the field
Fq). The Hadamard code thus has very poor rate since it maps ` symbols over Fq into q`

symbols. But it has very good distance properties — its relative distance equals (1− 1/q),
3When m ≥ q, in general there is no simple closed form for the dimension, and the relative distance is at

least q−dm/qe.
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and in fact every non-zero codeword has Hamming weight equal to (q`− q`−1). Despite its
poor rate, its highly structured distance properties makes it an attractive code for use at
the inner level in certain concatenation schemes. Indeed, several of our concatenated code
constructions in later chapters use a suitable Hadamard code as an inner code.

2.2.3 Algebraic-geometric codes

Algebraic-geometric codes (or AG-codes, for short) are also a generalization of Reed-Solomon
codes. Reed-Solomon codes may be viewed as evaluations of certain functions at a subset
S of points on the projective line over Fq — the functions are those that have a bounded
number of “poles” at a certain point that is designated as the “point at infinity” and no
poles elsewhere (this corresponds precisely to low-degree polynomials), and the code can
be defined based on any subset S of points that does not include the point at infinity.
AG-codes are a generalization based on any “nice” algebraic curve playing the role of the
projective line. Let Γ be such a curve. Every such curve has an associated function field
which, roughly, is the set of all “valid” functions that can be evaluated at points on Γ. To
construct an AG-code based on Γ, one picks a point P∞ on the curve and a set S of points
on Γ disjoint from {P∞}. The message space of the code will be all functions in the function
field of Γ that have a bounded number of poles at P∞ and no poles elsewhere, and such a
function will be encoded by evaluating it at each of the points in S. The precise definition
of AG-codes requires a reasonable amount of background in the theory of algebraic function
fields and curves, and this will be developed in Chapter 6 where we will give a list decoding
algorithm for AG-codes.

2.2.4 Concatenated codes

Figure 2-1: Code concatenation. If the outer code Cout is over an alphabet F , and the
inner code Cin has exactly |F | codewords corresponding to the |F | symbols of F , there is a
natural way to combine them by “concatenation”.

Concatenated coding gives a way to combine two codes, an outer code Cout over a large
alphabet (say [Q]), and an inner code Cin with Q codewords over a small(er) alphabet
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(say, [q]), to get a combined q-ary code that, loosely speaking, inherits the good features of
both the outer and inner codes. These were introduced by Forney [For66a] in a classic and
seminal work. The basic idea is very natural (see the illustration in Figure 2-1): to encode a
message using the concatenated code, we first encode it using Cout, and then in turn encode
each of the resulting symbols (which all belong to [Q]) into the corresponding codeword of
Cin. Since there are exactly Q codewords in Cin, the encoding procedure is well defined.

The rate of the concatenated code is the product of the rates of the outer and inner
codes, and the distance is at least as large as the product of the distances of the outer and
inner codes. The product of the distances of the outer and inner codes is called the designed
distance of the concatenated code. Thus, concatenated codes have good rate and distance
if the outer and inner codes have good rate and distance.

The big advantage of concatenated codes for us is that we can get a good list decodable
code over a small alphabet (say, binary codes) based on a good list decodable outer code
(like a Reed-Solomon or AG-code) and a “suitable” binary inner code. The dimension of the
inner code is small enough to permit a brute-force search for a “good” code in reasonable
time. Code concatenation forms the basis of all our code constructions in Chapters 8, 9
and 10, and is a heavily used tool in this thesis.

2.2.5 Number-theoretic codes

The thesis also discusses number-theoretic codes which are based on a similar algebraic
principle to the one underlying the construction of Reed-Solomon and AG-codes.

Chinese Remainder codes

Chinese Remainder codes (or CRT codes, for short), also called Redundant Residue codes,
are the number-theoretic analogue of Reed-Solomon codes. The messages of the CRT code
are integers in {0, 1, . . . ,K − 1} for some K, and a message m, 0 ≤ m < K, is encoded as

m 7→ 〈m mod p1,m mod p2, . . . ,m mod pn〉

for n relatively prime integers p1 < p2 < · · · < pn. If k is such that
∏k
i=1 pi > K, then by the

Chinese Remainder theorem (hence the name of the code), the residues of m modulo any
k of the pi’s uniquely specifies m. Hence any two codewords (corresponding to encodings
of m1,m2 with m1 6= m2) differ in at least (n− k + 1) positions. Thus, the distance of the
code is at least (n− k + 1).

Number field codes

Number field codes are the number-theoretic analogues of AG-codes, and generalize CRT
codes akin to the way AG-codes generalize Reed-Solomon codes. The code is based on a
suitable “number field” (i.e., a finite extension of the field Q of rational numbers) and the
associated “ring of integers” R. A formal description of these codes will take us too far
afield from the main thrust of this thesis. Hence we do not discuss these codes in this thesis;
the interested reader is pointed to [Len86, Gur01c] for formal definitions of these codes and
details on their properties.
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2.3 Results and Structure of this thesis

This thesis presents a thorough and comprehensive investigation of the notion of list decod-
ing. It deals both with fundamental combinatorial questions relating to list decoding and
the algorithmic aspects of list decoding. It also discusses a few applications of list decoding
both within coding theory (to questions not directly concerned with list decoding) and to
certain complexity-theoretic and algorithmic questions outside coding theory.

Though the questions addressed are all intimately related, for purposes of exposition
and because they permit such modularity, we structure the results of this thesis into three
parts: Combinatorial Results (Part I), Algorithms and Code Constructions (Part II), and
Applications (Part III).

The combinatorial results of Part I set the stage for the algorithmic results by high-
lighting what one can and cannot hope to do with list decoding. The bottom line of Part
I can be viewed as the statement: Good codes with excellent combinatorial list decodability
properties exist.

The algorithmic results attempt to “match” the combinatorial bounds with explicit code
constructions and efficient decoding algorithms. These include algorithms for classical and
well-studied codes like Reed-Solomon and algebraic-geometric codes, as well as for certain
novel code constructions based on suitable concatenation schemes. The bottom line of
Part II can be viewed as: There exist “explicit” constructions of “good” codes together with
efficient list decoding algorithms.

In Part III, we discuss some applications of the results and techniques from earlier
chapters to domains both within and outside of coding theory. The notion of list decoding
turns out to be central to certain contexts outside of coding theory, for example to several
complexity-theoretic questions. These and several other applications are discussed in Part
III of the thesis.

We now discuss the results of each of these parts in further detail.

2.3.1 Combinatorial Results

Chapter 3 — The Johnson Bound on List Decoding Radius. We argued in the
introduction that unique/unambiguous decoding is not possible when the number of errors
exceeds half the minimum distance (say, d/2) of the code. The purpose of list decoding is
to allow for meaningful recovery when the number of errors exceeds this bound. But for list
decoding to be meaningful, and definitely for it to be algorithmically feasible, one needs the
guarantee that one can correct many more than d/2 errors with fairly small lists (say, of
size a fixed constant, or a fixed polynomial in the blocklength). In this chapter, we revisit
a classical bound from coding theory called “Johnson bound”, present extensions of it, and
apply it to the context of list decoding. The bound demonstrates that one can always
correct more than d/2 errors with “small” lists – the exact number of errors to which the
bound applies is an explicit function of the distance of the code, and we call this the Johnson
bound on list decoding radius. One way to view these results is that one can construct good
list decodable codes by constructing codes with large minimum distance. There are several
proofs known for Johnson-type bounds in the literature – the proof presented in this chapter
appears in [GS01a].

Chapter 4 — Limits to List Decodability. We address the natural question raised by
the results of Chapter 3 – namely whether the Johnson bound is “tight”, that is, whether
the Johnson bound is the best possible bound on the list decoding radius (purely as a
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function of the distance of the code). For general, non-linear codes, it is easy to show that
the Johnson bound is indeed tight as a general trade-off between list decoding radius and
distance. The more interesting case of linear codes, however, turns out to be significantly
harder to resolve, and is the subject of this chapter. We present constructions of linear
codes of good distance with several codewords in a “small” Hamming ball. Under a widely
believed number-theoretic conjecture (which in particular is implied by a suitably gener-
alized Riemann Hypothesis), we prove that the Johnson bound is indeed a “tight” bound
on the list decoding radius (for decoding with polynomial sized lists). We prove such a
result unconditionally for list decoding with constant-sized lists. We also prove that the
list decoding radius for any fixed polynomial sized list is bounded away from the mini-
mum distance of the code. The results of this chapter are a combination of results from
[GHSZ00, JH01, Gur01a].

Chapter 5 — List decodability Vs. Rate. The results of the earlier chapters show that
one way to get codes with large list decoding radius is to use codes with large minimum
distance. But if our main concern is list-of-L decoding (for some list size L), then is this
“two-step” route the best way to get good list decodable codes? The answer turns out to
be no, and in this chapter we show that one can achieve a much better rate by directly
optimizing the list-of-L decoding radius, than by going through the minimum distance (and
using the Johnson bound on list decoding radius). Our results employ the probabilistic
method, and are thus non-constructive. Nevertheless, these results set the stage for the
algorithmic results of Part II, by highlighting the kind of parameters one can hope for
in efficiently list decodable codes. Moreover, for small enough blocklengths, these “good”
codes can be found by brute-force search, and this is exploited in our concatenated code
constructions. The results in this chapter are a combination of results from [ZP82, GHSZ00,
GI01b].

Part I: Summary. The combinatorial results provide a fairly precise understanding of
the general trade-off between the list decoding radius of a code, and the more traditional
parameters like rate and minimum distance of a code. The Johnson bound asserts that
codes with large minimum distance have large list decoding radius, which raises algorithmic
questions on list decoding such codes from a large number of errors. This is not the only
approach to get good list decodable codes, however, as directly optimizing the list decoding
radius can lead to better trade-offs as a function of the rate of the code.

2.3.2 Algorithmic results

Even though the notion of list decoding originated more than 40 years ago [Eli57, Woz58],
and some of its combinatorial and information-theoretic aspects (relating to channel ca-
pacity under list decoding) received attention, until recently no efficient list decoding
algorithms were known for any (non-trivial) family of codes that could correct asymptoti-
cally more errors than the traditional half the distance bound. Part II of the thesis presents
polynomial time list decoding algorithms for several classical families of codes as well as
several new constructions of codes that have very efficient list decoding algorithms. Details
of the specific chapters and the results therein follow.

Chapter 6 — Reed-Solomon and Algebraic-geometric Codes. We present an effi-
cient algorithm to list decode the important class of Reed-Solomon codes up to the Johnson
bound on list decoding radius. Among other things this is the first algorithm to decode
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Reed-Solomon codes beyond half the distance for every value of the rate. This algorithm was
obtained in joint work with Madhu Sudan [GS99], and it builds upon the earlier works by
Sudan [Sud97a] and Ar et al [ALRS99]. We also present a “weighted” version of the decod-
ing algorithm which can take “soft” inputs – this is a very useful subroutine in soft-decision
decoding of Reed-Solomon codes [KV00] and in decoding various concatenated codes. We
also present a generalization of the algorithm to list decode algebraic-geometric codes, fol-
lowing some ideas from the earlier work of [SW99]. The family of algebraic-geometric codes
are more general than Reed-Solomon codes, and for large enough alphabets contain codes
with the best known asymptotic trade-off between the rate and relative distance.

Chapter 7 — Unified Paradigm for List Decoding. We present a unified description
of several known algebraic codes including Reed-Solomon, algebraic-geometric and Chinese
Remainder (CRT) codes in the language of rings and ideals. We also present a unified list
decoding algorithm for ideal-based codes which encompasses and generalizes the algorithms
from Chapter 6. As a corollary, we extract an algorithm for list decoding CRT codes up
to (almost) the Johnson bound on list decoding radius (suitably adapted to the case of
the CRT codes). The unified paradigm emerging out of this study could be of independent
interest. These results are based on joint work with Amit Sahai and Madhu Sudan [GSS00].

Chapter 8 — List Decoding of Concatenated Codes. The results of the previous
chapters apply to codes over large alphabets (algebraic-geometric codes exist over small
alphabets, but their list decodability is limited by certain barriers based on some deep
results from algebraic geometry). It is natural to ask if there are codes over fixed small
alphabets, say binary codes for concreteness, which can be list decoded efficiently from a
large fraction of errors. It turns out that the earlier results for Reed-Solomon and algebraic-
geometric codes play a critical role in answering this question — using them as outer codes
in suitable concatenation schemes yields constructions of binary codes of good rate and
good list decodability. In particular, we present a polynomial time construction of binary
codes of rate Ω(ε4) that are list decodable in polynomial time from a fraction (1/2− ε) of
errors (for ε > 0 as small a constant as we desire). This construction uses a combination of
the algorithmic results from Chapters 6 and the combinatorial results from Chapter 5. The
material from this chapter is a collection of results from [GS00, GHSZ00], together with
some results that appear for the first time in this thesis.

Chapter 9 — New, Expander-based List Decodable Codes. It follows from the
results of Chapter 6 (on Reed-Solomon and algebraic-geometric codes) that there are rate
Ω(ε2) codes that can be efficiently list decoded up to a fraction (1 − ε) of errors. Reed-
Solomon codes are defined over a large, growing alphabet size, while algebraic-geometric
achieve a constant (in fact poly(1/ε)) alphabet size, but suffer from complicated and ineffi-
cient constructions and decoding. It is natural to ask if there is a “better” construction of
codes that are list decodable up to a fraction (1−ε) errors. This chapter answers this ques-
tion and presents a novel expander-based construction of such codes over a constant-sized
alphabet, along with a simple, near-quadratic time decoding procedure. Furthermore, we
know from Chapter 5 that, non-constructively, a rate of Ω(ε) is feasible for codes with list
decoding radius of (1−ε). Using our basic construction, together with some other ideas, we
are able to construct codes of the optimal Ω(ε) rate that are list decodable up to a fraction
(1−ε) of errors in sub-exponential time. This is the first construction to beat the “ε2-barrier”
on rate and approach the optimal rate in a meaningful way. This chapter also introduces
several tools for code constructions such as pseudolinear codes, multi-concatenated codes,
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and juxtaposed codes, which are interesting in their own right. The material in this chapter
is based on joint work with Piotr Indyk [GI01b].

Chapter 10 — List Decoding from Erasures. All prior chapters dealt with the model
where a certain fraction of the codeword symbols are adversarially corrupted. A weaker
noise model is that of erasures where a certain adversarially chosen fraction of the codeword
symbols are erased by the channel. While this is an easier model to deal with, it also enables
achieving better trade-offs and parameters. We prove combinatorial results akin to those of
Chapter 5 specialized for the case of erasures, and then use techniques similar to those used
in Chapters 8 and 9 to construct codes with good (and sometimes near-optimal) rate and
good erasure list decodability. A side consequence of one of the results in this chapter is a
provable asymptotic separation between the performance of linear and general, non-linear
codes (with respect to erasure list decodability). Such an asymptotic separation is quite
rare in coding theory. The material in this chapter appears in the papers [Gur01b, GI01a].

Part II: Summary. The algorithmic results of the above chapters show that for several
important and useful code families, there is an efficient algorithm to list decode them up to
(close to) the Johnson bound on list decoding radius. These codes are defined over a large
alphabet. However, one can use them as outer codes in concatenated schemes together with
suitable inner codes that have list decodability properties similar to those guaranteed by
the combinatorial results (from Chapter 5). This enables us to get new constructions of
binary codes of good rate and excellent algorithmic list decodability.

2.3.3 Applications

Chapter 11 — Linear-time codes for unique decoding. This chapter uses techniques
similar to previous chapters, specifically Chapter 9, to build codes of very good rate together
with extremely efficient unique/unambiguous decoding algorithms up to the “maximum”
possible radius. Specifically, we construct codes with the optimal Ω(ε) rate that can be
unambiguously decoded up to a fraction (1/2 − ε) of errors in linear time. We then con-
catenate these codes with suitable inner codes to get binary codes of rate Ω(ε3) that can
be decoded from a fraction (1/4 − ε) of errors in linear time. Our codes can also be en-
coded in linear time. These linear-time codes significantly improve the fraction of errors
corrected by the earlier linear-time codes due to Spielman [Spi96]. Our codes are obtained
by using Spielman’s codes as a building block and then boosting its error-resilience using
suitable expander graphs. The results in this chapter are based on joint work with Piotr
Indyk [GI01a, GI01b].

Chapter 12 — Sample Applications outside Coding Theory. We discuss some
sample applications of list decoding outside coding theory. We present an algorithmic ap-
plication to the problem of guessing secrets, which is a variant of the “20 questions” game
played with more than one secret. List decoding has found several compelling applications in
complexity theory and we discuss some of these including hardcore predicate constructions,
hardness amplification of boolean functions, constructions of extractors and pseudorandom
generators, inapproximability of NP witnesses, etc. The chapter also discusses some appli-
cations of list decoding to cryptographic questions such as cryptanalysis of certain block
ciphers, finding smooth integers, and traitor tracing.
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2.3.4 Conclusions

Chapter 13 — Concluding Remarks. We conclude with a brief summary of the con-
tributions of the thesis and discuss some open questions and possible directions for future
research.

2.3.5 Dependencies among chapters

A pictorial depiction of the interdependencies among the various technical chapters is pre-
sented in Figure 2-2.

Figure 2-2: The interrelationship between various chapters. A solid line indicates a depen-
dency (in either techniques or results themselves). A dashed arrow from A to B indicates a
“soft” dependency; i.e., reading portions of A prior to B would be helpful, but is not strictly
necessary. A dotted line from A to B that results of chapter A “motivate” the contents of
chapter B, though there is no real dependency in the results or techniques themselves.

We would like to point out that the separation of the combinatorial and algorithmic
results in this thesis is not a strict one. We only isolate the most basic combinatorial re-
sults in Part I, namely those results which are interesting independent of whether there are
algorithmic results or not (though they do end up motivating and being used in several of
the algorithms in Part II anyway). Some combinatorial results can also be found in Part II.
In all such cases, due to the somewhat “local” nature of their application, we chose to defer
the presentation of the concerned combinatorial results to the point where they are actually
needed. Examples of such combinatorial results discussed in Part II include: a version of
the Johnson bound in Chapter 7 when the various codeword positions have different con-
tributions towards the minimum distance (this happens for the Chinese Remainder code),
a Johnson-type bound in Chapter 8 concerning the coset weight distribution of codes as
a function of the distance of the code, an existence result for codes whose coset weight
distribution has a certain property in Chapter 8, results concerning pseudolinear codes in
Chapters 9 and 10, and combinatorial bounds and existence results concerning erasure list
decodable codes in Chapter 10.
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Part I

Combinatorial Bounds
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Chapter 3

Johnson-type Bounds and
Applications to List Decoding

Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.

James Boswell, in “The Life of Samuel Johnson”

This chapter, as well as the next one, explore the relation between the list decoding
radius and minimum distance of a code. Understanding the relation between these parame-
ters is useful for two reasons: (a) for several important families of codes like Reed-Solomon
codes, we have precise bounds on the distance, and one can use the relation between list
decoding radius and distance to understand the list decoding potential of these codes; and
(b) this shows that one approach to construct good list decodable codes is to construct
large distance codes, and the latter is a relatively well-studied and better understood prob-
lem. Also, historically the most significant algorithmic results on list decoding have been
fueled by an attempt to decode codes whose good minimum distance highlighted their good
combinatorial list decodability properties.

3.1 Introduction

In order to perform list decoding up to a certain number, say e, errors efficiently, we need
the guarantee that every Hamming ball of radius e has a “small” number of codewords.
This is because the list decoding algorithm will have a runtime that is at least the size of
the list it outputs, and we want the algorithm to be efficient even for the worst-case error
pattern. The exact size of the list can be either set to a suitably large constant (independent
of the blocklength), or to a fixed polynomial function of the blocklength.

Unique decoding is based upon the fact that in a code of minimum distance d any
Hamming ball of radius less than d/2 can have at most one codeword. For list decoding we
would like upper bounds on the number of codewords in a ball of radius e for e larger than
d/2. A classical bound in coding theory, called the Johnson bound [Joh62, Joh63] (see also
[MS81]), proves an upper bound on the number of codewords at a Hamming distance exactly
e from an arbitrary word, as long as e is less than a certain function of the distance and
blocklength of the code. Such a bound is of direct interest to constant-weight codes (which
are codes all of whose codewords have the same Hamming weight), and is also used in the
Elias-Bassalygo upper bound on the dimension of codes with certain minimum distance.
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For purposes of list decoding, we need a Johnson-style bound for the number of code-
words at a distance of at most e (not exactly e) from a received word. In this chapter,
we present a very general version of such a bound. Owing to their strong resemblance to
the Johnson bound, we call our bounds Johnson-type (or simply, Johnson) bounds. The
main result of this chapter is the fact any q-ary code of blocklength n and distance d is list
decodable with “small” lists for up to eJ(n, d, q) errors, where eJ(n, d, q) is a function only
of n, d, q (and not the structure of the code). We call this quantity eJ(n, d, q) the “Johnson
bound on list decoding radius” or “Johnson radius” of the code, and it is always greater
than d/2.

Proofs of the Johnson bound seem to come in one of two flavors. The original proof and
some of its derivatives follow a linear algebra based argument [Joh62, Joh63, Eli91, GRS95,
GS00], while more recent proofs, most notably [Lev98, EZ95, AVZ00] are more geometric.
Our proof follows the latter spirit, extending these proofs to the case of general alphabets.

Moreover, our techniques easily allow us to extend our results and also prove a weighted
version of the Johnson bound which is of interest to some questions raised by the investi-
gations on “soft” list decoding algorithms (more details on this and the connection to soft
decoding will be discussed in later chapters in Part II of the thesis).

3.2 Definitions and Notation

We first recall some notation. For x,y ∈ [q]n the Hamming distance between x and y is
denoted ∆(x,y). For r ∈ [q]n and 0 ≤ e ≤ n, the Hamming ball of radius e around r is
defined by Bq(r, e) = {x ∈ [q]n : ∆(r,x) ≤ e}.

The key quantity to study in our context is the following. Let A′q(n, d, e) denote the
maximum number of points that may be placed in some ball Bq(r, e) such that all pairwise
distances between the points are at least d. More formally,

A′q(n, d, e) = max{|S| : S ⊆ Bq(r, e) for some r ∈ [q]n and ∀x,y ∈ S, ∆(x,y) ≥ d} . (3.1)

(We use the notation A′q(n, d, e) instead of the apparently more natural choice Aq(n, d, e)
because the notation Aq(n, d, e) in coding theory literature normally refers to the maximum
number of points (with pairwise distances at least d) that may be placed on the surface of
(instead of within) the ball Bq(r, e). To avoid confusion with this standard terminology, we
use A′q(n, d, e) instead. We clearly have Aq(n, d, e) ≤ A′q(n, d, e), and thus any upper bound
we derive on A′q(n, d, e) also applies to Aq(n, d, e).)

Clearly for any code C ⊆ [q]n of minimum distance d, A′q(n, d, e) is an upper bound
on the number of codewords of C that can lie in a Hamming ball of radius e. Hence, our
objective in this chapter is to obtain an upper bound on the function A′q(n, d, e).

It is common practice to denote these functions as A(n, d, e) and A′(n, d, e) for the binary
(q = 2) case.

3.3 The Johnson bound on list decoding radius

Theorem 3.1 ([GS01a, AVZ00]) Let C be any q-ary code of blocklength n and minimum
distance d = (1 − 1/q)(1 − δ)n for some 0 < δ < 1. Let e = (1 − 1/q)(1 − γ)n for some
0 < γ < 1 and let r ∈ [q]n be arbitrary. Then, provided γ >

√
δ, we have

|Bq(r, e) ∩ C| ≤ min
{
n(q − 1),

1− δ
γ2 − δ

}
. (3.2)
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Furthermore, for the case when γ =
√
δ, we have |Bq(r, e) ∩ C| ≤ 2n(q − 1)− 1.

The theorem below is merely a restatement of the above result in different notation, and
follows immediately from the above result (it is a straightforward calculation to check this).

Theorem 3.2 Let q, n, d be arbitrary positive integers with d < (1− 1/q)n.

(i) Let e ≥ 1 be any integer that satisfies the condition

e < eJ(n, d, q) def=
(

1− 1
q

)(
1−

√
1− q

q − 1
· d
n

)
n . (3.3)

Then we have

A′q(n, d, e) ≤ min{n(q − 1),
nd

nd− 2e(n− qe
2(q−1))

} . (3.4)

In other words, for an integer L ≥ 1, if

e ≤ eJ(n, d, q, L) def= n
(

1− 1
q

)(
1−

√
1− q

q − 1
L− 1
L

d

n

)
, (3.5)

then A′q(n, d, e) ≤ L.

(ii) Furthermore, if e = eJ(n, d, q), then A′q(n, d, e) ≤ 2n(q − 1)− 1.

The above theorem says that a q-ary code of blocklength n and distance d can be list
decoded with small lists for up to eJ(n, d, q) errors. For purposes of easy future reference,
we give the quantity eJ(n, d, q) the label “Johnson bound on list decoding radius” , or simply
the “Johnson radius” of a code. When we want to make the alphabet size explicit, we will
refer to eJ(n, d, q) as the “q-ary Johnson radius”. For decoding with lists of size L, we give
the quantity eJ(n, d, q, L) the label “Johnson radius for list-of-L decoding”.

It is easy to verify that the Johnson radius eJ(n, d, q) defined in Equation (3.3) satisfies

eJ(n, d, q) > d/2

for every n, d, q with 1 ≤ d ≤ (1 − 1/q)n. This captures the claim that list decoding
with polynomial-sized lists always permits one to decode beyond half the distance. As an
illustration, we plot the Johnson radius for binary codes in Figure 3-1, normalized by
blocklength, as a function of the relative distance of the code. Note for any every value of
the relative distance δ in the range 0 < δ < 1/2, the Johnson radius is strictly greater than
half the minimum distance.

Before moving on to the proof of Theorem 3.1, we state the following corollary to
the above statement. This gives a (weaker) version of the above bounds that ignores the
alphabet size q of the code. But it has a simpler, easily stated form, and for large q
approaches the above bounds.

Corollary 3.3 Let q, n, d, e be arbitrary positive integers with e ≤ d ≤ n.

(i) If e < n−
√
n(n− d), then A′q(n, d, e) ≤ n(q − 1).
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Figure 3-1: Plot of Johnson radius as a function of relative distance for binary codes. This
shows that list decoding always permits decoding beyond half the distance.

(ii) if e ≤ n−
√
n(n− d+ d/L), then A′q(n, d, e) ≤ L.

Proof: The proof follows from Theorem 3.2 and the fact that

(1−
√

1− x) ≤ (1− 1/q)(1−
√

1− qx

q − 1
)

for every integer q and every x, 0 ≤ x ≤ (1 − 1/q). The above inequality can be proved
using a straightforward calculation. Using the above inequality with x = d/n and x = L−1

L
d
n

implies that the conditions on e stated in the corollary imply the Conditions (3.3) and (3.5)
respectively. 2

3.3.1 Proof of Theorem 3.1

Proof Idea: The proof follows a “geometric” approach. We identify elements of [q]n with
vectors in Rnq by replacing the symbol i (1 ≤ i ≤ q) by the unit vector of length q with a 1
in position i. This allows us to embed the codewords and the “received” word r into Rnq.
Next, by appropriately shifting the set of vectors corresponding to the codewords that are
close to r, we get a set of vectors such that the inner product of any two distinct vectors
from this set is non-positive. By a standard geometric upper bound on the cardinality of
such a set of vectors, we get the required upper bound on the number of codewords that
are “close” to r.

Our idea extends proofs for the binary case, given by [EZ95, Lev98, AVZ00]. These
works used an appropriate embedding of the binary codewords in Rn and an appropriate
shifting of vectors to establish “Johnson-style” bounds by appealing to bounds on spherical
codes, i.e., bounds on the cardinality of a set of unit vectors in real space with a specified
minimum angle between any pair of vectors. It may be noted that the generalization to
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Figure 3-2: Geometric picture behind proof of Theorem 3.1

arbitrary alphabets is not automatic. (Of the several potential approaches, our proof hits
upon the right path.)

Proof of Theorem 3.1: Assume without loss of generality that r = 〈q, q, . . . , q〉, i.e is the
symbol q repeated n times. Let C1, C2, . . . , Cm be all the codewords of C that lie within
Bq(r, e) where e = (1− 1/q)(1− γ)n. Our goal is to get an upper bound on m provided γ
is large enough.

We associate a vector in Rnq with r and with each codeword Ci. Each vector is to be
viewed as having n blocks each having q components (the n blocks correspond to the n
codeword positions). For 1 ≤ l ≤ q, denote by êl the q-dimensional unit vector with 1 in
the lth position and 0 elsewhere. For 1 ≤ i ≤ m, the vector ci associated with the codeword
Ci has in its jth block the components of the vector êCi[j] (Ci[j] is the jth symbol of Ci,
treated as an integer between 1 and q). The vector associated with the received word r,
which we also denote r by abuse of notation, is defined similarly. Let 1 ∈ Rnq be the all
1’s vector. Now define v = αr + (1−α)

q 1 for a parameter 0 ≤ α ≤ 1 to be specified later in
the proof. Note that the ci’s and v all lie in the space defined by the intersection of the
n “hyperplanes” { H′j :

∑q
`=1 xj,` = 1 } for 1 ≤ j ≤ n. Hence the vectors (ci − v), for

1 ≤ i ≤ m, all lie in H =
⋂n
j=1Hj where Hj = {x ∈ Rnq :

∑q
`=1 xj,` = 0}. It is easy to

see that H is an n(q − 1)-dimensional subspace of Rnq. We thus conclude that the vectors
(ci − v), 1 ≤ i ≤ m, all lie in an n(q − 1)-dimensional space.

The idea behind the rest of the proof is the following. We will pick α so that the vectors
(ci−v), for 1 ≤ i ≤ m, have all pairwise dot products less than 0. Geometrically speaking,
we shift the origin O to O′ where OO′ = v, and require that relative to the new origin
the vectors corresponding to the codewords have pairwise angles which are greater than 90
degrees (see Figure 3-2). By a simple geometric fact (stated in Lemma 3.4 below), it will
then follow that the number of codewords m is at most the dimension n(q− 1) of the space
in which all these vectors lie.
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For 1 ≤ i ≤ m, let ei = ∆(r, Ci). Note that ei ≤ e for every i. Now

〈ci,v〉 = α〈ci, r〉+
(1− α)

q
〈ci,1〉 = α(n− ei) + (1− α)

n

q
(3.6)

〈v,v〉 = α2n+ 2(1− α)α
n

q
+ (1− α)2n

q
=
n

q
+ α2

(
1− 1

q
)n (3.7)

〈ci, cj〉 = n−∆(Ci, Cj) ≤ n− d . (3.8)

Using (3.6), (3.7) and (3.8), and the fact that each ei ≤ e, we get, for i 6= j,

〈ci − v, cj − v〉 ≤ 2αe− d+
(

1− 1
q

)
(1− α)2n . (3.9)

Using e = (1− 1/q)(1− γ)n and d = (1− 1/q)(1− δ)n the above simplifies to

〈ci − v, cj − v〉 ≤
(

1− 1
q

)
n
(
δ + α2 − 2αγ

)
(3.10)

Thus as long as γ > 1
2

(
δ
α + α

)
we will have all pairwise dot products to be negative just

as we wanted. We pick α to minimize ( δα + α), or in other words we set α =
√
δ. Now

as long as γ >
√
δ, we will have 〈ci − v, cj − v〉 < 0 for all 1 ≤ i < j ≤ m. To complete

the proof, we note that (for the choice α =
√
δ), for every 1 ≤ i ≤ m, 〈ci − v,v〉 ≥

(1 − 1/q)n
√
δ(γ −

√
δ) > 0 (this is easily checked using (3.6) and (3.7)). Thus provided

γ >
√
δ, we have 〈ci − v,v〉 > 0 for 1 ≤ i ≤ m. Now applying Part (iii) of Lemma 3.4, with

the setting vi = ci − v and u = v|H, the projection of v onto the subspace H, implies that
m ≤ n(q−1) (recall that the vectors (ci−v), 1 ≤ i ≤ m, all lie in H and dim(H) = n(q−1)).

We now prove that if γ >
√
δ, then m ≤ 1−δ

γ2−δ . For this we set α = γ. Now from
Equation (3.10) we have

〈ci − v, cj − v〉 ≤ (1− 1/q)n(δ − γ2) . (3.11)

Thus if γ >
√
δ, we have 〈ci − v, cj − v〉 < 0. Now for the choice α = γ, we have for each

i, 1 ≤ i ≤ m,

‖ci − v‖2 = 〈ci − v, ci − v〉 ≤ 2αe+ (1− 1/q)(1− α)2n = n(1− 1/q)(1− γ2) .

Denote by wi the unit vector − ci−v
‖ci−v‖ . We then have

〈wi,wj〉 ≤ −
γ2 − δ
1− γ2

(3.12)

for 1 ≤ i < j ≤ m (this follows from (3.11) and (3.12)). By a well-known geometric fact
(see Lemma 3.5 for the simple proof), it follows that the number of such vectors, m, is at
most (1 + 1−γ2

γ2−δ ) = 1−δ
γ2−δ , as desired.

To handle the case when γ =
√
δ, we can choose α =

√
δ, and we then have 〈ci − v, cj − v〉 ≤

0 for all 1 ≤ i < j ≤ m, and also 〈ci − v,v〉 ≥ 0 for each i = 1, 2, . . . ,m. Now applying
Part (ii) of Lemma 3.4, we get m ≤ 2n(q − 1)− 1. 2
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3.3.2 Geometric Lemmas

We now state and prove the geometric facts that were used in the above proof.

Lemma 3.4 Let v1, . . . ,vm be non-zero vectors in RN such that 〈vi,vj〉 ≤ 0 for all 1 ≤
i < j ≤ m. Then the following hold:

(i) m ≤ 2N .

(ii) Suppose that there exists a non-zero u ∈ RN such that 〈u,vi〉 ≥ 0 for i = 1, 2, . . . ,m.
Then m ≤ 2N − 1.

(iii) Suppose there exists an u ∈ RN such that 〈u,vi〉 > 0 for i = 1, 2, . . . ,m. Then
m ≤ N .

A proof of Part (i) of the above lemma can be found, for instance, in [Bol86, Chapter
10, page 71]. The proofs of the other two parts are similar. For completeness, we present a
self-contained proof below.

Proof of Lemma 3.4: We first prove (iii). Suppose for contradiction that m ≥ N + 1.
Then since the vectors v1, . . . ,vm all lie in RN , they must be linearly dependent. Let
S ⊆ [m] be a non-empty set of minimum size for which a relation of the form

∑
i∈S aivi = 0

holds with each ai 6= 0. We claim that the ai’s must all be positive or all be negative.
Indeed, if not, by collecting terms with positive ai’s on one side and those with negative
ai’s on the other, we will have an equation of the form

∑
i∈T+ aivi =

∑
j∈T− bjvj = w (for

some vector w) where T+ and T− are disjoint non-empty sets with T+ ∪ T− = S, and
all ai, bj > 0. By the minimality of S, w 6= 0 and hence 〈w,w〉 > 0. On the other hand
〈w,w〉 = 〈

∑
i∈T+ aivi,

∑
j∈T− bjvj〉 =

∑
i,j aibj〈vi,vj〉 ≤ 0 since aibj > 0 and 〈vi,vj〉 ≤ 0

for each i ∈ T+ and j ∈ T−. This contradiction shows that we may assume that ai > 0 for
all i ∈ S.

Now
∑

i∈S aivi = 0, so that
∑s

i=1 ai〈u,vi〉 = 0. But this is impossible since for each
i we have ai > 0 and 〈u,vi〉 > 0. We have thus arrived at a contradiction, and therefore
such a linear dependence

∑
i∈S aivi = 0 does not exist. Thus the vectors v1,v2, . . . ,vm

are linearly independent and we must have m ≤ N .
To prove (ii), we use induction on N . The statement clearly holds for N = 1. For N > 1,

we proceed exactly as above. If m ≤ N , we have nothing to prove, so assume m > N so
that v1, . . . ,vm are linearly independent, and as above, let S ⊆ [m] be a non-empty set
of minimum size for which a relation of the form

∑
i∈S aivi = 0 holds with each ai 6= 0.

Arguing as above, we may assume that ai > 0 for every i ∈ S. Assume for definiteness that
S = {1, 2, . . . , s}. We thus have the linear dependence

∑s
i=1 aivi = 0 with each ai > 0, and

since this is a minimum sized linear dependence, v1, . . . ,vs must span a subspace W of RN

of dimension (s− 1).
Since

∑s
i=1 aivi = 0, we have

∑s
i=1 ai〈vi,v`〉 = 0 for each ` = s+1, . . . ,m. Since ai > 0

for 1 ≤ i ≤ s and 〈vi,v`〉 ≤ 0, it must be therefore be the case that vi is orthogonal to v`
for all i, ` with 1 ≤ i ≤ s and s < ` ≤ m. A similar argument shows u is orthogonal to
vi for each i = 1, 2, . . . , s. Thus the vectors vs+1, . . . ,vm and u all lie in W⊥ which has
dimension equal to (N − s + 1). Since s > 1, the induction hypothesis applied to these
vectors implies that m− s ≤ 2(N − s+ 1)− 1, or in other words m ≤ 2N − s+ 1 ≤ 2N − 1,
as desired.

Finally (i) follows immediately from (ii). Indeed, apply (ii) with vectors v1, . . . ,vm−1

and −vm playing the role of u. This implies m−1 ≤ 2N −1, or in other words m ≤ 2N . 2
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Lemma 3.5 Let ε > 0 be a positive real and let w1,w2, . . . ,wm be m unit vectors such
that 〈wi,wj〉 ≤ −ε for all 1 ≤ i < j ≤ m. Then m ≤ 1 + 1

ε .

Proof: We have

0 ≤ 〈
m∑
i=1

wi,
m∑
i=1

wi〉 =
m∑
i=1

〈wi,wi〉+ 2
∑

1≤i<j≤m
〈wi,wj〉 ≤ m−m(m− 1)ε ,

which gives m ≤ 1 + 1/ε. 2

3.4 Generalization in Presence of Weights

For applications to “soft” list decoding algorithms which will be discussed in Part II of the
thesis, it is of interest to prove a version of the Johnson bound in the presence of weights on
codeword symbols. Such a bound is also of independent interest, since it covers the case of
decoding under errors-and-erasures and the case when for each position one receives a small
list of candidate symbols one of which is the correct one, all under a uniformly applicable
bound.

We next state the weighted version of the Johnson bound that follows from our proof
technique. The bound in Part (i) of the theorem generalizes the result of Theorem 3.2. The
result from Part (ii) applies under a more general condition than Condition (3.3) (or even
Condition (3.13)), but the upper bound itself is slightly weaker (since it is (nq− 1) instead
of n(q − 1)). The result of Part (iii) generalizes the result of Theorem 3.2, Condition 3.5.

Theorem 3.6 Let C ⊆ [q]n be a code of blocklength n and minimum distance d. Let {wi,j :
1 ≤ i ≤ n; 1 ≤ j ≤ q} be an arbitrary set of non-negative real weights. Define Wi =∑q

j=1wi,j and W (2)
i =

∑q
j=1w

2
i,j, Wtot =

∑
i,j wi,j, and W (2)

tot =
∑

i,j w
2
i,j. Then:

(i) The number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci
Wi

>
n

q
+

√√√√(n(1− 1
q

)
− d
)( n∑

i=1

W
(2)
i

W 2
i

− n

q

)
. (3.13)

is at most n(q − 1).

(ii) The number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci >
Wtot

q
+

√(
n
(

1− 1
q

)
− d
)(

W
(2)
tot −

(Wtot)2

nq

)
(3.14)

is at most (nq − 1).

(iii) For any integer L ≥ 2, the number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci ≥
Wtot

q
+

√(
n
(

1− 1
q

)
− d+

d

L

)(
W

(2)
tot −

(Wtot)2

nq

)
(3.15)

is at most L.
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Proof: We do not give a full proof here, rather we indicate the only changes that must
be made to the proof of Theorem 3.1 in order to prove our claim. For Part (i), the only
modification required in the proof of Theorem 3.1 is to pick r so that its (i, j)’th component,
for 1 ≤ i ≤ n and 1 ≤ j ≤ q, equals wi,j

Wi
. The vector v is defined as before to be αr+ (1−α)

q 1
for

α =

√√√√n(1− 1/q)− d∑
i
W

(2)
i

W 2
i
− n/q

.

Once once again all the vectors (ci − v) lie in an n(q − 1)-dimensional subspace of Rnq. It
can be proved as in the proof of Theorem 3.1 that these vectors have pairwise non-positive
dot products, which gives the desired n(q − 1) upper bound on the number of codewords.

For Parts (ii) and (iii), we pick r so that its (i, j)’th component for 1 ≤ i ≤ n and
1 ≤ j ≤ q, equals nwi,j

Wtot
, and the rest of the proof follows that of Theorem 3.1. Note that

Wtot/q is the expected value of
∑

iwi,ri for a random vector r ∈ [q]n, and (W (2)
tot −

(Wtot)2

nq ) is
proportional to the variance of the wi,j ’s. Thus, the above theorem states that the number
of codewords which have weighted agreement bounded away from the expectation by a
certain number of standard deviations is small. The upper bound of (nq − 1) (instead of
n(q−1)) in Part (ii) of above theorem arises since we are only able to ensure that the vectors
(ci − v) all lie in an (nq − 1)-dimensional subspace (namely that defined by

∑
i,j xi,j = 0),

and not an n(q − 1)-dimensional subspace as in Part (i). 2

We now state a corollary similar to Corollary 3.3 that ignores the alphabet size in the
decoding condition. The proof again follows because it can be verified (after a straightfor-
ward but tedious calculation) that the stated conditions in fact imply the Conditions (3.14)
and (3.15) above.

Corollary 3.7 Let C ⊆ [q]n be a code of blocklength n and minimum distance d. Let
{wi,j : 1 ≤ i ≤ n; 1 ≤ j ≤ q} be an arbitrary set of non-negative real weights.

(i) The number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci >
(

(n− d)
∑
i,j

w2
i,j

)1/2
(3.16)

is at most (nq − 1).

(ii) For any integer L ≥ 2, the number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci ≥
((

n− d+
d

L

)∑
i,j

w2
i,j

)1/2

(3.17)

is at most L.

A bound similar to Corollary 3.7 above can also be worked out for the case when the
different codeword positions have different contributions towards the minimum distance.
Such a bound is of interest for certain codes like the Chinese Remainder Code and will
be stated and formally proved in the form of Theorem 7.9 in Section 7.6.1 of the thesis.
We refer the reader interested in seeing a full proof of Corollary 3.7 above to the proof of
Theorem 7.9.
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3.5 Notes

The quantity A(n, d, w) for constant-weight binary codes has a rich history and has been
studied for almost four decades, and its study remains one of the most basic questions in
coding theory. The first upper bounds on the quantity A(n, d, w) for constant-weight codes
appear in the work of Johnson [Joh62, Joh63]. Since then several proofs have appeared
in the literature, including generalizations of the bound to the case of q-ary alphabets for
q > 2 (cf. [Bro98] for a discussion and detailed bibliography).

The quantity A′(n, d, e), which is of more direct interest to list decoding, seems to have
received much less explicit attention. It must be said that several proofs that provide
upper bounds on A(n, d, e) work with little or no modification to yield upper bounds on
A′(n, d, e) as well. This was made explicit for example in [Eli91, BGS98]. Upper bounds on
A′q(n, d, e) identical to the second upper bound in (3.4) of this chapter are stated in [Bro98].
Proofs of such bounds that follow a linear algebra based argument appear, for instance, in
[GRS95, GS00].

The contribution of the results in this chapter is that we extend the more recent upper
bounds for the binary case from [AVZ00] (which are based on geometric arguments) to
bounds on A′q(n, d, e), and furthermore we obtain some elegant weighted generalizations of
the Johnson bound. In particular, the upper bound A′q(n, d, e) ≤ n(q−1) for e < eJ(n, d, q)
that we proved in Theorem 3.2 appears to be new. For the case q = 2, this result was
known. Specifically, Elias [Eli57] proved that if d is odd, then A′(n, d, e) ≤ n as long as e
is at most the binary Johnson radius eJ(n, d, 2). For even d, however, A′(n, d, e) = O(n2)
was the best known bound that was made explicit till the recent work of Agrell, Vardy and
Zeger [AVZ00], who showed that A′(n, d, e) ≤ n whenever e < eJ(n, d, 2). (Actually, Agrell
et al. claim their result only for A(n, d, e), but their proof works for the case of A′(n, d, e)
as well.)

Combinatorial results of a flavor similar to this chapter appear in two other parts of
the thesis: (a) in Section 7.6.1 where a bound similar to Corollary 3.7 is proved for the
case when the minimum distance is measured with a non-uniform weight on the codeword
positions, and (b) in Section 8.5.1 where we prove a result along the lines of Theorem 3.2,
but instead of bounding the number of codewords in a Hamming ball of certain radius, we
establish a more general result concerning the coset weight distribution of a code, purely as
a function of its minimum distance.

The material in this chapter appears in [GS01a].
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Chapter 4

Limits to List Decodability

Our difficulty is not in the proofs, but in learning what to prove.

Emil Artin

4.1 Introduction

The previous chapter showed that every code of certain minimum distance has an associated
“Johnson radius” which gives a lower bound on the list decoding radius (in other words,
every Hamming ball of radius up to the Johnson radius has “few” codewords). This result
plays an important role in the development of the subject of list decoding. Indeed, by
showing that any code with large distance has large list decoding radius, it raises algorithmic
questions concerning list decoding important families of codes beyond half the minimum
distance.

But at a purely combinatorial level, this also raises the following natural question on
the “optimality” of the results from the previous chapter: Is the Johnson radius the best
possible bound on list decoding radius in terms of the minimum distance, or could there be
an even better lower bound on the list decoding radius of a code?

This chapter addresses the above question. The results of this chapter demonstrate that
the Johnson radius is indeed essentially tight as a general relation between list decodability
and minimum distance. Note that this does not say that for every code the Johnson bound
on list decoding radius is the correct one – rather, it says there exist some codes for which
this is the case.1 In other words, purely as a function of the distance of the code, the
Johnson radius gives (asymptotically) the best possible bound on list decoding radius. The
basic strategy behind showing this is to construct a code family of certain relative minimum
distance which has a large (super-constant or super-polynomial, depending upon the actual
result) number of codewords within a Hamming ball of radius close to the Johnson radius.

We should remark that for general, non-linear codes, it was already known (by a simple
proof) that one can have exponentially many codewords just beyond the Johnson radius
(see for instance [GRS95] – their result is formally stated in Section 4.3.1). Indeed a random
constant-weight code with suitable parameters has this property with high probability. The
thrust of this chapter is, therefore, on linear codes. Note that most of the interesting code
families are linear, and it is therefore important to understand the list decodability vs.

1Indeed the results of the next chapter demonstrate that for most codes, the Johnson radius is not the
best possible bound on the list decoding radius.
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distance trade-off restricted to linear codes. Also, for the sake of simplicity, we focus on
binary codes in this chapter.

We stress that imposing the requirement of linearity makes the problem significantly
harder, and the results presented in this chapter represent the first asymptotic results
that give non-trivial linear code constructions with the property that there exist “several”
codewords in a ball of “small” (as a function of the distance) radius.

We should also mention here that the results of this chapter by their very nature are
rather technical. While an appreciation for the statement of the results in this chapter is
useful to put the various pieces of the thesis in context, the results themselves, and more
so the proofs, are fairly independent of the rest of the thesis. The reader might therefore
want to skip some of the proofs in a first reading.

4.2 Informal description of results

The main results of this chapter are informally stated below. (A formal description of the
results in the form of theorem statements will be given in Section 4.3 after the relevant
notation and formalism is developed.) All results are for binary linear codes. Recall from
the previous chapter (specifically, Equation (3.3) from Theorem 3.2) that the Johnson radius
(normalized by blocklength) of a binary code of relative distance δ (0 ≤ δ ≤ 1/2) equals

J(δ) =
1−
√

1− 2δ
2

. (4.1)

The results proven in this chapter include:

1. The list decoding radius for constant-sized lists approaches the Johnson radius of a
code; in other words for any constant L and relative distance δ, there exist linear
codes with more than L codewords in a Hamming ball of relative radius close to J(δ).

2. The list decoding radius for list size being any fixed polynomial of the blocklength is
strictly less than the minimum distance of the code.

3. The list decoding radius for list size growing polynomially in the blocklength ap-
proaches the Johnson radius. In other words, for every δ, there exist linear codes of
relative distance δ that have a super-polynomial number of codewords in some Ham-
ming ball of relative radius close to J(δ). This result is stronger than that stated
above as Result 2. However, we are able to prove this result only under a number-
theoretic conjecture. The conjecture is a widely believed one (it is a very special case
of the “Artin conjecture”), and is in particular known to hold under the Generalized
Riemann Hypothesis (GRH).

4.3 Formal description of results

4.3.1 The result for non-linear codes

Before describing our results (which are for linear codes), we recall the following result from
[GRS95] that shows that the Johnson bound on list decoding radius is tight for general,
non-linear codes. We state the result only for binary codes – an analogous statement also
holds for q-ary codes. The proof is quite straightforward and follows by picking a random
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constant weight code with a certain number of codewords and then arguing that it has
“good” distance with high probability. This gives several codewords in a small Hamming
ball centered at the all-zeroes word. The reader is referred to [GRS95] for further details
on the proof.

Proposition 4.1 ([GRS95]) For every δ, 0 < δ < 1/2, for all small enough ε > 0,
and for all sufficiently large n, there exists a (non-linear) binary code of blocklength n and
relative distance at least δ, that has at least 2Ω(ε2n) codewords in a Hamming ball of radius
n
2 (1 + ε−

√
1− 2δ − ε).

The Johnson bound (Theorem 3.2) states that the number of codewords in a Hamming
ball of radius n

2 (1−
√

1− 2δ) is at most 2n. Therefore the above establishes that in a ball of
radius slightly greater than the Johnson radius, there could in fact be exponentially many
codewords.

4.3.2 Definitions

We first develop the necessary notation and definitions in order to describe our results
formally.

Definition 4.1 (Lower bound on list decoding radius) For a distance parameter δ,
0 ≤ δ ≤ 1/2, and list size ` : Z+ → Z

+, the lower bound on list of ` decoding radius for
binary linear codes of relative distance δ, denoted L`(δ), is defined to be

L`(δ) = inf
C | δ(C)≥δ

LDR`(C) ,

where the infimum is taken over all binary linear code families of relative distance at least
δ.

One could also define the above function L`(δ) for relative distance δ which is a function
of the blocklength. In this case, the infimum above would be taken over codes families
C = {Ci}i≥1 that satisfy dist(Ci) ≥ δ(ni) · ni where ni is the blocklength of Ci for i ≥ 1.

Note that the terminology “lower bound on list decoding radius” comes from the fact
that L`(δ) is the maximum fractional radius r for which every code of blocklength n and
relative distance δ is guaranteed to have at most `(n) codewords in any Hamming ball of
radius rn. In other words, every code of relative distance δ has list decoding radius at least
L`(δ).

We will be interested in studying the above function for the case of list size being
a constant or growing as a polynomial in the blocklength. To do so, we need further
definitions.

Definition 4.2 For real distance 0 ≤ δ < 1/2 and an integer constant c ≥ 1:

(i) The quantity Lconst
c (δ) is defined to be L`(δ) where `(n) = c is a constant function.

(ii) The quantity Lpoly
c (δ) is defined to be lim supc1→∞ L`c1 (δ) where `c1(n) = c1n

c.

(iii) The quantity Lconst(δ) is defined as lim supc→∞{Lconst
c (δ)}.

(iv) The quantity Lpoly(δ) is defined as lim supc→∞{L
poly
c (δ)}.
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4.3.3 Statement of results

It is straightforward to verify that, in the above notation, the result of Theorem 3.2 from
the previous chapter implies the following:

Proposition 4.2 For every δ, 0 ≤ δ ≤ 1/2 and integer c ≥ 1,

Lconst
c (δ) ≥ 1

2
(1−

√
1− 2δ +

2δ
c

) .

As a corollary, we have Lconst(δ) ≥ J(δ) = (1−
√

1− 2δ)/2.

Thus the above gives a lower bound on Lconst(δ). The first result is that this lower
bound is tight:

Theorem 4.3 For every δ, 0 ≤ δ ≤ 1/2, Lconst(δ) = J(δ) = (1−
√

1− 2δ)/2.

Given the precise understanding of the Lconst function from the above theorem, we are
next interested in understanding the functions Lpoly

c and Lpoly. Here we make the following
conjecture that the Johnson bound is in fact tight even for list decoding with polynomial-
sized lists. (The result of Proposition 4.1 implies that the conjecture holds if one allows
non-linear codes, but for linear codes, which are the focus of this chapter, the bound on
Lpoly(δ) stated below remains a conjecture.)

Conjecture 4.1 For every 0 < δ < 1/2, Lpoly(δ) = 1
2 · (1−

√
1− 2δ).

If true, the above can be viewed as the main point of this chapter. However, we are
as yet unable to settle the conjecture. But we are able to prove it assuming a widely
accepted number-theoretic conjecture which is in turn implied by the Generalized Riemann
Hypothesis. Hence, there is strong evidence for the truth of the conjecture. We are also able
to prove some non-trivial unconditional results that lend further support to the conjecture.
We list the relevant results below. The proofs will be given in later sections.

Theorem 4.4 For every ε, 0 < ε < 1/2, for some δ : Z → Z satisfying δ(n) = 1
2(1 −

Θ((logn)ε−1)), we have Lpoly(δ) ≤ 1
2 [1− (1− 2δ)1/2+ε].

The above can be viewed as a “resolution” of Conjecture 4.1 for the case δ = 1/2−o(1).
For constant δ, we are able to show, unconditionally, that the list decoding radius for
polynomial-sized lists is strictly bounded away from the distance of the code.

Theorem 4.5 For every integer c ≥ 1 and every δ, 0 < δ < 1/2, we have Lpoly
c (δ) < δ.

Theorem 4.6 Assume that there exist infinitely many primes p such that 2 is a generator
of the cyclic multiplicative group F∗p of Fp. Then Lpoly(δ) = J(δ).

The Artin conjecture and the hypothesis of Theorem 4.6: The hypothesis of the above theorem
is a special case of the Artin conjecture (see [Art65]) which gives an estimate of the density
of primes p for which 2, or for that matter any fixed prime g, is a generator for the cyclic
group F∗p (for most g this density is conjectured to be quite close to 0.4). It is known that
the Artin conjecture, with some correction factors in the density estimate, holds under the
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Generalized Riemann Hypothesis (GRH) [Hoo67] (see also [IR90] for an account on the some
of the remarkable progress that has been made towards resolving the Artin conjecture). It
follows that the hypothesis of Theorem 4.6 holds under the GRH.

Note that the bound of Theorem 4.5 is implied by that of Theorem 4.6 (since J(δ) < δ
for every δ, 0 < δ < 1/2). But the result of Theorem 4.5 is unconditional and does not
rely on any unproven number-theoretic conjecture, and is thus not “dominated” by that of
Theorem 4.6.

4.4 Proof for constant-sized lists

In this section, we will prove Theorem 4.3. The results of this section are based on the ideas
of Justesen and Hφholdt [JH01], though we fill in several details in their proofs and also
need some new ideas to prove our claim. In particular, Justesen and Hφholdt state their
results only for large alphabets while we are interested in results for binary codes. In fact
their results hold for Maximum Distance Separable (MDS) codes which are [N,K,D] linear
codes whose dimension and minimum distance satisfy the optimal trade-off K+D = N + 1
(i.e., they match the Singleton Bound). Such a code is characterized by an N×K generator
matrix which has the property that every K ×K submatrix has rank K (cf. [MS81, Chap.
11]).

4.4.1 The Basic Construction

The following lemma is at the core of the results of this section. It is proved using the
basic construction scheme in [JH01]. However, we need an explicit upper bound on the
size of the field over which the code is defined, while [JH01] were content in getting MDS
codes over some large enough field. Consequently, we have to be more careful in our proof,
specifically when proving a certain linear algebraic claim from [JH01], because we need an
explicit upper bound on the field size. We isolate the necessary linear-algebraic fact and
prove it as a separate technical lemma in Section 4.4.3.

Lemma 4.7 For all large enough integers m, s with 2 < s < m+ 1, and for all sufficiently
large f , there exists a linear MDS code C over GF(2f ) of blocklength N =

(
m+1
s

)
, relative

distance δ = 1− s(s−1)
m(m+1) , and dimension (1− δ)N + 1, with the property that there exists a

Hamming ball of radius τN where τ = 1− s/(m+ 1) containing at least (m+ 1) codewords
of C. In other words, C is not (τN,m)-list decodable. Moreover, it suffices if f ≥ Ω(N)
for the above claim, so that an MDS code with the stated properties exists over a field of
size at most 2O(N).

Proof: The code construction and the configuration of (m + 1) codewords that lie in a
small Hamming ball will be based on a certain “combinatorial design”. Since the design
used is a trivial one, we simply present the actual construction without developing or using
any design-theoretic notation or terminology.

Let 2 < s < m + 1 and N =
(
m+1
s

)
. Let B1, B2, . . . , BN be the set of N s-elements

subsets of {0, 1, 2, . . . ,m}, ordered so that the r =
(
m
s−1

)
sets containing 0 are the first r sets

B1, B2, . . . , Br. For j = 0, 1, . . . ,m, define the N -dimensional vector cj as follows: c0 = 0
and for 1 ≤ j ≤ m and 1 ≤ l ≤ N ,

cj(l) =
{

0 if j ∈ Bl and 0 ∈ Bl,
1 if j ∈ Bl and 0 /∈ Bl,

(4.2)
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Figure 4-1: The construction for m = 4, s = 3 and N = 10. We assume a lexicographic
ordering of the 3-element subsets of {0, 1, 2, 3, 4}, so that B1 = {0, 1, 2}, B2 = {0, 1, 3},
B3 = {0, 1, 4, }, B4 = {0, 2, 3}, and so on.

Figure 4-1 illustrates the construction of the cj’s for the case m = 4 and s = 3; in this case
N = 10 so that each vector has 10 coordinates out of which

(
m
s−1

)
= 6 are filled with 0’s

or 1’s. The values of the cj’s in the remaining positions (not fixed by (4.2) above) will be
suitably picked elements from GF(2f )\{0, 1}, no element being used more than once. Here
f is any sufficiently large integer. The exact choice of f that will suffice and the choice of
elements at the remaining positions will be described shortly.

Define δ = (1− s(s−1)
m(m+1)). Now, for any pair of elements out of {0, 1, . . . ,m}, the number

of sets Bi which contain both of them is precisely
(
m−1
s−2

)
. Using this fact, it is follows that

the Hamming weight of each cj, 1 ≤ j ≤ m, as well as the Hamming distance ∆(ci, cj)
between ci and cj for 1 ≤ i < j ≤ m, all equal

D
def=
(
m+ 1
s

)
−
(
m− 1
s− 2

)
= N

(
1− s(s− 1)

m(m+ 1)

)
= δN . (4.3)

Our goal will be to realize an [N,K,D] MDS code with K = N −D + 1 that contains
all the cj’s, 0 ≤ j ≤ m + 1, as codewords. Furthermore all these (m + 1) codewords will
lie in a Hamming ball, say Γ, of radius E = τN where τ = 1 − s

m+1 . Together, these will
imply the statement of the lemma. The latter of the above goals is easier to meet, while
the former requires some work. Therefore, we first specify the center x = 〈x1, x2, . . . , xN 〉
of the Hamming ball Γ. This is defined as:

xl =
{

0 for 1 ≤ l ≤ r
1 for r < l ≤ N .

(Recall that r =
(
m
s−1

)
= sN

m+1 is the number of Bi’s that contain 0.) It is clear that
Hamming distance between x and c0 = 0 is

∆(x, c0) = N − r = N
(

1− s

m+ 1

)
= τN .

For j ≥ 1, cj has a 0-entry in
(
m−1
s−2

)
of the first r entries (corresponding to s-sets that

contain both 0 and j) and a 1-entry in
(
m−1
s−1

)
of the last (N − r) entries (corresponding to
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s-sets that contain j but not 0). Hence we have

∆(x, cj) = N −
((m− 1

s− 2

)
+
(
m− 1
s− 1

))
= N −

(
m

s− 1

)
=
(

1− s

m+ 1

)
N = τN .

Thus, we have all the m+ 1 “codewords” cj, 0 ≤ j ≤ m, in a Hamming ball of radius τN .
It remains to realize the strings c1, . . . , cm as codewords in an [N,K = N −D + 1, D]

MDS code over a sufficiently large field F = GF(2f ). Note that c0 = 0 is always a member
of any linear code and hence we have to only worry about the cj’s, for 1 ≤ j ≤ m. We
have quite a bit of flexibility in filling out the entries of the cj’s in positions other than
those already filled with 0s and 1s. We would like to show that this allows us to fill in the
remaining positions with distinct entries so that the cj’s can be realized as codewords in an
[N,K,D] MDS code.

To construct this MDS code, we will construct an N ×K matrix G over a large enough
finite field F = GF(2f ) of such that every K ×K submatrix of G has full rank. The linear
code defined by such a generator matrix G is MDS, and this will be our promised MDS
code.2 In addition we will prove that there exists a way to fill in the entries other than
0, 1 in cj, 1 ≤ j ≤ m, so that the first m columns of G are c1, . . . , cm. We will then have
the desired MDS code which contains the cj’s as codewords (since the columns of G are
certainly codewords of the code defined with generator matrix G).

To do this we take a two-step approach. In the first step we prove that for all large
enough fields F (|F| = 2Ω(N) suffices), it is possible to fill in the missing entries of the cj’s
using distinct elements from F \ {0, 1}, such that the N × m matrix H with m columns
c1, c2, . . . , cm has the property that every K × m submatrix has rank m. The details of
this step are somewhat tedious and are explained in a separate technical “linear- algebraic”
lemma (Lemma 4.10), whose statement and proof we defer to the end of this section (specifi-
cally, to Section 4.4.3). In the second step, we show that provided the field F is large enough
(again |F| = 2Ω(N) suffices), one can add a further (K −m) columns to H to get a matrix
G, so that every K×K submatrix of G has rank K. This matrix G will be the final matrix
which is the generator matrix of the desired MDS code. The second step is easy to establish.
In fact, filling the remaining (K −m) columns with random entries from F works with high
probability. Indeed, the number of K ×K submatrices to consider is

(
N
K

)
≤ 2N . Fix one

such submatrix, say M . We know that its first m columns are linearly independent (this
follows from the property of the matrix H guaranteed by the first step). Suppose they span
a space W of dimension m. The probability that for a random choice of the remaining
entries, the (m+ 1)’th column lies in W is at most q−(K−m) where q = |F|. In general the
probability that the i’th column does not increase the dimension of the column span is at
most q−(K−i+1), for m < i ≤ K. By a union bound, the probability that M has rank less
than K is at most

K∑
i=m+1

q−(K−i+1) ≤ 2/q ,

for q ≥ 2. By a union bound over all K ×K submatrices, the probability that G has some
K ×K submatrix of rank less than K is at most 2N · (2/q) < 1 provided q = |F| = 2Ω(N).
In particular, this implies that there exists an N ×K matrix with entries in F that defines

2The one sentence proof of this is as follows. If there exists a non-zero codeword of weight at most
(N − K), and which has 0’s in, say, the first K positions, then the first K rows of G must satisfy a non-
trivial linearly dependence, contradicting the fact that the K ×K submatrix defined by the first K rows of
G has rank K.
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an MDS code. The proof is thus complete modulo Lemma 4.10 which we state and prove
in Section 4.4.3. 2

Lemma 4.8 For all ε > 0 and ∀ δ, 0 < δ < 1 there exist infinitely many N for which the
following holds. There exists an [N,K,D]Q linear code CN with D ≥ δN and Q = 2O(N)

with the property that there exists a Hamming ball in [Q]N of radius E = (1−
√

1− δ − ε)N
that has at least lgN codewords of CN .

Proof: The idea is to use the codes guaranteed by Lemma 4.7 for infinitely many pairs
m, s. Note that as m and s tend to infinity the relative radius of the ball τ = 1− s/(m+ 1)
and relative distance δ = 1−s(s−1)/(m(m+1)) of the code roughly satisfy τ ' 1−

√
1− δ.

This essentially gives us the claimed result, and we just need to account for the error due
to integrality constraints.

Fix δ > 0 and ε > 0. For any m such that m > 2/ε, it is easy to see that there exists
an s, 2 < s < (m+ 1), for which

δ ≤ 1− s(s− 1)
m(m+ 1)

≤ δ + ε . (4.4)

Consider the code C for this choice of m, s guaranteed by Lemma 4.7. The blocklength of
C equals N =

(
m+1
s

)
. Now, since s ≤ m+ 1, we have s

m+1 ≥
√

s(s−1)
m(m+1) , and hence

τ = 1− s

m+ 1
≤ 1−

√
s(s− 1)
m(m+ 1)

≤ 1−
√

1− δ − ε

(the last step above follows using Equation (4.4)). Thus there are at least m+ 1 codewords
of C in a Hamming ball of radius (1−

√
1− δ − ε)N . Since N ≤ 2m+1, we get at least lgN

codewords in a ball of radius (1−
√

1− δ − ε)N , as desired. 2

With Lemma 4.8 in place, proving the main result of this section, namely that Lconst(δ) =
(1−

√
1− 2δ)/2, is fairly straightforward.

Proof of Theorem 4.3: The proof uses the idea of code concatenation and the reader
might want to recall this notion from Chapter 2. Concatenate the [N,K,D]Q code CN from
Lemma 4.8 with the binary Hadamard code of dimension lgQ and blocklength Q to obtain
the concatenated code C̃. The blocklength of C̃ is then n = NQ = N · 2O(N). The relative
distance of C̃ is at least δ′ = δ/2. Let x = 〈x1, x2, . . . , xN 〉 ∈ [Q]N be such that |B(x, E) ∩
CN | ≥ lgN , where E = (1 −

√
1− δ − ε)N . Define y = Had(x1) ◦ Had(x2) · · ·Had(xN ).

Since every two distinct codewords of the Hadamard code differ in a fraction 1/2 of positions,
it is easy to see that

|B(y, EQ/2) ∩ C̃| ≥ lgN = Ω(lg lg n) .

Thus there are super-constant number of codewords in a ball of radius EQ/2. Now

EQ/2
NQ

=
E

2N
=

(1−
√

1− δ − ε)
2

=
(1−

√
1− 2δ′ − ε)

2
,

and since δ(C̃) ≥ δ′, we get that there exists a code family C with a super-constant number
of codewords in a ball of relative radius (1−

√
1− 2δ(C)− ε)/2. Since ε > 0 was arbitrary,

we get that Lconst(δ) = (1−
√

1− 2δ)/2, as desired. 2
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The lemma below follows from the above proof. Its rather special form might be mys-
terious now, but it will only be used in the code constructions of Section 4.6, and is not
necessary for the results of this section. We record it here since its proof follows using the
code construction and ideas from the proofs of Lemmas 4.7 and 4.8. The main features
of it that will be useful in Section 4.6 are that its dimension can be a multiple of any de-
sired integer k, and that it can have several codewords within a ball of radius close to the
Johnson bound on list decoding radius. The code will be used in Section 4.6 as an inner
code in a concatenation scheme with outer Reed-Solomon code to obtain a code with super-
polynomial number of codewords at close to the Johnson radius, modulo some technical
conditions.

Lemma 4.9 For all ε > 0, the following holds. For all large enough integers k and every
δ, 0 < δ < 1/2, there exist an integer b ≤ 2O(2k), and a binary linear code Cbin

k,δ that has the
following properties:

(i) It has dimension kb, blocklength n ≤ 2O(k
√
b), and relative distance δ.

(ii) There exists a Hamming ball of radius (1−
√

1− 2δ − ε)n which contains at least 2k

codewords of Cbin
k,δ .

Proof Sketch: Let us use Lemma 4.7 with the choice m = 2k − 1. This gives us an MDS
code of blocklength n0 ≤ 22k , relative distance 2δ and dimension b0 = (1 − 2δ)n0 + 1 over
a field GF(2kn0) (since k is a sufficiently large integer, such a code exists over GF(2kn0)).
Now, arguing as in Lemma 4.8, the code will contain at least 2k codewords in a Hamming
ball of radius (1−

√
1− 2δ − ε)n0. We then concatenate this code with a binary Hadamard

code of dimension kn0. The relative distance of the binary concatenated code will be δ,
its dimension kb where b def= b0n0, and its blocklength will be n = n02kn0 ≤ 2O(k

√
b) (since

b = b0n0 and b0 = Θ(n0)). Note that b ≤ n2
0 ≤ 2O(2k). Furthermore, as argued in the proof

of Theorem 4.3, due to the corresponding property of the MDS code, the concatenated code
will contain at least 2k codewords in a ball of radius 1

2(1−
√

1− 2δ − ε)n, as claimed. 2

4.4.2 Related Constructions

The paper of Justesen and Hφholdt [JH01] also gives a construction of Reed-Solomon codes
of rate r (say, over GF(2m)) with n = 2m − 1 codewords at the Johnson radius (1 −

√
r)n

(where n is the blocklength of the code), for certain values of the rate r.3 As in the above
construction, we can then concatenate such a Reed-Solomon code with a binary Hadamard
code of dimension m to get a linear code of blocklength N with about lgN codewords at
the Johnson radius. In fact the resulting proof is simpler than that of Lemmas 4.7 and
4.8. However, such a result will only apply for certain values of the relative distance (since
the necessary Reed-Solomon code from [JH01] is only shown to exist for certain values
of the rate/relative distance). Since our focus was on obtaining a result for the entire
range 0 < δ < 1/2 for the relative distance, we had to go through the more complicated
construction of Lemma 4.7.

More recently, Justesen [Jus01] has shown that certain other families of cyclic codes also
have about n codewords at the Johnson radius. But once again these results only apply to

3This construction is also of interest to the problem of list decoding Reed-Solomon codes, as it provides
some evidence to the “tightness” of the Johnson radius for list decoding with constant-sized lists for Reed-
Solomon codes. More on this later when we discuss Reed-Solomon decoding in Chapter 6.
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a certain set of values of the relative distance, and it is not clear how to extend them for
every value of the relative distance.

4.4.3 The technical “linear-algebraic” lemma

We now state and prove the technical lemma used in the proof of Lemma 4.7. The proof is
not difficult, but is somewhat long. Therefore, we deliberately moved it to the end of this
section so that only the most persevering of readers will need to read the proof. Actually,
we believe that the lemma should have a significantly simpler and shorter proof, and we
encourage the reader to try and find an alternate proof.

Lemma 4.10 For the vectors c1, c2, . . . , cm partially defined as in Equation (4.2), there is
a way to fill in the remaining entries using distinct field elements from F \ {0, 1}, for any
field F that satisfies |F| ≥ 2Ω(N), such that the following holds. The N ×m matrix H with
columns c1, c2, . . . , cm has the property that every K ×m submatrix of H has rank m over
the field F.

Proof: The particular proof method used here was suggested to us by Madhu Sudan.
Consider the matrix H with columns c1, . . . , cm and consider filling each of the as yet
unfilled entry of the cj’s with a different “indeterminate”. Let us label these indetermi-
nates x1, x2, . . . , xT , where T ≤ mN . We will then prove that there is a setting of the
indeterminates for which each of the K ×m submatrices has rank m.

Let M be any K×m submatrix of H. We will prove that there exists an m×m submatrix
M ′ of M whose determinant is non-zero as a polynomial in the xi’s. Note that each such
m × m determinant is a multilinear polynomial in the xi’s. Let us give this determinant
polynomial a label, say D(M). Once we establish this fact, we can simply consider the
polynomial, say P , which is the product all such determinant polynomials D(M) (over all
K×m submatrices M). Any setting of distinct values to the xi’s which makes P evaluate to
a non-zero element would then imply a setting of the xi’s for which every K×K submatrix
has some m ×m submatrix with non-zero determinant, or in other words has rank m, as
desired. Now P being a product of non-zero polynomials, is itself non-zero. Furthermore,
P is a product of

(
N
K

)
multilinear polynomials, and hence the degree of P in each variable

is at most
(
N
K

)
≤ 2N . Thus provided |F| ≥ 2N + T , one can set arbitrary distinct values to

all but one indeterminate involved in P , say to all but x1, to give a univariate polynomial
P̃ of degree at most 2N in x1. P̃ has at most 2N roots over F, and since |F| ≥ 2N +T , there
must exist a value in F outside the roots of P̃ and the at most (T − 1) values given to the
indeterminates other than x1. Giving x1 such a value implies that P is non-zero for such a
setting of the xi’s. Thus, if |F| ≥ 2Ω(N), there exists a setting of distinct values to the xi’s
which makes P evaluate to a non-zero element.

It remains to prove that every K ×m submatrix of H has a m ×m submatrix whose
determinant is a non-zero multilinear polynomial in the xi’s. Since H already has 0’s and
1’s filled in at some positions, this fact is somewhat tricky to prove. It would be good to
recollect the details of the design construction from Lemma 4.7 and specifically the pattern
of 0’s and 1’s that are already filled in the matrix H. In particular the following easily
verified facts will be handy later on in the proof:

Fact 1 Every column of H has exactly
(
m−1
s−2

)
= (K − 1) zeroes, and

(
m−1
s−1

)
ones.

Fact 2 No column has 0s or 1s filled in more than
(
m−2
s−3

)
rows out of the rows that have

0s filled in some other column (this is because the sets corresponding to all such rows
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must contain 3 fixed elements out of {0, 1, . . . ,m}, and there are clearly
(
m−2
s−3

)
such

s-element subsets of {0, 1, . . . ,m}).
Fact 3 For every two columns, the number of rows in which they both have entries filled

in is at most
(
m−1
s−2

)
= K − 1.

Now, consider a fixed K ×m submatrix, say M , of H, indexed by a subset R ⊆ [N ] of
K rows of H. We want to prove that M has a m ×m submatrix M ′ whose determinant
is a non-zero polynomial in the xi’s. Our “rough” goal is to prove that one can identify
a subset S ⊂ R of size m such that for each column j, 1 ≤ j ≤ m, there is a different
row sj ∈ S such that entry in the sj ’th row and j’th column is an indeterminate, say xij .
Loosely, we call such an S a “matching set”. (The reason for this terminology will be clear
shortly.) The determinant of the m×m submatrix defined by the rows in such a subset S
is then clearly non-zero, as it contains the term xi1xi2 · · ·xim , which cannot be canceled by
any other term.

We do not always succeed in finding such a matching set, but we almost do, and in
any case will always be able to conclude that the concerned determinant is a non-zero
polynomial. The term “matching set” should be suggestive, as we will find a good set S
of rows by finding a matching between the m columns and a subset of the K rows of M
in a suitably defined graph. We will prove such a matching exists by appealing to Hall’s
theorem.4 The relevant bipartite graph, call it B, is defined as follows. It has one side
associated with the m columns of H and the other side with set of rows R. There is an
edge between j ∈ [m] and ` ∈ R, if the entry in row number ` and column number j is an
indeterminate. We first claim the following:

Claim A. For any subset T ⊆ [m] with |T | = p ≥ 3, the neighborhood of T in the above
bipartite graph B, denoted NB(T ), contains at least p elements.

Indeed, if a row ` ∈ R is not adjacent to any element of T , then it means that the
s-element subset of {0, 1, . . . ,m} that corresponds to row ` contains T as a subset. The
number of such s-element subsets is at most

(
m+1−p
s−p

)
. Hence if p > s, the neighborhood of

T includes all rows in R, so assume p ≤ s. Now

K =
(
m− 1
s− 2

)
+ 1 >

(m− 1)(m− 2) · · · (m− p+ 2)
(s− 2)(s− 3) · · · (s− p+ 1)

(
m+ 1− p
s− p

)
.

If m is large enough, and p ≥ 3, it is now easily verified that the number of rows in R
adjacent to some element in T is at least p, as claimed.

The above claim states that Hall’s condition is satisfied for subsets of [m] of size 3 or
more. Hence in the case when it is also satisfied for subsets of [m] of size at most 2, we will
have a desired matching of size m in the graph B. The m×m submatrix of M indexed by
the rows used in the matching will then have non-zero determinant.

It remains to deal with the case when Hall’s condition is violated for some subset of
[m] of size at most 2. In such a situation we will not be able to find a matching for all m
columns, but will find a matching at least (m−2) columns and then carefully pick two more

4Hall’s theorem (see any standard graph theory text, eg., [Har69]) is a classic result that gives a necessary
and sufficient condition for a bipartite graph B = (X,Y,E) to have a matching that matches every vertex in
X to a distinct vertex in Y (we are assuming |X| ≤ |Y |, of course). The condition is that the neighborhood
of every subset T ⊆ X, NB(T ) ⊆ Y , satisfies |NB(T )| ≥ |T |. This is clearly a necessary condition, and Hall’s
theorem states that it also sufficient. We will refer to the condition “|NB(T )| ≥ |T | for all T ⊆ X” as Hall’s
condition.
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rows so that we can still argue that the concerned determinant is non-zero. This involves a
somewhat tedious case analysis.

If Hall’s condition is violated for some subset of size at most 2, then there must exist
some a ∈ [m] such that |NB(a)| ≤ 1. This means that in the matrix H, the column number
a has either 0s or 1s already filled in at (K − 1) or more of the K rows of R. Assume for
definiteness that it has 0s or 1s filled in the first (K − 1) rows of R. We distinguish two
cases:

Case 1: Column a has only 0s in the first (K − 1) rows of R.
In this case, a must have either a 1 or an indeterminate in the K’th row. This follows

from Fact 1 that we recalled about the pattern of 0s and 1s in H. Furthermore, by Fact
2, all columns other than a can have at most

(
m−2
s−3

)
entries filled with a 0 or 1, among the

first (K − 1) rows of R. For large enough m, we have

(K − 1)−
(
m− 2
s− 3

)
=
(
m− 1
s− 2

)
−
(
m− 2
s− 3

)
≥ 2 ,

and therefore every column in [m] \ {a} has at least 2 neighbors among the first (K − 1)
rows of R. Together with Claim A, this implies that Hall’s condition holds in the subgraph
of B obtained by deleting the last row of R and the column a. Therefore, there must exist
a matching of the (m−1) columns other than a into a set R′ of m−1 distinct rows (among
the first K−1 rows of R). Let xi1 , . . . , xim−1 be the indeterminates at the m−1 positions of
H defined by this matching. Then, since column a must have either a 1 or an indeterminate
in the K’th row, the rows in R′ together with the K’th row of R define an m×m submatrix
whose determinant is non-zero.

Case 2: Column a has 0s and 1s filled in the first (K − 1) rows of R, and not all these
entries are 0s.
By permuting rows if necessary, assume that a has either a 1 or an indeterminate in the
K’th row of R. In this situation, we further distinguish two subcases:

Case 2.1: Each b ∈ [m] \ {a} has at least two neighbors in R, i.e., has 0s and 1s filled in
at most (K − 2) of the rows in R.

Once again, we claim that if this were the case, the subgraph of B obtained by deleting
the column a and the K’th row of R, obeys Hall’s condition. Indeed the hypothesis implies
that the condition holds for sets of size one, since each b ∈ [m]\{a} has at least one neighbor
among the first K − 1 rows of R. For subsets T of size p ≥ 2, we apply Claim A to T ∪ {a}
to conclude that T ∪{a} has at least p+ 1 neighbors in R, and hence T at least p neighbors
among the first (K − 1) rows of R (since a is at best adjacent to the last row of K).

Now as in Case 1, the rows corresponding to the matching of size (m − 1) from this
subgraph together with K’th row of R give us the necessary m×m submatrix with non-zero
determinant.

Case 2.2: There exists some other element b ∈ [m], b 6= a, such that column number b
has 0s and 1s filled in the first (K − 1) rows of R.

We can assume that b also does not have all 0’s in the first (K − 1) rows of R, as
otherwise we could apply the argument of Case 1 with b instead of a.

Now, at least one of a, b must have an indeterminate in the K’th row of R. This follows
from Fact 3. Assume, without loss of generality, that a has an indeterminate, say xa∗ , in
the K’th row of R. Further, by permuting the first (K − 1) rows of R if necessary, we may
without loss of generality that the (K − 1)’th row of R has entry 1 in column b (this is
possible since column b does not have all 0’s filled in these rows).
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Consider the subgraph of B obtained by deleting the last two rows of R and the columns
a, b. Using Claim A, it is easily checked that this subgraph satisfies Hall’s condition. There-
fore it has a matching which matches each of the (m−2) columns other than a, b to distinct
rows where they have an indeterminate. Let these indeterminates be xr1 , xr2 , . . . , xrm−2 .
Now consider the m × m submatrix M ′ indexed by the (m − 2) rows from the matching
together with the last two rows of R. Since a has an indeterminate xi∗ in the last row of
R, and b has a 1 in the second last row of R, it follows that the determinant of M ′ has
a term xa∗xr1 · · ·xrm−2 which cannot be canceled by any other term in the expansion of
the determinant of M ′. Therefore the determinant of M ′, as a multilinear polynomial, is
non-zero, as we desired to show. This completes the proof in Case 2.2 as well. 2

4.5 Proof for polynomial-sized lists

In this section, we will prove the upper bounds on the function Lpoly(δ) claimed in Theorems
4.4 and 4.5. We will first prove Theorem 4.4 which shows that when δ = 1

2 · (1 − o(1)),
one “almost” has a proof of Conjecture 4.1. A modification of this proof will also yield the
proof of Theorem 4.5. The proof of Theorem 4.6 under the Artin conjecture in the next
section was inspired by the proofs in this section. Hence the reader wishing to read that
section should at least skim through the ideas used in proving Theorems 4.4 and 4.5.

We first review the basic definitions and concepts from (Discrete) Fourier analysis that
will be used in some of our proofs.

4.5.1 Fourier analysis and Group characters

For this section, it will be convenient to represent Boolean values by {1,−1} with 1 standing
for False and −1 for True. This has the nice feature that Xor just becomes multiplication.
Thus a binary code of blocklength m will be a subset of {1,−1}m. There are 2t linear
functions χα : {0, 1}t → {1,−1} on t-variables, one for each α ∈ {0, 1}t. The function χα is
defined by χα(x) = (−1)α·x = (−1)

∑
αixi . Fixing some representation of the field GF(2t) as

elements of {0, 1}t, the linear functions χα are the additive characters of the field GF(2t),
and can also be indexed by elements α ∈ GF(2t). We will do so in the rest of the paper.
We also have, for each y ∈ GF(2t),

∑
α χα(y) equals 0 if y 6= 0 and equals 2t if y = 0, where

the summation is over all α ∈ GF(2t).
We can define an inner product 〈f, g〉 for functions f, g : GF(2t) → R as 〈f, g〉 =

2−t
∑

x f(x)g(x). We call this inner product the normalized inner product, in contrast to
the unnormalized inner product

∑
x f(x)g(x). The linear functions form an orthonormal

basis for the space of real-valued functions on GF(2t) with respect to the normalized in-
ner product. Thus every real-valued function on GF(2t), and in particular every Boolean
function f : GF(2t)→ {1,−1} can be written in terms of the χα’s as:

f(x) =
∑

α∈GF(2t)

f̂αχα(x) . (4.5)

The coefficient fα is called the Fourier coefficient of f with respect to α and satisfies
f̂α = 〈f, χα〉 = 2−t

∑
x f(x)χα(x). If we define the normalized distance between functions

f, g as δ(f, g) = Pr
x

[f(x) 6= g(x)], then f̂α = 1 − 2δ(f, χα). The Fourier coefficients of a

Boolean function also satisfy Plancherel’s identity
∑

α f̂
2
α = 1.

We now define the the Hadamard code in the ±1 convention to denote binary symbols:
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Hadamard code: For any integer t, the binary Hadamard code Hadt of dimension t,
encodes t bits (or equivalently elements of GF(2t)), into elements in {1,−1}2t as follows:
For any x ∈ GF(2t), Hadt(x) = 〈χα(x)〉α∈GF(2t).

4.5.2 Idea behind the Construction

Since our aim is to prove lower bounds on the list decoding radius we must construct codes
with large minimum distance with a large number of codewords in a ball of desired radius.
The specific codes we construct are obtained by concatenating an outer Reed-Solomon code
over the field F = GF(2t) with the Hadamard code Hadt of blocklength 2t and dimension
t. Thus the messages of this code will be degree ` polynomials over GF(2t) for some `, and
such a polynomial P is mapped into the codeword 〈Hadt(P (z1)), . . . ,Hadt(P (z2t))〉 where
z1, z2, . . . , z2t is some enumeration of the elements in GF(2t).

Let n = 2t. It is easy to see that this code has blocklength 22t and minimum distance
1
2(1 − `

n)22t. If ` = (1 − 2δ)n, then the relative minimum distance is δ, and for future
reference we denote this code by RS-Hadt(δ).

To construct the received word (which will be the center of the Hamming ball with a
lot of codewords), consider the following. Suppose we could pick an appropriate subset S
of GF(2t) and construct a Boolean function f : GF(2t) → {1,−1} that has large Fourier
coefficient f̂α with respect to α for α ∈ S. Let v ∈ {1,−1}2t be the 2t-dimensional vector
consisting of the values of f on GF(2t). The word v|F |, i.e., v repeated |F | times will be
the “received word” (the center of the Hamming ball which we want to show has several
codewords). Since f has large Fourier support on S, v|F | will have good agreement with all
codewords that correspond to messages (polynomials) P that satisfy P (zi) ∈ S for many
field elements zi. By picking for the set S a multiplicative subgroup of GF(2t) of suitable
size, we can ensure that there are several such polynomials, and hence several codewords in
the concatenated code with good agreement with v|F |.

The main technical component of our construction and analysis is the following Theorem
which asserts the existence of Boolean functions f with large support on subgroups S of
GF(2t). We will defer the proof of the theorem to Section 4.5.5, and first use it to prove
Theorems 4.4 and 4.5.

Theorem 4.11 There exist infinitely many integers s with the following property: For
infinitely many integers t, there exists a multiplicative subgroup S of GF(2t) of size s such
that the following holds: For every β 6= 0 in GF(2t) there exists a function f : GF(2t) →
{1,−1} with

∑
α∈β·S f̂α ≥

√
s
3 . (Here β · S denotes the coset {βx : x ∈ S} of S.)

Remarks: Our proof of the above theorem in fact gives the following additional features
which we make use of in our applications of the theorem.

1. The integers s exists with good density; in particular for any integer k ≥ 4, there
exists an s, with k ≤ s < 3k, that satisfies the requirements of Theorem 4.11.

2. We can also add the condition that there exist infinitely many t including one that
lies in the range s/2 ≤ t ≤ s, and the theorem still holds.

For any subset S ⊆ GF(2t), one can show that
∑

α∈S f̂α is at most |S|1/2 using
Plancherel’s identity and Cauchy-Schwartz, and Theorem 4.11 shows that we can achieve a
sum of Ω(|S|1/2) infinitely often for appropriate multiplicative subgroups S.
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4.5.3 Proof of Theorem 4.4

We now employ Theorem 4.11 to prove Theorem 4.4. We in fact prove the following Lemma
which clearly establishes Theorem 4.4.

Lemma 4.12 For every ε, 0 < ε < 1/2, there exist infinitely many integers t such that
the following holds: Let N = 22t. There exists a vector r ∈ {1,−1}N and δ = 1

2(1 −
Θ((logN)ε−1)), such that the number of codewords c of the code RS-Hadt(δ) with ∆(r, c) ≤
N
2 (1− (1− 2δ)1/2+ε) is at least NΩ(logεN).

Proof: Let s, t be any pair of integers guaranteed by Theorem 4.11 with t ≤ s ≤ 2t (we are
using one of the remarks following Theorem 4.11 here). Let S be a multiplicative subgroup
of GF(2t) of size s and let f : GF(2t) → {1,−1} a function guaranteed by Theorem 4.11
such that ∑

α∈S
f̂α ≥

√
s

3
. (4.6)

Let n = 2t, N = 22t and p = (n− 1)/s. Note that s = Θ(logN) since we have t ≤ s ≤ 2t.
Then S ∪ {0} consists of all elements in GF(2t) which are p’th powers of some element of
GF(2t).

We first fix the “received word” r. Let v ∈ {1,−1}n be the vector 〈f(x)〉x∈GF(2t) of all
values of f . Then r = vn, i.e. the vector v repeated n = 2t times, one for each position of
the outer Reed-Solomon code.

Let δ be a parameter to be specified later and ` = (1− 2δ)n. Consider the binary code
C = RS-Hadt(δ) obtained by concatenating a Reed-Solomon code of dimension ` + 1 =
(1− 2δ)n+ 1 over GF(2t) with Hadt. C has blocklength N and minimum distance δN . We
now want to exhibit several codewords in C that are “close” to r. We do this by picking
codewords in C at random from some distribution and showing that the agreement with r
is “large” with good probability.

Let m = b`/pc and consider a message (degree ` polynomial over GF(2t)) P of C which is
of the form P (x) = R(x)p for a random polynomial R of degree at most m over GF(2t). The
Reed-Solomon encoding (b1, b2, . . . , bn) of P satisfies bi ∈ S∪{0} for every i, 1 ≤ i ≤ n. It is
easy to see that for each i and each a ∈ S, we have Pr[bi = a] = p/n, and Pr[bi = 0] = 1/n.
Moreover, the choices of bi are pairwise independent.

Now, by definition of the Fourier coefficient, for each i, the Hadamard codeword Hadt(bi)
and the vector v we constructed above have an unnormalized inner product equal to n · f̂bi
(or equivalently, agree on a fraction

1+f̂bi
2 of positions). For any i, 1 ≤ i ≤ n, the expected

value of f̂bi satisfies

p

n

∑
α∈S

f̂α +
1
n
f̂0 ≥

(n− 1)
ns

∑
α∈S

f̂α −
1
n
≥ 1
s

∑
α∈S

f̂α −
2
n
≥ 1√

3s
− 2
n
, (4.7)

(the last inequality follows from Equation (4.6)). Let X denote the random variable which
is the unnormalized inner product of the codeword (encoding the message R(x)p for a
random polynomial R of degree at most m) with the received vector r = vn. By linearity
of expectation and using (4.7), we have

E[X] =
n∑
i=1

E[nf̂bi ] ≥
N√
3s
− 2
√
N ≥ 1.1N√

4s
(4.8)
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for large enough N (since s = Θ(logN)). Now, for each i, 1 ≤ i ≤ n, we have

E[f̂2
bi

] ≤ p

n

∑
α∈S∪{0}

f̂2
α ≤ 1/s .

Since the bi’s are evaluations of the polynomial R(x)p at the n field elements for a random
polynomial R, they are pairwise independent. Thus the variance of the random variable X
satisfies

Var(X) =
n∑
i=1

Var(nf̂bi) ≤
n∑
i=1

E[(nf̂bi)
2] ≤ n3

s
=
N3/2

s
. (4.9)

We now use Chebyshev’s inequality to prove that the inner product X is greater than
N/
√

4s with probability at least 1/2. Indeed

Pr[X ≤ N√
4s

] ≤ Pr[X −E[X] ≤ − N

10
√

4s
] ≤ Pr[|X −E[X]| ≥ N

10
√

4s
]

≤ 400s ·Var(X)
N2

≤ 400√
N

<
1
2

(for large enough N),

where we have used the lower bound on E[X] from Equation (4.8) and the upper bound on
Var(X) from Equation (4.9).

Hence the codewords encoding at least 1
2 ·n

m of the polynomials of the form R(x)p where
R is a polynomial of degree at most m, differ from r in at most (1

2 −
1

2
√

4s
)N codeword

positions.
We now pick parameters (namely m, δ) suitably to conclude the result. Recall that

s = Θ(logN). Picking m = b`/pc = sε, we have

(1− 2δ) =
`

n
= Θ(

`

ps
) = Θ(

m

s
) = Θ(sε−1) = Θ((logN)ε−1) .

Thus the minimum distance δ (for our choice of m) satisfies δ = 1
2(1−Θ((logN)ε−1)).

Also we have (1−2δ)1/2+ε ' s(ε−1)(1/2+ε) ≤ (4s)−1/2 for large enough N (since ε < 1/2).
Thus there exist Ω(nm) = NΩ(logεN) codewords of RS-Hadt(δ) all of which lie in a Hamming
ball of radius N

2 (1 − (1 − 2δ)1/2+ε). Since Theorem 4.11 implies that there are infinitely
many choices for t that we could use, we also have infinitely many choices of blocklengths
N available for the above construction, and the proof is thus complete. 2

4.5.4 Proof of Theorem 4.5

We now turn to obtaining upper bounds on Lpoly
c (δ) for a fixed constant c. One way to

achieve this would be to pick m ' 2c in the above proof, and then pick s ' 2c/(1− 2δ) and

this would give (roughly) Lpoly
c (δ) ≤ 1

2(1−
(

1−2δ
6c

)1/2
). However this upper bound is better

than δ only for δ large enough, specifically for δ > 1
2 −

1
12c . We thus have to modify the

construction of Lemma 4.12 in order to prove Theorem 4.5. We prove the following lemma
which will in turn imply Theorem 4.5. Since our goal was only to establish Theorem 4.5,
we have not attempted to optimize the exact bounds in the lemma below.
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Lemma 4.13 For every integer c ≥ 1 and every δ, 0 < δ < 1/2, we have

Lpoly
c (δ) ≤ min

0≤α≤1/2−δ

{
(δ + α)(1− (

α

12(2c+ 1)
)1/2)

}
. (4.10)

We first prove Theorem 4.5 using the above lemma.
Proof of Theorem 4.5: We want to prove Lpoly

c (δ) < δ. Note that when δ > 1
2 −

1
48(2c+1) ,

setting α = (1/2− δ) in Equation 4.10 gives

Lpoly
c (δ) ≤ 1

2
(1− (

1− 2δ
24(2c+ 1)

)1/2) < δ .

When δ ≤ 1
2−

1
48(2c+1) , setting α = δ2

48(2c+1) in Equation 4.10 (this is a valid setting since it is

less than 1/2− δ), we have Lpoly
c (δ) ≤ δ+α− δ( α

12(2c+1))1/2 < δ. Thus we have Lpoly
c (δ) < δ

in either case. 2 (Theorem 4.5)

Proof of Lemma 4.13: To prove the claimed upper bound on Lpoly
c (δ), we will closely

follow the construction from the proof of Lemma 4.12. Let 0 < δ < 1/2, 0 ≤ α ≤ (1/2− δ),
and c be given. Define α′ = 2α and pick an integer s, 2(2c+ 1)/α′ ≤ s < 6(2c+ 1)/α′ such
that the conditions of Theorem 4.11 are met (we know such an s exists by the first remark
following Theorem 4.11). Let t be any integer for which a subgroup S of GF(2t) exists as
guaranteed by Theorem 4.11 (there are once again infinitely many such values of t).

Now we describe the actual construction for a particular δ, α′, s, t. Let n = 2t, N = n2

and p = (n− 1)/s. As in the proof of Lemma 4.12, the code will again be RS-Hadt(δ) (the
messages of the code will thus be polynomials over GF(2t) of degree at most ` = (1− 2δ)n
and the code has blocklength N). The only change will be in the construction of the received
word r. Now, instead of using as received word the vector vn (recall that v was the table of
values of the Boolean function f with large Fourier support on a multiplicative subgroup S
of GF(2t)), we will set the first B = (`− α′n) = (1− 2δ − α′)n blocks of r to be all zeroes.
The last (n−B) blocks of r will be vectors v(i), B < i ≤ n, which will be specified shortly.

Let m = 2c + 1. We will consider the messages corresponding to polynomials of the
form P (x) = (x− z1) · · · (x− zB)R(x)p, where z1, . . . , zB are the B elements of GF(n) that
correspond to the first B positions of the Reed-Solomon code, and R is a random degree m
polynomial over GF(n). Note that degree(P ) = B + pm = `− α′n+ n−1

s (2c+ 1) ≤ ` since
we picked s ≥ 2(2c+ 1)/α′. By the choice of P , the Reed-Solomon encoding (b1, b2, . . . , bn)
of P , will satisfy bi = 0 for 1 ≤ i ≤ B, and for each of the last (n − B) positions i,
we will have bi ∈ Si ∪ {0} where Si is a certain coset of S (recall that S is s-element
multiplicative subgroup of GF(2t) consisting of all the p’th powers). Specifically Si = βiS
where βi = (zi − z1) · · · (zi − zB). Now, for B < i ≤ n, define v(i) ∈ {1,−1}2t to the value
of the functions f (i) where f (i) : GF(2t) → {1,−1} is a function with

∑
α∈Si f̂

(i)
α ≥

√
s/3

as guaranteed by Theorem 4.11 (for the coset Si = βiS).
Now the final codeword corresponding to P will agree with r in the first nB positions

(since both begin with a string of nB zeroes). Using arguments similar to those in the proof
of Lemma 4.12, one can show that with probability at least 1/2, the codeword corresponding
to the polynomial P differs from r in at most

E = (n−B)n
(1

2
− 1

2
√

4s

)
= N(δ + α)

(
1− 1√

4s

)
positions. Thus there are at least 1

2n
m codewords of RS-Hadt(δ) that lie within a ball

of radius E around r. Since N = n2, m = 2c + 1 and s < 6(2c + 1)/α′, we have ω(N c)
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codewords in a Hamming ball of radius N(δ + α′/2)
(

1 −
√

α′

24(2c+1)

)
, and recalling that

α′ = 2α, the claimed result follows. To conclude, we just reiterate that by Theorem 4.11,
for the picked value of s, there are infinitely many values of t (and therefore the blocklength
N) for which the code RS-Hadt(δ) has the claimed properties. Thus we get an infinite
family of codes with the requisite property, and the proof is complete. 2 (Lemma 4.13)

4.5.5 Proof of Theorem 4.11

The proof proceeds in several steps. We first prove the following Lemma which shows that
if a subset S of GF(2t) satisfies a certain property, then there exists a Boolean function
f : GF(2t)→ {1,−1} such that

∑
f̂α is large when summed over α ∈ S.

Lemma 4.14 For any integer t, let S be an arbitrary subset of elements of the field GF(2t)
such that no four distinct elements of S sum up to 0. Then there exists a function f :

GF(2t)→ {1,−1} with
∑

α∈S f̂α ≥
√
|S|
3 .

Proof: For any set S, the following simple claim identifies the “best” function f for our
purposes.

Claim: Define the function g : GF(2t) → R by g(x) =
∑

α∈S χα(x). Then the maximum
value of

∑
α∈S f̂α achieved by a boolean function f is exactly 2−t ·

∑
x |g(x)|.

Proof: Indeed

2t
∑
α∈S

f̂α =
∑
x,α∈S

f(x)χα(x) =
∑
x

f(x)
∑
α∈S

χα(x) =
∑
x

f(x)g(x) ≤
∑
x

|g(x)|

with equality holding when f is defined as f(x) = sign(g(x)). 2

Thus the above claim “removes” the issue of searching for an f by presenting the “best”
choice of f , and one only needs to analyze the behavior of the above character sum function
g, and specifically prove a lower bound on

∑
x |g(x)|.5

To get a lower bound on
∑

x |g(x)|, we employ Hölder’s inequality which states that

∑
x

|h1(x)h2(x)| ≤

(∑
x

|h1(x)|p
)1/p(∑

x

|h2(x)|q
)1/q

,

for every positive p and q that satisfy 1
p + 1

q = 1. Applying this with h1(x) = |g(x)|2/3,
h2(x) = |g(x)|4/3, p = 3/2 and q = 3 gives(∑

x

|g(x)|

)2/3(∑
x

g(x)4

)1/3

≥
∑
x

g2(x). (4.11)

This inequality is also a consequence of log convexity of the power means (see Hardy,
Littlewood, Polya [HLP52]; Theorem 18).

5It can be shown that the representation of the field (as a vector space of dimension t over GF(2)) does
not affect the value distribution of g, and thus we can pick an arbitrary representation of the field, and the
result will be the same.
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Now
∑

x g
2(x) =

∑
α1,α2

∑
x χα1+α2(x) which equals |S| · 2t (the inner sum equals 2t

whenever α1 = α2 and 0 otherwise, and there are |S| pairs (α1, α2) with α1 = α2). Note
that this also follows from Plancherel’s identity.

Similarly
∑

x g
4(x) =

∑
α1,α2,α3,α4∈S

∑
x χα1+α2+α3+α4(x) equals N4,S · 2t where N4,S

is the number of 4-tuples in (α1, α2, α3, α4) ∈ S4 that sum up to 0. But the property
satisfied by S, no four distinct elements of S sum up to 0, and hence the only such 4-tuples
which sum up to 0 are those which have two of the α’s equal. There are at most 3|S|2
such 4-tuples (α1, α2, α3, α4) with two of the α’s equal. Hence N4,S ≤ 3|S|2, and hence∑

x g
4(x) ≤ 3|S|22t. Plugging this into Equation (4.11) we get, when f(x) = sign(g(x)),

∑
α∈S

f̂α =
1
2t
∑
x

|g(x)| ≥

√
|S|3
3|S|2

=

√
|S|
3

2

Given the statement of Lemma 4.14, we next turn to constructing subgroups of GF(2t)
with the property that no four (or fewer) distinct elements of the subgroup sum up to
0. To construct such subgroups, we make use of the following simple lemma about the
existence of certain kinds of cyclic codes. For completeness sake, we quickly review the
necessary facts about cyclic codes. A binary cyclic code of blocklength n is an ideal in
the ring R = Fq[X]/(Xn − 1). It is characterized by its generator polynomial g(X) where
g(X)|(Xn − 1). The codewords correspond to polynomials in R that are multiples of g(X)
(the n coefficients of each such polynomial form the codeword symbols). A (binary) cyclic
code is said to be maximal if its generator polynomial is irreducible over GF(2). A BCH code
is a special kind of cyclic code whose generator polynomial is defined to be the minimal
polynomial that has roots β, β2, . . . , βd−1. Here β is a primitive n’th root of unity over
GF(2), and d is the “designed distance” of the BCH code.

Lemma 4.15 Let k ≥ 4 be any integer. Then there exists an integer s in the interval
[k, 3k) such that a maximal binary BCH code of blocklength s and minimum distance at
least 5 exists.

Proof: Let s be an integer of the form 2f − 3 in the range [k, 3k) (such an integer clearly
exists). Let β be the primitive s’th root of unity over GF(2) and let h be the minimal
polynomial of β over GF(2). Clearly, h(β2i) = 0 for all i ≥ 1, and hence h(β2) = h(β4) = 0.
Since β is an s’th root of unity, we have βs = 1, or in other words β2f = β3. Therefore we
also have h(β3) = 0. Now the consider the cyclic code Ch of blocklength s with generator
polynomial h. It is clearly maximal since h, being the minimal polynomial of β, is irreducible
over GF(2). Also h(βi) = 0 for i = 1, 2, 3, 4. Using the BCH bound on designed distance
(see, for example, Section 6.6 of [vL99]), this implies that the minimum distance of Ch is
at least 5, as desired. 2

Lemma 4.16 Let k ≥ 4 be any integer. Then there exists an integer s in the interval
[k, 3k) with the following property. For infinitely many integers t, including some integer
which lies in the range s/2 ≤ t ≤ s, there exists a multiplicative subgroup S of GF(2t) of
size s such that no four or fewer distinct elements of S sum up to 0 (in GF(2t)). Moreover,
for any non-zero β ∈ GF(2t) this property holds for the coset βS as well.

Proof: Given k, let k ≤ s < 3k be an integer for which there exists a binary BCH code
C of blocklength s as guaranteed by Lemma 4.15 exists. Such a code is generated by an
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irreducible polynomial h where h(x)|(xs−1). Let t = degree(h); clearly t ≤ s. Consider the
finite field F = Fq[X]/(h(X)) which is isomorphic to GF(2t), and consider the subgroup
S of size s of F comprising of {1, X,X2, X3, . . . , Xs−1}. The fact that C has distance at
least 5 implies that

∑
i∈GX

i is not divisible by h(X) for any set G of size at most 4, and
thus no four or fewer distinct elements of S sum up to 0 in the field F . This gives us one
value of t ≤ s for which the conditions of Lemma 4.16 are met, but it is easy to see that
any multiple of t also works, since the same S is also a (multiplicative) subgroup of GF(2kt)
for all k ≥ 1. In particular we can repeatedly double t until it lies in the range s/2 ≤ t ≤ s
(note that we had t ≤ s to begin with). The claim about the cosets also follows easily, since
if a1 + a2 + a3 + a4 = 0 where each ai ∈ βS, then β−1a1 + β−1a2 + β−1a3 + β−1a4 = 0 as
well, and since β−1ai ∈ S, this contradicts the property of S. 2

We now have all the ingredients necessary to easily deduce Theorem 4.11.

Proof of Theorem 4.11: Theorem 4.11 now follows from Lemma 4.14 and Lemma 4.16.
Note also that the statement of Lemma 4.16 implies the remarks made after the statement
of Theorem 4.11. 2 (Theorem 4.11)

4.6 Super-polynomial list sizes

We will now combine elements of the constructions from the previous two sections to prove
Theorem 4.6, which states that, assuming a certain number-theoretic conjecture, the John-
son radius is the true bound on list decoding radius as a function of the distance of the
code alone.

4.6.1 Proof Idea

As in the previous section, the high level idea is to use an outer Reed-Solomon code over a
finite field F = GF(2l) and concatenate it with an inner code that (roughly stated) maps all
elements of a multiplicative subgroup S of F∗, consisting of r’th powers for some suitable
r, into some small Hamming ball. Hence all codewords of the concatenated code that
correspond to evaluations of polynomials that are perfect r’th powers get mapped into a
small Hamming ball, giving the desired construction. In the previous section, the inner
code was the Hadamard code and the subgroup was picked so that there existed a Boolean
function with large Fourier support on elements of the subgroup.

In this section, the inner code Cin will be the one guaranteed by Lemma 4.9, with a
suitable choice of k in relation to the size of the subgroup S. But now this inner code is only
guaranteed to map some 2k messages into a small Hamming ball, and these 2k messages need
not have anything to do with the elements of the subgroup under consideration. However,
here comes the crucial idea. These 2k messages (viewed as vectors over F2 of suitable length)
must contain a linearly independent subset T of size k. Now, if the elements of S ⊆ GF(2l)
are linearly independent over GF(2), then there must exist a invertible GF(2)-linear map
F which maps elements of S into those of T (in some arbitrary ordering of the elements
of S, T ).6. Define C ′in to be Cin ◦ F (i.e., the encoding under C ′in first encodes the message
by the invertible map F , and then encodes the resulting string using Cin). Note that since
F,Cin are linear codes, so is C ′in. Now C ′in will map all elements of S into a small Hamming

6The fact that elements of S are linearly independent over GF(2) is independent of the specific repre-
sentation of GF(2l) over GF(2), since this fact only depends on the additive properties of the subgroup
S
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ball, since Cin does so for elements of T . Using C ′in as the inner code with outer Reed-
Solomon code, and using arguments similar to those used in Lemma 4.12, we can get, after
a suitable choice of parameters, a super-polynomial number of codewords in a Hamming
ball of radius close to the Johnson bound on list decoding radius.

The astute reader might be puzzled about the need for the seemingly odd number-
theoretic conjecture assumed in the hypothesis of Theorem 4.6. This arises because of
the need to have a multiplicative subgroup whose elements are linearly independent over
GF(2). We do not know how to prove that such subgroups exist for infinitely many sizes
without making any number-theoretic assumption. However, this fact is implied by the
conjecture that there exist infinitely many primes p for which 2 is a generator of the cyclic
group F∗p (this is a special case of a more general and famous conjecture known as the Artin
conjecture; recall the discussion following the statement of Theorem 4.6).

4.6.2 The Technical Proof

We first record the number-theoretic fact stated at the end of the previous section.

Lemma 4.17 Let p be an odd prime and let 2 be a generator of the multiplicative group
F
∗
p of the finite field Fp. Let α be the primitive p’th root of unity in the field GF(2p−1)

(this must exist since 2p−1 ≡ 1 mod p by Fermat’s little theorem). Consider the subgroup
(1, α, . . . , αp−1) of the multiplicative group of GF(2p−1). Then the only non-trivial linear
dependence among these p elements is: 1 + α+ · · ·+ αp−1 = 0. In particular, the elements
α, α2, . . . , αp−1 are linearly independent over GF(2).

Proof: We claim that if 2 is a generator of F∗p, then the polynomial g(x) = 1 + x + x2 +
. . . + xp−1 is irreducible over GF(2). Indeed, let α be a primitive p’th root of unity over
GF(2); then g(α) = 0 and therefore the irreducible polynomial h of α over GF(2) (i.e. the
polynomial of lowest degree that α satisfies) must divide g. Since h(α) = 0, we also have
h(α2i) = h(α)2i = 0 (as we are working over characteristic two). Now, since 2 generates
F
∗
p and α is a primitive p’th root, the quantities α2i , 0 ≤ i < p − 1 are all distinct. Thus
h has p− 1 distinct zeroes, and hence it has degree at least (p− 1). But since h divides g,
and g has degree (p − 1), we must have that g is a scalar multiple of h, and since we are
working over GF(2), this implies h = g. Thus the irreducible polynomial of α over GF(2)
is g(x) = 1 + x + x2 + . . . + xp−1. This implies that α satisfies no polynomial equation of
degree (p − 2) or less, and moreover g is the only polynomial of degree (p − 1) that α is a
root of. In other words, the relation 1 + α + . . . + αp−1 = 0 is the only non-trivial linear
dependence among the elements of the subgroup (1, α, α2, . . . , αp−1). 2

Corollary 4.18 Assume that there exist infinitely many primes p for which 2 is a generator
of F∗p. Then for each one of those infinitely many primes the following holds: For every
b ≥ 1, there exists a multiplicative subgroup S′ of GF(2(p−1)b) \ {0} of size p such that the
only GF(2)-linear dependence among elements of S′ is that their sum is zero. In particular,
any set of (p− 1) elements of the subgroup are linearly independent over GF(2).

We now state and prove the main theorem of this section. The result of Theorem 4.6
then follows as a corollary.

Theorem 4.19 Assume that there exist infinitely many primes p for which 2 is a generator
of F∗p. Then, for every δ, 0 < δ < 1/2, and every ε > 0, there exist infinitely many N for
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which there exists a binary linear code of blocklength N and minimum distance at least δN
that has at least NΩ(ε log log logN) codewords in a Hamming ball of radius N

2 (1−
√

1− 2δ − ε).

Proof: The proof follows the idea outlined in Section 4.6.1. We just need to pick the
various parameters appropriately and then carefully bound the number of codewords within
a certain Hamming ball of the desired radius.

Let p be a prime such that 2 is a generator of F∗p. Apply Lemma 4.9 with the choice
of k = (p − 1) and δ = δ/(1 − ε) to get a binary linear code C ′ = Cbin

(p−1),δ/(1−ε) of relative

distance at least δ′ def= δ/(1− ε). Let the dimension of C ′ be (p− 1)b and let its blocklength
be n′; we have b ≤ 2O(2p) and n′ ≤ 2O(p

√
b).

Let S′ = (1, α, α2, . . . , αp−1) be a multiplicative subgroup of GF(2(p−1)b) consisting of
the r’th powers in GF(2(p−1)b) \ {0} where r = 2(p−1)b−1

p . By Corollary 4.18, the elements
in S = (α, α2, . . . , αp−1) are linearly independent. By Lemma 4.9, there exist a set of at
least 2p−1 codewords of C ′ in a Hamming ball B of radius n′

2 (1 −
√

1− 2δ′ − ε), centered
at some v ∈ Fn′2 . Among these 2p−1 codewords there must exist at least (p − 1) non-zero
codewords corresponding to a set T of (p − 1) linearly independent messages (in F(p−1)b

2 ).
Owing to the linear independence of elements of both S and T , there must be an invertible
linear transformation F that maps the elements of S into those of T (for some fixed ordering
of the elements of S and T ). Consider the linear code C ′′ = C ′ ◦ F , i.e., encoding by F
followed by the encoding C ′. Since F is an invertible linear transformation, C ′′ is a binary
linear code that has the same dimension (namely (p − 1)b) and minimum distance as C ′.
Also, clearly the encodings of the elements of S as per C ′′ all lie in the ball B, which is of
radius n′

2

(
1−

√
1− 2δ

1−ε − ε
)

.

The final code C∗ we use to prove the claim of the theorem will be a Reed-Solomon
code over GF(2(p−1)b) of rate ε and blocklength n = 2(p−1)b, concatenated with C ′′ as the
inner code. We first quantify the main parameters of C∗. Its blocklength is

N = n · n′ = 2(p−1)bn′ ≤ 2pb2O(p
√
b) = 2p·2

O(2p)

(since b ≤ 2O(2p)). The relative distance of C∗ is at least (1 − ε) · δ′ = δ. Since there are
infinitely many choices of p by the hypothesis, we can construct such a code C∗ for infinitely
many blocklengths N . The messages of C∗ are in one-one correspondence with degree εn
polynomials over GF(n). Also note that the blocklength n of the outer Reed-Solomon code
satisfies n = NΩ(1).

Now as in the proof of Lemma 4.12, we will establish a lower bound on the number
of polynomials whose evaluations at the field elements of GF(2(p−1)b) belong to the set S
for “most” of the n field elements. We will do this by considering polynomials of the form
P (x) = R(x)r where R is a random degree εn/r polynomial, and estimating the probability
that P (γi) ∈ S for a large fraction of i’s (here we assume γ1, . . . , γn are the elements of
GF(2(p−1)b)). This will imply that for r = vn, i.e. the center v of the ball B repeated n
times, once for each Reed-Solomon codeword position, a ball centered at r of radius “about”
N
2 (1−

√
1− 2δ) will have several (about nεn/r) codewords, and for our choice of parameters

this will yield a super-polynomial number of codewords within a ball of radius close to the
Johnson radius.

The analysis of this random experiment proceeds very similarly to that of Lemma 4.12.
The r’th power of any elements of GF(n) always lies in S ∪ {0, 1}. For the choice of
P (x) = R(x)r for a random R, for a fixed γj we have
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(a) Pr[P (γj) = 0] = 1/n;

(b) Pr[P (γj) = 1] = r/n; and

(c) Pr[P (γj) ∈ S] = (n− r − 1)/n;

For 1 ≤ j ≤ n, define the indicator random variable Ij as follows:

Ij =
{

1 if P (γj) ∈ S
0 otherwise

Then the random variable Z =
∑n

j=1 Ij measures the number of positions j, 1 ≤ j ≤ n, for
which P (γj) ∈ S. By (c), we have, for P chosen randomly as above,

E[Z] = n− r − 1 (4.12)

Also the Ij ’s are pairwise independent 0/1 random variables and hence

Var(Z) =
n∑
j=1

Var(Ij) =
n∑
j=1

E[Ij ](1−E[Ij ]) =
(n− r − 1)(r + 1)

n
. (4.13)

By Chebyshev’s inequality we have

Pr[Z ≤ n− r − 1−
√
n] ≤ Pr[|Z −E[Z]| ≥

√
n]

≤ Var(Z)
n

≤ (n− r − 1)(r + 1)
n2

≤ 2/p (since r + 1 = (n+ p− 1)/p ≤ 2n/p)
≤ 1/2 (for p ≥ 4).

Hence at least a fraction 1/2 of the polynomials P of the form P (x) = R(x)r satisfy
P (γj) ∈ S for at least (n − r −

√
n) values of j. For these polynomials, their encoding by

C∗ will differ from r in at most

e = (n− r −
√
n)
n′

2

(
1−

√
1− 2δ

1− ε
− ε
)

+ (r +
√
n)n′

places. Since n ≤ 2p·2
O(2p)

and r = (n − 1)/p, we have r = o(n) and hence (r +
√
n)n′ =

o(nn′) = o(N). Thus

e ≤ N

2

(
1−

√
1− 2δ

1− ε
− ε
)

+ o(N) . (4.14)

The number of such polynomials whose encodings differ from r in at most e positions is at
least 1

2 ·n
εn/r ≥ 1

2 ·n
εp. Since n = NΩ(1) and N ≤ 2p·2

O(2p)
, we have p = Ω(log log logN). The

number of codewords of C∗ within a Hamming distance of e from r is therefore NΩ(ε log logN).
Since ε > 0 was arbitrary, from Equation (4.14) the result claimed in the theorem

follows. 2

Letting ε → 0, the bound in Theorem 4.19 approaches the Johnson radius J(δ) =
(1 −

√
1− 2δ)/2. As a corollary, therefore, we get Theorem 4.6, our main result of this

section.

77



4.7 Notes and Open Questions

The study of constant-weight codes has been the subject of a lot of research, and lower
bounds on the rate of constant-weight codes imply certain limits on the list decodability of
codes (by considering the case when the received word is 0). The result of [GRS95] which
we stated in Proposition 4.1 and which shows the tightness of the Johnson bound for general
non-linear codes follows this spirit. Constant-weight codes are however not linear, and the
question of the tightness of the Johnson bound for linear codes seems to have been pursued
only recently.

The work of Justesen and Hφholdt [JH01] was primarily motivated by the question of
limits of list decodability of Reed-Solomon codes. They also showed that the Johnson bound
is tight for list decoding with constant-sized lists for certain MDS codes. And, as we did
in Section 4.4 of this chapter, one can use their results to prove a similar result for binary
codes as well, though one has to perform a somewhat careful analysis of their construction,
and in particular, one needs an explicit upper bound on the alphabet size of the outer MDS
code.

Obtaining a fixed polynomial or super-polynomial number of codewords in a small Ham-
ming ball has seen comparatively much less success. Prior to the results of [GHSZ00], which
are discussed in Section 4.5 of this chapter, it was not even known that one can find a fixed
polynomial number of codewords within a ball of relative radius strictly smaller than the
relative distance (i.e., the statement of Theorem 4.5). The results of [JH01, Jus01] obtain
a linear number of codewords at the Johnson radius for Reed-Solomon and certain cyclic
codes, but these results appear only for a certain set of relative distances δ, and not for
every value of δ in the range 0 < δ < 1.

The results of Section 4.6 will appear in [Gur01a]. Two of the obvious open questions
concerning this chapter are:

Open Question 4.1 Prove the result of Theorem 4.6 (i.e. Lpoly(δ) = (1 −
√

1− 2δ)/2)
without making any number-theoretic assumption. A good first step would be to uncondi-
tionally prove that Lpoly(δ) < δ for every δ, 0 < δ < 1/2.

Open Question 4.2 For 0 < δ < 1/2, does there exist a linear code of relative distance δ
with an exponential (and not just super-polynomial) number of codewords within a Hamming
ball of relative radius equal to (or close to) the Johnson radius J(δ)? As a first step, can
one have exponentially many codewords within a ball of relative radius strictly less than δ?

Finally, our binary code constructions from Theorems 4.3, 4.5 and 4.6 all have vanishing
rate. This is all right for the applications in this chapter since we are only concerned about
the distance vs. list decodability relation and are not directly concerned about the rate.
However, it will still be interesting to obtain asymptotically good code constructions to
prove the results of this chapter.

Open Question 4.3 Can one prove analogs of Theorems 4.3, 4.5 and 4.6 with the addi-
tional requirement of the concerned code constructions being asymptotically good ?

Note that a larger rate should intuitively only help us, since there are more codewords in
all and thus it should be easier to have several of them within a Hamming ball of relatively
small radius. However, we cannot simply add more codewords to increase the rate, since we
also have to maintain a certain distance property, and obtaining high rate, large distance
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and small list decoding radius simultaneously is a non-trivial task. We expect that by using
an outer AG-code instead of a Reed-Solomon code one should be able to prove Theorem 4.5
with asymptotically good codes. Using a similar idea, the construction of Section 4.6 can be
viewed as “evidence” towards the fact that a proof of Theorem 4.3 for constant-sized lists
with asymptotically good codes will lead to a proof of Theorem 4.6 for super-polynomial
list sizes with codes of non-vanishing rate.

The material in this chapter appears in [GHSZ00, JH01, Gur01a].
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Chapter 5

List decodability Vs. Rate

Once you eliminate the impossible, whatever remains,
no matter how improbable, must be the truth.

Sherlock Holmes (by Sir Arthur Conan Doyle)

5.1 Introduction

In the previous two chapters, we have seen on the one hand that any code of distance d
can be list decoded up to its Johnson radius (which is always greater than d/2). On the
other hand, we have seen that, in general, the list decoding radius (for polynomial-sized
lists), purely as a function of the distance of the code, cannot be larger than the Johnson
radius. Together these pose limitations to the performance of list decodable codes if one
only appeals to the distance-LDR relation of the code in order to bound its list decoding
radius. To present a concrete example, these imply that one can use a binary code family
of relative distance δ to list decode a fraction (1 −

√
1− 2δ)/2 of errors, but no better (in

general). Hence, to list decode a fraction (1/2 − ε) of errors, one needs binary codes of
relative distance (1/2 − O(ε2)). The best known explicit constructions of code families of
such high relative distance achieve a rate of only O(ε6) [ABN+92, She93], and there is an
upper bound of O(ε4 log(1/ε)) for the rate of such code families [MRRW77].

This raises several natural questions. Can one achieve rate better than Ω(ε4) for binary
codes that have list decoding radius (1/2 − ε)? Note that the limitation discussed above
comes in part from the rate vs. distance trade-off of codes, and in part from bounding
the list decoding radius purely as a function of the distance of the code (via the Johnson
bound). If one is interested in list-of-L decoding for some large constant L, the parameters
that are directly relevant to the problem are list-of-L decoding radius and the rate of the
code. Note that the distance of the code does not (at least directly) appear to be relevant
to the problem at all. Since we are only interested in list-of-L decoding, why should one
use codes optimized for the minimum distance (i.e., the list-of-1 decoding radius)? A closer
examination of this question suggests the possibility that by “directly” optimizing the rate
as a function of the list decoding radius, one might be able to do better than the two-step
method that goes via the distance of the code.

This indeed turns out to be the case, as results in this chapter demonstrate. We will
exhibit codes that achieve trade-offs between list decodability and rate which are provably
beyond what can be achieved by going via the distance of the code. While the rate vs.
distance trade-off is one of the central problems in coding theory and has received lots of
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attention, the list decoding radius vs. rate question has received much less attention. This
chapter studies this trade-off and proves non-trivial lower bounds on the rate of certain
list decodable codes. The basic approach is to use the probabilistic method to show the
existence of certain codes. The results of this chapter highlight the potential and limits of list
decoding, which in turn sets up the stage for the algorithmic results of Part II by indicating
the kind of parameters one can hope for in efficiently list decodable codes. Furthermore,
some of the results provide “good” inner codes for some of our later concatenated code
constructions.

5.2 Definitions

The aim of this chapter is to study the trade-offs between list decoding radius and the rate
of code families. In order to undertake such a study systematically, we first develop some
definitions and notation. It might be of help to the reader to recall the definition of list
decoding radius from Section 2.1.4.

Definition 5.1 For an integer q, real p with 0 ≤ p ≤ (1 − 1/q), and list size function
` : Z+ → Z

+, the rate function for q-ary codes with list-of-` decoding radius p, denoted
R`,q(p), is defined to be

R`,q(p) = sup
C:LDR`(C)≥p

R(C) . (5.1)

where the supremum is taken over all q-ary code families C with LDR`(C) ≥ p.
When ` is the constant function which takes on the value L for some integer L ≥ 1, we
denote the above quantity as simple RL,q(p).
For a family of integer-valued functions F , one defines the quantity

RF ,q(p) = sup
`∈F

R`,q(p) .

Remark: We have the restriction p ≤ (1− 1/q) in the above definition, since it is easy to
see that a q-ary code family of non-vanishing rate can never be list decoded from beyond a
fraction (1− 1/q) of errors with polynomial-sized lists. We will often omit the subscript q
when the alphabet size is clear from context, or when referring to the binary case. Whether
the list size subscript is a constant, an integer-valued function, or a family of integer-valued
functions will be clear from the context.

Note that RL,q(p) is the best (largest) rate of a q-ary code family which can list decoded
up to a fraction p of errors using lists of size L. We next define the rate function for list
decoding with arbitrary constant-sized lists.

Definition 5.2 For an integer q and real p, 0 ≤ p ≤ (1 − 1/q), the rate function for list
decoding by constant-sized lists, denoted Rconst

q (p), is defined to be

Rconst
q (p) = lim sup

L→∞
{RL,q(p)} .

We will also be interested in the analogous rate function RL,q when the codes in consider-
ation are restricted to be linear. This is an interesting case to consider both combinatorially
and because linear codes are much easier to represent, encode and operate with.

Definition 5.3 We define the analogous rate functions R`,q, RL,q and RF ,q when restricted
to linear codes by Rlin

`,q, R
lin
L,q and Rlin

F ,q, respectively. Likewise the function Rconst
q , when

restricted to linear codes, is denoted by Rconst,lin
q .
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5.3 Main Results

With the definitions of the previous section in place, we now move on to studying the
properties of the rate functions RL,q and the like. Firstly, note that R1,q(p) is precisely
the best asymptotic rate of a q-ary code family of relative distance 2p, and its study is one
of the most important and still widely open problems in coding theory. Similarly, while a
precise understanding of RL,q seems hopeless at this point, we can nevertheless focus on
obtaining good upper and lower bounds on this function. And, as the result of Theorem 5.1
below states, the function Rconst

q is in fact precisely known.

5.3.1 Basic lower bounds

We remark here that the results in this section are proved by analyzing the performance
of random codes and showing that a random code of a certain rate has the desired list
decodability properties with very high probability. In other words, “most” codes have the
rate vs. list decodability trade-off claimed in this section. The following result was implicit
in [ZP82] and was explicitly stated and proved in [Eli91].

Theorem 5.1 ([ZP82, Eli91]) For every q and every p, 0 ≤ p ≤ (1− 1/q), we have

Rconst,lin
q (p) = Rconst

q (p) = 1−Hq(p) (5.2)

(recall that Hq(x) = x logq(q−1)−x logq x−(1−x) logq(1−x) is the q-ary entropy function).

We will defer the proof of the above result to later in this section. It is easy to verify
that Hq(1 − 1/q − ε) ' 1 − O(ε2) for small ε > 0, and hence the above result implies, in
particular, that for each fixed q, the best rate for families of linear q-ary codes list decodable
up to a fraction (1 − 1/q − ε) of errors is Θ(ε2). Recall that the best rate one could hope
for via the “distance and Johnson bound” based approach was about ε4. The conclusion
therefore is that there exist codes which are list decodable well beyond their Johnson radius
with small lists, and in fact most codes have this property!

“Capacity-theoretic” interpretation of Theorem 5.1

There is a very nice interpretation of the result of Theorem 5.1 by comparing it with
Shannon’s theorem on capacity of noisy channels, when applied to the specific case of the
q-ary symmetric channel, call it qSCp. The channel qSCp transmits a q-ary symbol without
distortion with probability (1 − p), and with the remaining probability, distorts it to one
of the other (q − 1) symbols, picked uniformly at random. In other words, the probability
that symbol α is distorted to symbol β equals p

q−1 if α 6= β, and equals (1 − p) if α = β.
The Shannon capacity of such a channel equals 1−Hq(p). Therefore, one can communicate
reliably over this channel at a rate as close to 1 −Hq(p) as one seeks, but not at any rate
greater than 1−Hq(p).

The channel qSCp makes an expected fraction p of errors, and in fact for all sufficiently
large blocklengths, the fraction of errors will be close to p with overwhelming probability
(by the Chernoff-Hoeffding bounds for i.i.d. events). However, Shannon’s theorem relies
on the fact the (close to) p fraction of errors will be randomly distributed. The result of
Theorem 5.1 states that by using list decoding with list size a sufficiently large constant, we
can communicate at a rate arbitrarily close to the “capacity” 1−Hq(p), even if the channel
corrupts an arbitrary p fraction of symbols in an adversarial manner.
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Thus, list decoding allows us to approach the Shannon capacity even if the errors are
adversarially effected, provided we use lists of large enough size in the decoding. This view
indicates that list decoding can achieve the best performance one can hope for under a
standard probabilistic error model even under the much stronger adversarial error model.

Proof of Theorem 5.1

In order to prove Theorem 5.1, we first focus on results that obtain lower bounds on the
rate function for list decoding with a fixed list size L. We will then apply these results in
the limit of large L to deduce Theorem 5.1. We first prove a lower bound on RL,q(p) for
general codes, and will then prove a result for linear codes.

Theorem 5.2 ([Eli91]) For every q and every p, 0 ≤ p ≤ (1− 1/q), we have

RL,q(p) ≥ 1−Hq(p)
(

1 +
1
L

)
. (5.3)

Proof: Fix a large enough blocklength n and set e = bnpc. The idea is to pick a random
code consisting of 2M codewords, where M is a parameter that will be fixed later in the
proof. We will show that with high probability by removing at most M of the codewords
the resulting code will be (e, L)-list decodable. This is a fairly standard method in coding
theory and is called “random coding with expurgation”.

The probability that a fixed set of (L+ 1) codewords all lie in a fixed Hamming sphere
(in the space [q]n) of radius e equals (Vq(n, e)/qn)L+1 where Vq(n, e) is the volume of a
Hamming sphere of radius e in [q]n. It is well-known that Vq(n, e) ≤ qHq(e/n)n ≤ qHq(p)n

(see for example [vL99, Chapter 1]). Hence this probability is at most q−(L+1)(1−Hq(p))n.
Therefore, the expected number Nbad of sets of (L+ 1) codewords which all lie in some

Hamming sphere of radius e is at most(
2M
L+ 1

)
· qn · q−(L+1)(1−Hq(p))n ≤ (2M)L+1 · q−Ln+(L+1)Hq(p)n . (5.4)

Let us pick M so that it is at least the upper bound in (5.4). For example, we can pick

M = dq(1−(1+1/L)Hq(p))n21+1/Le ≥ q(1−(1+1/L)Hq(p))n . (5.5)

Then the expected value of Nbad is at most M , and therefore there exists a code with 2M
codewords that has at most M sets of (L + 1) codewords that lie in a Hamming ball of
radius e. Now, we can remove one codeword from each of these (at most M) subsets of
(L+1) codewords that lies in a ball of radius e. This process reduces the size of the code by
at most M codewords. After this expurgation, we have a code with at least M codewords
which is (e, L)-list decodable. Since e = bpnc, using (5.5) we get the desired lower bound
on RL,q(p). 2

We next prove the analog of the above result when restricted to linear codes; the lower
bound is much weaker than that for general codes in that one needs very large lists to get
close to the limiting rate Rconst

q (p) = 1−Hq(p). The result first appeared implicitly in the
work of Zyablov and Pinsker [ZP82].

Theorem 5.3 For every q and every p, 0 ≤ p ≤ (1− 1/q), we have

Rlin
L,q(p) ≥ 1−Hq(p)

(
1 +

1
logq(L+ 1)

)
. (5.6)
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Proof: The idea is to once again pick a random code (specifically a linear code of block-
length n and dimension k) and then argue that with high probability it will have the required
(e, L)-list decodability property (as before we set e = bpnc).

The main problem in applying the argument from the proof of Theorem 5.2 is that a
subset of L codewords of a random linear code are no longer mutually independent. A
random [n, k]q linear code C is picked by picking a random n×k matrix A over Fq, and the
code is given by {Ax : x ∈ Fkq}. Define J = dlogq(J + 1)e. Now every set of L distinct non-
zero messages in Fkq contain a subset of at least J messages which are linearly independent
over Fq. It is easily verified that such linearly independent J-tuples are mapped to J
mutually independent codewords by a random linear code. We can then apply estimates
similar to the proof of Theorem 5.2 applied to this subset of J codewords.

We now bound from above the probability that a random linear code C is not (e, L)-list
decodable. We first make the following useful observation: A linear code C is (e, L)-list
decodable iff no one of the Hamming balls of radius e around points in Bq(0, e) contain L or
more non-zero codewords. The condition is clearly necessary; its also sufficient by linearity.
Indeed, suppose there is some y ∈ Fkq with |Bq(y, e)∩C| ≥ L+ 1. Let c ∈ Bq(y, e)∩C. By
linearity, we have |Bq(y − c, e) ∩C| ≥ L+ 1 as well. But w = y − c has Hamming weight
at most e, and Bq(w, e) has at least L non-zero codewords.

The probability that codewords corresponding to a fixed J-tuple of linearly independent
messages all lie in a fixed Hamming ball Bq(w, e) is at most (q(Hq(p)−1)n)J . Multiplying
this by the number of such linearly independent J-tuples of messages and the number of
choices for the center w ∈ Bq(0, e), we get that the probability that some J-tuple of linearly
independent messages all lie in some Hamming ball of radius e is at most

qkJ · qHq(p)n · q(Hq(p)−1)Jn = q−nJ(1−(1+1/J)Hq(p)−k/n) . (5.7)

Since every set of L non-zero codewords has a subset of J codewords corresponding to
the encodings of linearly independent messages, the above also gives an upper bound on
the probability that C is not (e, L)-list decodable. Picking the dimension to be, say, k =
b(1 − (1 + 1/J)Hq(p))n −

√
nc, we get exponentially small failure probability for random

linear codes with rates approaching 1 − (1 + 1/J)Hq(p). Hence there exists a linear code
family of rate 1− (1 + 1/J)Hq(p) and LDRL,q ≥ p, as desired. 2

Proof of Theorem 5.1: The lower bounds in both Theorems 5.2 and 5.3 approach 1 −
Hq(p) as the list size L→∞. It remains to prove the upper bounds. Clearly Rconst,lin

q (p) ≤
Rconst(p), so it suffices to prove Rconst(p) ≤ 1 −Hq(p). This is quite straightforward. Let
C be a q-ary code of blocklength n and rate r > 1 − Hq(p). Pick a random x ∈ [q]n and
consider the random variable X = |Bq(x, pn) ∩ C|. The expected value of X is clearly
|C| · |Bq(0, pn)|/qn which is at least q(r+Hq(p)−1)n−o(n). If r > 1−Hq(p), this quantity is of
the form qΩ(n). Hence a random ball of radius pn has exponentially many codewords. We
must therefore have Rconst(p) ≤ 1−Hq(p). 2

We also record the following result which is obtained by combining the Gilbert-Varshamov
bound (for rate vs. distance trade-off) with the Johnson bound on list decoding radius
(which gives a certain LDR vs. distance trade-off). Such a result was made explicit for
binary codes in [Eli91] — below we state it for general alphabets.
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Theorem 5.4 For every prime power q and every p, 0 ≤ p ≤ (1− 1/q), and every integer
L ≥ 1, we have

Rlin
L,q(p) ≥ 1−Hq

((
1− 1

q

) L

L− 1

(
1−

(
1− qp

q − 1

)2))
. (5.8)

Proof (Sketch): The Gilbert-Varshamov bound (see, for instance, [vL99, Chapter 5])
implies that there exist q-ary linear code families of relative distance δ and rate R where

R ≥ 1−Hq(δ) . (5.9)

(In fact a random linear code achieves this trade-off with high probability.) The result of
Theorem 3.1 on the Johnson radius for list decodability implies that a q-ary code of relative
distance δ and blocklength n is (pn, L)-list decodable for

p =
(

1− 1
q

)(
1−

(
1− q

q − 1
L− 1
L

δ
)1/2)

. (5.10)

Combining (5.9) and (5.10) gives us the desired result. 2

5.3.2 An Improved lower bound for binary linear Codes

Consider the result of Theorem 5.3 for the case of binary linear codes and when p = 1/2− ε
(i.e. we wish to correct close to the “maximum” possible fraction of errors). For this case it
implies that there exist rate Θ(ε2) families which are list decodable to a fraction (1/2− ε)
of errors with lists of size 2O(ε−2). While the list size is a constant, it is exponential in 1/ε
and it is desirable to reduce it to polynomial in 1/ε. By appealing to the Johnson radius
based bound of Theorem 5.4, one can achieve a list size of O(1/ε2) for decoding up to a
fraction (1/2− ε) of errors, but the rate goes down to O(ε4).

Next, we present an improved result for binary linear codes which combines the optimal
Ω(ε2) rate with O(1/ε2) list size. Recall that the result of Theorem 5.2 already implies this
for general, non-linear codes, and the following result closes the gap between linear and
non-linear codes for list decoding up to a fraction (1/2− ε) of errors (closing this disparity
was highlighted by Elias [Eli91] as an open question).

As we shall show in Section 5.3.4, a list size of Ω(1/ε2) is really necessary (even for
general, non-linear codes), and thus this result is optimal up to constant factors for the case
p = (1/2− ε).

Theorem 5.5 For each fixed integer L ≥ 1, and 0 ≤ p ≤ 1/2, we have

Rlin
L (p) ≥ 1−H(p)− 1

L
, (5.11)

where H(x) = −x lg x− (1− x) lg(1− x) denotes the binary entropy function.

Proof: For each fixed integer L ≥ 1 and 0 ≤ p < 1/2 and for all large enough n, we use the
probabilistic method to guarantee the existence of a binary linear code C of blocklength n
that is (e, L)-list decodable for e = pn, and whose dimension is k = b(1 −H(p) − 1/L)nc.
This clearly implies the lower bound on the rate function for binary linear codes claimed in
(5.11).
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The code C = Ck will be built iteratively in k steps by randomly picking the k basis
vectors in turn. Initially the code C0 will just consist of the all-zeroes codeword b0 = 0n.
The code Ci, 1 ≤ i ≤ k, will be successively built by picking a random (non-zero) basis
vector bi that is linearly independent of b1, . . . , bi−1, and setting Ci = span(b1, . . . , bi). Thus
C = Ck is an [n, k]2 linear code. We will now analyze the list of L decoding radius of the
codes Ci, and the goal is to prove that the list of L decoding radius of C is at least e.

The key to analyzing the list of L decoding radius is the following potential function SC
defined for a code C of blocklength n:

SC =
1
2n

∑
x∈{0,1}n

2
n
L
·|B(x,e)∩C| . (5.12)

For notational convenience, we denote SCi be Si. Also denote by T ix the quantity |B(x, e)∩
Ci|, so that Si = 2−n

∑
x 2nT

i
x/L.

Let B = |B(0, e)| = |B(0, pn)|; then B ≤ 2H(p)n (see for example Theorem (1.4.5) in
[vL99, Chapter 1]). Clearly

S0 =
(2n −B) +B · 2n/L

2n
≤ 1 +B · 2−n(1−1/L) ≤ 1 + 2n(H(p)−1+1/L) . (5.13)

Now once Ci has been picked with the potential function Si taking on some value, say
Ŝi, the potential function Si+1 for Ci+1 = span(Ci∪{bi+1}) is a random variable depending
upon the choice of bi+1. We consider the expectation E[Si+1|Si = Ŝi] taken over the random
choice of bi+1 chosen uniformly from outside span(b1, . . . , bi). For better readability, below
we sometimes use exp2(z) to denote 2z.

E[Si+1|Si = Ŝi] = 2−n
∑
x

E[exp2(n/L · T i+1
x )]

= 2−n
∑
x

E[exp2(n/L · (|B(x, e) ∩ Ci|+ |B(x, e) ∩ (Ci + bi+1)|))]

= 2−n
∑
x

(
exp2(n/L · T ix) E

bi+1

[exp2(n/L · T ix+bi+1
)]
)

(5.14)

where in the second and third steps we used the fact that if z ∈ B(x, e)∩Ci+1, then either
z ∈ B(x, e) ∩ Ci, or z + bi+1 ∈ B(x, e) ∩ Ci. To estimate the quantity (5.14), we use the
fact that the expectation of a positive random variable taken over bi+1 chosen randomly
from outside span(b1, . . . , bi) is at most (1− 2i−n)−1 times the expectation taken over bi+1

chosen uniformly at random from {0, 1}n. Using (5.14) we therefore get:

E[Si+1|Si = Ŝi] ≤ (1− 2i−n)−12−n
∑
x

(
2n/L ·T

i
x ·
( 1

2n
∑

y∈{0,1}n
2n/L ·T

i
x+y

) )
= (1− 2i−n)−1Ŝi · 2−n

∑
x

2n/L ·T
i
x

=
Ŝ2
i

(1− 2i−n)
. (5.15)

Applying (5.15) repeatedly for i = 0, 1, . . . , k − 1, we conclude that there exists an [n, k]
binary linear code C with

SC = Sk ≤ S2k
0∏k−1

i=0 (1− 2i−n)2k−i
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≤ S2k
0

(1− 2k−n)k
≤ S2k

0

1− k2k−n
(5.16)

since (1− x)a ≥ 1− ax for x, a ≥ 0. Combining (5.16) with (5.13), we have

Sk ≤ (1− k2k−n)−1(1 + 2n(H(p)−1+1/L))2k

and using (1 + x)a ≤ (1 + 2ax) for ax� 1, this gives

Sk ≤ 2 · (1 + 2 · 2k+(H(p)−1+1/L)n) ≤ 6 (5.17)

(the last inequality follows since k = b(1 − H(p) − 1/L)nc). By the definition of the
potential Sk from Equation (5.12), this implies that 2n/L·|B(x,e)∩C| ≤ 6 · 2n < 2n+3, or
|B(x, e)∩C| ≤ (1 + 3

n)L for every x ∈ {0, 1}n. If n > 3L, this implies |B(x, e)∩C| < L+ 1
for every x, implying that C is (e, L)-list decodable, as desired. 2 (Theorem 5.5)

Remark: One can also prove Theorem 5.5 with the additional property that the relative
distance δ(C) of the code (in addition to its list -of-L decoding radius) also satisfies δ(C) ≥ p.
This can be done, for example, by conditioning the choice of the random basis vector bi+1

in the above proof so that span(b1, b2, . . . , bi+1) does not contain any vector of weight less
than pn. It is easy to see that with this modification, Equation (5.15) becomes

E[Si+1|Ŝi] ≤
Ŝ2
i

(1− 2i+H(p)n−n)
.

Using exactly similar calculations as in the above proof, we can then guarantee that there
exists a code C of dimension k = b(1 −H(p) − 1/L)nc and minimum distance at least pn
that satisfies SC = O(1), and consequently satisfies LDRL(C) ≥ p.

Note that Theorem 5.5, as with the results from the previous section, is a non-constructive
result, in that it only proves the existence of a code with the desired properties, and does not
give an explicit or polynomial time construction. In fact, unlike the results of Theorems 5.1,
5.2 or 5.3, it does not even give a high probability result. (For those who might be aware of
such terminology on the probabilistic method, the technique used to prove Theorem 5.5 is
called the semirandom method.) Also the proof seems to work for the binary case and does
not generalize, at least in any obvious fashion, to the q-ary case for q > 2. The following
specific questions, therefore, remain open:

Open Question 5.1 Does a random binary linear code have the property claimed in The-
orem 5.5 with high probability ?

Open Question 5.2 Does an analogous result to Theorem 5.5 hold for q-ary linear codes
for q > 2 ? Specifically, does Rlin

L,q ≥ 1−Hq(p)− 1
L hold for every prime power q ?

We believe that the answer to both of the questions above is yes. Finally, we note the
following capacity-theoretic consequence of Theorem 5.5: there exist binary linear codes
of rate within ε of the Shannon capacity of the binary symmetric channel with cross-over
probability p, namely within ε of 1−H(p), even when the fraction p of errors are effected
adversarially as opposed to randomly, provided we use list decoding with lists of size 1/ε.
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5.3.3 Upper bounds on the rate function

So far, all of our results concerning the rate functions RL and Rlin
L established lower bounds

on these functions. In other words they proved that codes with a certain list-of-L decoding
radius and certain rate exist. We now turn to the questions of upper bounds on these
functions, namely results which demonstrate that codes of certain rate and list decodability
do not exist. We focus on binary codes for this section.

The result of Theorem 5.1 shows that one can achieve a rate arbitrarily close to the
optimum rate 1 −H(p) for codes with list decoding radius p, provided one allows the list
size L to grow beyond any finite bound (i.e. by letting L → ∞). This raises the question
whether one can attain the rate 1 −H(p) with any finite list size L. The following result,
due to Blinovsky [Bli86, Bli97], proves that the unbounded list size is in fact necessary to
approach a rate of 1 − H(p); in other words, it proves that RL(p) is strictly smaller than
1−H(p) for any finite L and 0 < p < 1/2. The proof of the result is quite complicated and
we refer the interested reader to [Bli86, Theorem 3] (see also [Bli97, Chapter 2]).

Theorem 5.6 ([Bli86]) For every integer L ≥ 1, and each p, 0 ≤ p ≤ 1/2, we have

RL(p) ≤ 1−H(λ) , (5.18)

where λ, 0 ≤ λ ≤ 1/2, is related to p by

p =
dL/2e∑
i=1

(
2i− 2
i− 1

)
(λ(1− λ))i

i
. (5.19)

Corollary 5.7 For every L ≥ 1 and every p, 0 < p < 1/2, we have RL(p) < 1−H(p).

Proof: It is not difficult to see that, for 0 ≤ y ≤ 1/2,

∞∑
i=1

(
2i− 2
i− 1

)
(y(1− y))i

i
= y . (5.20)

Indeed, this follows from the fact that the generating function C(x) =
∑

n≥0 cnx
n for

Catalan numbers, defined by cn = 1
n+1

(
2n
n

)
for n ≥ 0, equals C(x) = (1 −

√
1− 4x)/2.

Equation (5.20) above follows with the setting x = y(1 − y) in the generating function for
Catalan numbers. We therefore have that the λ which satisfies Condition (5.19) is strictly
greater than p. Hence, H(λ) > H(p), and thus RL(p) ≤ 1−H(λ) < 1−H(p). 2

5.3.4 “Optimality” of Theorem 5.5

Consider the case of list decoding radius close to 1/2, i.e., the case when p = 1/2 − ε. In
this case, Theorem 5.5 implies the existence of binary linear code families C of rate Ω(ε2)
and LDRL(C) ≥ 1/2− ε for list size L = O(1/ε2) (Theorem 5.2 showed the same result for
general, non-linear codes). We now argue that in light of Theorem 5.6, this result for binary
codes for the case p = 1/2 − ε is in fact asymptotically optimal. That is, the rate and list
size guaranteed by Theorems 5.2 and 5.5 are the best possible up to a constant factor.

By Theorem 5.1, RL(p) ≤ 1 − H(p) for any finite L, and hence for p = 1/2 − ε, we
get that the rate can be at most O(ε2). It remains to show that in order to have list-of-L
decoding radius (1/2 − ε) and a positive rate, one needs L = Ω(ε−2). To do this we make
use of the result of Theorem 5.6.
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The λ that satisfies Condition (5.19) must be at least p. Hence if p = (1/2− ε), we have
1/2 ≥ λ ≥ (1/2− ε). Therefore λ(1− λ) ≥ 1/4− ε2.

Now for any integer ` ≥ 0 we have

∞∑
i=`+1

(
2i− 2
i− 1

)
(λ(1− λ))i

i
≥

(
2`
`

)
(λ(1− λ))`+1

`+ 1

∞∑
j=0

(λ(1− λ))j
(2(2`+ 1)

`+ 2

)j
=

`+ 2
`+ 1

(
2`
`

)
(λ(1− λ))`+1

(`+ 2)− 2(2`+ 1)λ(1− λ)
(5.21)

where in the first step we use the fact that if i = `+ 1 + j,(
2i−2
i−1

)
1
i(

2`
`

)
1
`+1

= 2j
`+j∏
s=`+1

2s− 1
s+ 1

≥
(2(2`+ 1)

`+ 2

)j
.

Together with Condition (5.19) and Equation (5.20) applied with the choice y = λ, Equation
(5.21) above implies

λ ≥ p+
`+ 2
`+ 1

(
2`
`

)
(λ(1− λ))`+1

(`+ 2)− 2(2`+ 1)λ(1− λ)
,

where ` = dL/2e. Plugging in the above into the bound of Theorem 5.6 and using λ(1−λ) ≥
1/4− ε2, we get, after some straightforward algebraic manipulations,

λ ≥ p+ Ω
((1− 4ε2)`+1

`3/2ε2

)
.

Since RL(p) ≤ 1−H(λ) by Theorem 5.6, we get

RL(p) ≤ 1−H
(
p+ Ω

((1− 4ε2)`+1

`3/2ε2

))
. (5.22)

In order to have positive rate, the argument to the entropy function H(·) in the above bound
must be at most 1/2. When p = 1/2 − ε, this requires 1/(`3/2ε2) = O(ε), or ` = Ω(ε−2).
Since ` = dL/2e, we needs list size L = Ω(ε−2), as we desired to show. We record this fact
in the following result:

Theorem 5.8 Let ε > 0 be a sufficiently small constant and let C be a binary code family of
rate r that satisfies LDRL(C) ≥ (1/2− ε). Then we must have r = O(ε2) and L = Ω(1/ε2).

5.4 Prelude to pseudolinear codes

For q > 2, the lower bound on rate we know for list decodable q-ary codes is much weaker
for linear codes (Theorem 5.3) than for general codes (Theorem 5.2). We conjecture that
there exists an answer to open question 5.2 in the affirmative, however a proof of this fact
has been elusive.

Linear codes have the advantage of succinct representation and efficient encoding (for
example, using the generator matrix). Thus, they are very attractive from a complexity
view-point. This is particularly important for us later on when we will use the codes guar-
anteed by the results of the previous two sections as inner codes in concatenated schemes.
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In light of the fact that the existential results are weaker for linear codes, we introduce the
notion of “pseudolinear” codes, which albeit non-linear, still have succinct representations
and admit efficient encoding.

The basic idea behind pseudolinear codes is the following: to encode a message x ∈ Fkq ,
first “map” it into a longer string hx ∈ Fk

′
q and then encode hx using a suitable n × k′

“generator” matrix A into Ahx. The name pseudolinear comes from the fact that the non-
linear part of the mapping is confined to the first step which maps x to hx. Of course, to
make this useful the mapping x 7→ hx must be easy to specify and compute – this will be
the case; in fact the mapping will be explicitly specified.

The crucial property of pseudolinear codes for purposes of list decodability will be that
by taking k′ = O(kL), we can ensure that under the mapping x 7→ hx, every set of L
distinct non-zero x’s are mapped into a set of L linearly independent vectors in Fk

′
q . Then

if we pick a “random” pseudolinear code by picking a random n×k′ matrix A, we will have
the property that the codewords corresponding to any set of L non-zero messages will be
mutually independent. This “L-wise independence property” can then be used to analyze
the list-of-L decoding properties of the random code, in a manner similar to the analysis of
a general, random code.

In a nutshell, the above allows us to translate the list-of-L decoding performance of
general codes into similar bounds for L-wise independent pseudolinear codes. The big
advantage of pseudolinear codes over general codes is their succinct representation (since
one only needs to store the “generator” matrix A) and their efficient encoding. They are
thus attractive for use as inner codes in concatenated schemes.

To avoid burdening the reader at this stage, the formal definitions relating to pseudo-
linear codes and the analog of Theorem 5.2 and related results for pseudolinear codes are
deferred to Chapter 9 (pseudolinear codes will not be used in the thesis until that point).
For now, the reader can take comfort in the fact there is a way to achieve the list decoding
performance of general codes with the more structured pseudolinear codes.

5.5 Notes

Initial works [Eli57, Woz58, SGB67, Ahl73] on list decoding investigated the notion on
probabilistic channels, and used random coding arguments to explore the average decod-
ing error probability of block codes for the binary symmetric and more general discrete
memoryless channels. Combinatorial questions of the nature investigated in this chapter
(and in this thesis in general), on the other hand, are motivated by worst-case, not average,
error-correcting behavior.

The study of the maximum rate of (e, L)-list decodable codes in the limit of large
blocklength n with e/n and L fixed originated in the work of Zyablov and Pinsker [ZP82]
who were interested mainly in the use of such codes as inner codes in concatenated schemes.
The study of the relation between rate and list decodability was undertaken systematically
for the first time by Blinovsky [Bli86] (see also [Bli97]), where non-trivial upper and lower
bounds on RL(p) are obtained. The paper of Elias [Eli91] is a very useful resource on this
topic as it presents a nice, limpid survey of the relevant results together with some new
results.

The result of Theorem 5.1 was first implicitly observed in [ZP82]. The result of The-
orem 5.2 and its proof are from [Eli91]. Theorem 5.3 was first observed in [ZP82]; the
proof in this chapter follows the presentation in [Eli91]. The result of Theorem 5.4 is the
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generalization to the q-ary case of a similar result for binary codes that was observed in
[Eli91].

Elias [Eli91] was the first to note the disparity between the results for linear and non-
linear codes, and posed the open question whether the requirement of very large lists in
Theorem 5.3 for linear codes was inherent or, as he correctly suspected, was an artifact of
the proof techniques. The result of Theorem 5.5 for binary linear codes can be viewed as a
positive resolution of this question. This result appears in a joint paper of the author with
H̊astad, Sudan and Zuckerman [GHSZ00].

Recently, Wei and Feng [WF94] obtained rather complicated lower bounds for the func-
tion RL(p) as well as its linear counterpart Rlin

L (p). Their bounds are hard to state and do
not have simple closed forms. They conjecture that their lower bounds for the linear and
non-linear case are identical for every value of the list size. However, they are able to prove
this only for list size at most 3.

Upper bounds on the rate function RL(p) have been studied by Blinovsky [Bli86], and his
results were mentioned in Section 5.3.3. For the case of list size L = 2, an improvement to
the upper bound from Theorem 5.6 appears in [ABL00]. A recent paper by Blinovsky [Bli00]
revisits the bounds for the linear and non-linear case from [Bli86], and shows that the lower
bound proved for linear codes is weaker than the one for non-linear codes for a list size as
small as 5.

The notion of pseudolinear codes was defined and basic combinatorial results concerning
them were proven by the author in joint work with Indyk [GI01b].

Combinatorial results of a similar flavor to those discussed in this chapter appear in
three other places in this thesis: in Chapter 8 where a generalization of Theorem 5.5 is
proven, in Chapter 9 where pseudolinear codes are discussed, and in Chapter 10 where we
discuss analogous questions for the case of erasures (instead of the errors case discussed in
this chapter). Due to the local nature of the use of these results, we chose not to present
them in this chapter, but instead postpone them to the relevant chapters where they are
needed.
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Part II

Code Constructions and
Algorithms
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Chapter 6

Reed-Solomon and
Algebraic-geometric Codes

I don’t consider this algebra,
but this doesn’t mean that algebraists can’t do it.

Garrett Birkhoff

Interlude: The previous several chapters investigated the combinatorics of list decoding
and indicated what fraction of errors one can hope to correct with small lists, as a function
of the distance and rate of the code. This indicates the “combinatorial” feasibility of list
decoding, but provides no way to turn this into an efficient (polynomial time) algorithm
that outputs the small list of codewords that differ from a received word in a certain number
of positions. (As with unambiguous decoding, the naive search algorithm takes exponential
time for interesting families of codes, and the problem of list decoding is clearly at least
as hard as unambiguous decoding.) With the combinatorial results in place to guide us
in what one can hope for using list decoding, the next several chapters present efficient
list decoding algorithms for several families of codes. These results take us well on our
way to algorithmically realizing the potential of list decoding and correcting “well beyond”
half-the-minimum-distance. End Interlude

6.1 Introduction

In this chapter, we present polynomial time list decoding algorithms for two important
classes of algebraic linear codes, namely Reed-Solomon codes and Algebraic-geometric codes.
In addition to the importance of these algorithms for their own sake (since these are clas-
sical, commonly used codes), they will also be used as crucial subroutines in the decoding
algorithms from later chapters. In some sense, the results in this chapter lie at the heart
of the algorithmic content of this thesis and will be repeatedly appealed to on several oc-
casions in the chapters that follow. Incidentally, the next chapter will present an abstract
unified framework for list decoding “ideal-based codes”, which captures the algorithms in
this chapter. Nevertheless, we chose to present the algorithm specialized to these codes in
this chapter for several reasons including: (a) this was the chronological order of the con-
ception of the algorithms, (b) to enable the reader to read and understand these algorithms
without the burden of having to deal with abstract algebraic concepts and terminology,
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and (c) Reed-Solomon and AG-codes are perhaps the most important instantiations of the
“ideal-based codes” anyway.

6.1.1 Reed-Solomon Codes

Reed-Solomon codes are among the most basic, important and well-studied codes in the
literature. In addition to their numerous “theoretical applications”, Reed-Solomon codes
are also used in a wide range of “real-world” applications such as compact discs players,
hard disk drives, satellite and wireless communications, etc. We point the reader to [WB99]
for detailed information on the various applications of Reed-Solomon codes.

Recall that the family of Reed-Solomon codes yields [n, k+ 1, d = n− k]q codes for any
k < n ≤ q. The alphabet Σ for such a code is a finite field Fq. The message specifies
a polynomial of degree at most k over Fq in some formal variable x (by giving its k + 1
coefficients). The mapping C maps this polynomial to its evaluation at n distinct values of x
chosen from Fq. (The code therefore needs an alphabet size q ≥ n.) The distance property
follows immediately from the fact that two distinct degree k polynomials can agree in at
most k places.

Unique decoding of an [n, k+1, n−k] Reed-Solomon codes is possible up to (n−k−1)/2
errors, since this is the half-the-distance bound. It is, however, a non-trivial task to solve the
unique decoding problem in time polynomial in the blocklength n. Surprisingly, a classical
algorithm due to Peterson [Pet60] manages to solve this problem in polynomial time, as
long as the number of errors e satisfies e < n−k

2 . Faster algorithms, with running time
O(n2) or better, are also well-known: in particular the classical algorithms of Berlekamp
and Massey (cf. [Ber68, MS81] for a description) achieve such running time bounds. Of
course, if e ≥ (n− k)/2, then there may exist several different codewords within distance e
of a received word, and so one cannot perform unique decoding. Our interest in this chapter
is on list decoding Reed-Solomon codes from errors beyond the half-the-distance barrier.

We know from the combinatorial results of the previous chapters that any Hamming
ball of up to the Johnson radius will only have a polynomial number of codewords, and
hence efficient list decoding up to this radius is potentially possible. For an [n, k+ 1, n− k]
Reed-Solomon code, the Johnson radius is (n −

√
kn) (this is the bound of Corollary 3.3

from Chapter 3). Thus a nice goal is to match this with an algorithm that list decodes up
to (n −

√
kn) errors. However, despite four decades of research on Reed-Solomon codes,

this problem was not known to have an efficient solution. In fact, it was not known how
to correct asymptotically more errors than half-the-minimum-distance, let alone decoding
up to the Johnson radius. In this chapter, we will present an algorithm that list decodes
Reed-Solomon codes up to their Johnson radius. This is the first algorithm to do so, and in
fact is also the first algorithm to decode beyond half-the-minimum distance for every value
of the rate. The algorithm builds upon an earlier algorithm due to Sudan [Sud97a], which
in turn is based on ideas from [ALRS99]. (See Figure 6-1 for a graphical depiction of the
fraction of errors handled by our algorithm in comparison to the previous ones.)

6.1.2 Algebraic-geometric codes

Algebraic-geometric codes are a class of algebraic codes that include Reed-Solomon codes as
a special case. The major drawback of Reed-Solomon codes is that they require an alphabet
size at least as large as the blocklength. This is not desirable for many applications where
codes over a small alphabet are required. Algebraic-geometric codes of growing blocklength
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Figure 6-1: Error-correcting capacity plotted against the rate of the code for various Reed-
Solomon decoding algorithms

(that tends to infinity) can be defined over fixed, small alphabets. Therefore, they overcome
this drawback of Reed-Solomon codes. In fact, algebraic-geometric codes are of significant
interest because they yield constructions of codes that beat the Gilbert-Varshamov bound
over an alphabet of size q for all q ≥ 49 which are an even power of a prime [TVZ82]. In other
words, for certain choices of the rate and for large enough blocklengths, they achieve a better
trade-off between the relative distance and the rate than that achieved by random q-ary
codes. Decoding algorithms for algebraic-geometric codes are typically based on decoding
algorithms for Reed-Solomon codes. In particular, Shokrollahi and Wasserman [SW99]
generalize the algorithm of Sudan [Sud97a] for the case of algebraic-geometric codes. Using a
similar approach, we extend our decoding algorithm to the case of algebraic-geometric codes
and obtain a list decoding algorithm correcting an algebraic-geometric code of blocklength
n and designed distance d∗ up to e < n −

√
n(n− d∗) errors, improving the previously

known bound of n−
√

2n(n− d∗)− g + 1 errors (here g is the genus of the algebraic curve
underlying the code). The algorithm runs in polynomial time based on a specific (non-
standard) polynomial size representation of the underlying algebraic structures.

Applying these results to the best known AG-codes (in terms of the rate vs. distance
trade-off) yields constructions of code families efficiently list decodable up to a fraction
(1− ε) of errors (i.e., from very large amounts of noise) over a fixed alphabet of size O(ε−4)
and which have rate Ω(ε2).1 This view of the results is very useful for and motivates some
of the results in later chapters when we investigate codes list decodable up to a “maximum”
possible fraction of errors (which is (1−ε) for general codes, and (1/2−ε) for binary codes).

1Reed-Solomon codes offer similar list decodability and rate performance, but have the drawback of very
large alphabet size since the alphabet must be at least as large as the blocklength.

97



6.1.3 Soft-decision decoding algorithms

For both Reed-Solomon and algebraic-geometric codes, we can generalize our algorithms to
a “weighted version” that can take weights and can decode as long as a certain weighted
condition is satisfied. The weights allow us to encode reliability information about the
various symbols into the decoding. Such decoding is referred to as “soft-decision decoding”
(or simply, “soft decoding”) in the literature. As a simple example, setting a weight to
0 corresponds to deeming that symbol so unreliable as to “erase” it. A more detailed
discussion on soft decoding will appear later in the chapter.

6.2 Reed-Solomon codes

We now discuss the list decoding algorithm for Reed-Solomon codes.

6.2.1 Reformulation of the problem

We solve the decoding problem by solving the following (more general) “curve-fitting” or
“polynomial reconstruction” problem over a field F: Given n distinct pairs of elements
{(x1, y1), . . . , (xn, yn)} where xi, yi ∈ F, a degree parameter k and an error parameter e,
find all univariate polynomials p such that p(xi) = yi for at least n−e values of i ∈ {1, . . . , n}.
Our algorithm solves this curve-fitting problem for e < n−

√
nk. The algorithm presented

here builds upon an earlier algorithm due to [Sud97a] and uses properties of algebraic curves
in the plane. The main modification is in the fact that we use the properties of “singularities”
of these curves. As in the case of [Sud97a] our algorithm uses the notion of plane curves to
reduce our problem to a bivariate polynomial factorization problem over F (actually only a
root-finding problem for univariate polynomials over the rational function field F(X)). This
task can be solved deterministically over finite fields in time polynomial in the size of the
field or probabilistically in time polynomial in the logarithm of the size of the field. It can
also be solved deterministically over the rationals and reals [Gri84, Kal85, Kal92]. Thus
our algorithm ends up solving the curve-fitting problem over fairly general fields.

We point out here that the main focus of this chapter is on getting polynomial time
algorithms maximizing the number of errors that may be corrected. We do indicate how
the algorithms may be implemented with reasonably fast runtimes, and provide pointers to
papers that deal with the topic of fast implementation of the various steps in our algorithm.

Other extensions One aspect of interest with decoding algorithms is how they tackle
a combination of erasures (i.e., some letters are explicitly lost in the transmission) and
errors. Our algorithm generalizes naturally to this case. Another interesting extension of
our algorithm is the solution to a weighted version of the curve-fitting problem2: Given a
set of N pairs {(xi, yi)} and associated non-negative integer weights w1, . . . , wN , find all

polynomials p such that
∑

i:p(xi)=yi
wi >

√
k ·
∑N

i=1w
2
i . We stress here that the xi’s need

not be distinct. This generalization is of interest to soft-decision decoding of Reed-Solomon
codes – a more detailed discussion on this appears in Section 6.2.10.

2The evolution of the solution to the “curve-fitting” problem is somewhat interesting. The initial solutions
of Peterson [Pet60] did not explicitly solve the curve-fitting problem at all. The solution provided by Welch
and Berlekamp [WB86, Ber96] do work in this setting, even though the expositions there do not mention
the curve-fitting problem (see in particular, the description in [GS92]). Their problem statement, however,
disallows repeated values of xi. Sudan’s [Sud97a] allows for repeated xi’s but does not allow for repeated
pairs of (xi, yi). Our solution generalizes this one more step by allowing a weighting of (xi, yi)!
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Generalized Reed-Solomon Decoding

We now define the problem of decoding a generalization of Reed-Solomon codes (called Gen-
eralized Reed-Solomon, or GRS codes). We will then formally define the purely algebraic
“polynomial reconstruction” problem. The polynomial reconstruction problem captures the
problem of decoding generalized Reed-Solomon codes, and hence also Reed-Solomon codes.

Definition 6.1 (Generalized Reed-Solomon codes) For parameters n, k and a field Fq
of cardinality q, a vector ~α of distinct elements α1, α2, . . . , αn ∈ Fq (hence we need n ≤
q), and a vector ~v of non-zero elements v1, . . . , vn ∈ F , the Generalized Reed-Solomon
code GRSFq ,n,k,~α,~v, is the function mapping the messages Fk+1

q to code space Fnq , given by
GRSFq ,n,k,~α,~v(m)j = vj ·

∑k
i=0mi(αj)i, for m = 〈m0,m1, . . . ,mk〉 ∈ Fk+1

q and 1 ≤ j ≤ n.

(The above generalizes Reed-Solomon codes because we allow arbitrary “multipliers” v1, v2, . . . , vn
for the n codewords positions.)

Problem 1 (Generalized Reed-Solomon decoding)
Input: Field Fq, n, k, ~α,~v ∈ Fnq specifying the code GRSFq ,n,k,~α,~v. A vector y ∈ Fnq and
error parameter e.
Output: All messages m ∈ Fk+1

q such that ∆(GRSFq ,n,k,~α,~v(m),y) ≤ e.

Problem 2 (Polynomial reconstruction)
Input: Integers k, t and n points {(xi, yi)}ni=1 where xi, yi ∈ F for a field F.
Output: All univariate polynomials p ∈ F[x] of degree at most k such that yi = p(xi) for
at least t values of i ∈ [n].

The following proposition is easy to establish:

Proposition 6.1 The generalized Reed-Solomon decoding problem reduces to the polyno-
mial reconstruction problem.

Proof: It is easily verified that the instance (Fq, n, k, ~α,~v,y, e) of the GRS decoding problem
reduces to the instance (k, n−e, n, {(αi, yi/vi)}ni=1) of the polynomial reconstruction problem
over the field Fq. 2

Organization: In the next few sections, our task will be to solve the polynomial recon-
struction problem. We begin with an informal description of the solution next, followed by
a formal description in Section 6.2.3. In Section 6.2.4, we prove the correctness of the algo-
rithm. We illustrate the working of the algorithm by a geometric example in Section 6.2.5.
In Section 6.2.6, we obtain results for specific list sizes by a careful choice of parameters in
the decoding algorithm, and in Section 6.2.7, we present some runtime bounds.

6.2.2 Informal description of the algorithm

We first review Sudan’s algorithm [Sud97a] since our algorithm builds upon and generalizes
that algorithm. The algorithm has two phases: In the first phase it finds a polynomial
Q in two variables which “fits” the points (xi, yi), where fitting implies Q(xi, yi) = 0 for
all i ∈ [n]. Then in the second phase it finds all small degree roots of Q, i.e., finds all
polynomials p of degree at most k such that Q(x, p(x)) ≡ 0, or equivalently, such that
y − p(x) is a factor of Q(x, y). These polynomials p form candidates for the output. The
main assertions used to prove the correctness of the algorithm are that:
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1. if we allow Q to have a sufficiently large degree then the first phase will be successful
in finding such a bivariate polynomial, and

2. if Q and p have low degree in comparison to the number of points where yi − p(xi) =
Q(xi, yi) = 0, then y − p(x) will be a factor of Q.

Our algorithm has a similar plan. We will find Q of low “weighted” degree that fits the
points. But now we will expect more from the fit. It will not suffice that Q(xi, yi) is zero
— we will require that every point (xi, yi) is a “singularity” of Q. Informally, a singularity
is a point where the curve given by Q(x, y) = 0 intersects itself. We will make this notion
formal as we go along. In our first phase the additional constraints will force us to raise the
allowed degree of Q. However we gain (much more) in the second phase. In this phase we
look for roots of Q and now we know that p passes through many singularities of Q, rather
than just points on Q. In such a case we need only half as many singularities as regular
points, and this is where our advantage comes from.

Pushing the idea further, we can force Q to intersect itself at each point (xi, yi) as many
times as we want; in the algorithm described below, this will be a parameter r. There is
no limit on what we can choose r to be; only our running time increases with r. We will
choose r sufficiently large to handle as many errors as feasible. (In the weighted version
of the curve-fitting problem, we force the polynomial Q to pass through different points a
different number ri times, where ri is proportional to the weight of the point.)

Finally, we come to the question of how to define “singularities”. Traditionally, one
uses the partial derivatives of Q to define the notion of a singularity. This definition is,
however, not good for us since the partial derivatives over fields with small characteristic
are not well-behaved. So we avoid this direction and define a singularity as follows: We first
shift our coordinate system so that the point (xi, yi) is the origin. In the shifted world, we
insist that all the monomials of Q with a non-zero coefficient be of sufficiently high degree.
This will turn out to be the correct notion. (The algorithm of [Sud97a] can be viewed as
a special case, where the coefficient of the constant term of the shifted polynomial is set to
zero.)

We first define the shifting method precisely: For a polynomial Q(x, y) and α, β ∈ F we
will say that the shifted polynomial Qα,β(x, y) is the polynomial given by

Qα,β(x, y) def= Q(x+ α, y + β) .

Observe that the following explicit relation between the coefficients {qij} of Q and the
coefficients {(qα,β)ij} of Qα,β holds:

(qα,β)ij =
∑
i′≥i

∑
j′≥j

(
i′

i

)(
j′

j

)
qi′,j′α

i′−iβj
′−j .

In particular observe that the coefficients are obtained by a linear transformation of the
original coefficients.

6.2.3 Formal description of the algorithm

We now develop and formally present the list decoding algorithm. We will present a “pa-
rameterized” version of the algorithm which works based on some parameters (like list size,
number of “singularities” at each point, the maximum number of errors that must be list
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decoded, etc.). From this we will derive a general decoding condition (viz. Proposition 6.5)
for which the algorithm can perform list-of-` decoding, for some parameter `. We will then
describe appropriate choices for the various parameters in the algorithm to obtain results
for the most interesting cases for us: decoding with constant-sized lists, and decoding with
polynomial-sized lists.

Definition 6.2 (weighted degree) For non-negative weights w1, w2, the (w1, w2)-weighted
degree of the monomial xiyj is defined to be iw1 + jw2. For a bivariate polynomial Q(x, y),
and non-negative weights w1, w2, the (w1, w2)-weighted degree of Q, denoted (w1, w2)-wt-deg(Q),
is the maximum over all monomials with non-zero coefficients in Q of the (w1, w2)-weighted
degree of the monomial.

We now describe our algorithm for the polynomial reconstruction problem.

Algorithm Poly-Reconstruct:
Inputs: n, k, t, {(xi, yi)}ni=1, where xi, yi ∈ F.

Step 0: Compute parameters r, l which satisfy

rt > l and n

(
r + 1

2

)
<
(⌊ l
k

⌋
+ 1
)(
l + 1− k

2

⌊
l

k

⌋)
. (6.1)

Step 1: Find a polynomial Q(x, y) such that (1, k)-wt-deg(Q) ≤ l, i.e., find values (in F)
for its coefficients {qj1j2}j1,j2≥0:j1+kj2≤l such that the following conditions hold:3

1. At least one qj1,j2 is non-zero

2. For every i ∈ [n], if Q(i) is the shift of Q to (xi, yi), then all coefficients of Q(i)

of total degree less than r are 0. More specifically:

∀i ∈ [n],∀ j1, j2 ≥ 0, s.t. j1 + j2 < r,

q
(i)
j1j2

def=
∑
j′1≥j1

∑
j′2≥j2

(
j′1
j1

)(
j′2
j2

)
qj′1,j′2x

j′1−j1
i y

j′2−j2
i = 0.

Step 2: Find all polynomials p ∈ F[X] of degree at most k such that p is a root of Q (i.e.,
y − p(x) is a factor of Q(x, y)). For each such polynomial p check if p(xi) = yi for at
least t values of i ∈ [n], and if so, include p in output list.

End Poly-Reconstruct

We will present an analysis of the runtime of the algorithm in Section 6.2.7 along with
pointers to the relevant papers. For now, we quickly note that the algorithm can definitely
be implemented in polynomial time. This follows since the first step can be accomplished by
solving a homogeneous linear system, a task that can be performed in cubic time by Gaussian
elimination. The second step can be performed in polynomial time by appealing to a
bivariate polynomial factorization algorithm (cf. [Kal85, Gri84, Len85]), though the special
nature of the problem in this setting allows for faster solutions, which will be discussed in
Section 6.2.7.

3We will prove shortly that such a polynomial exists for r, l as in (6.1).
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6.2.4 Correctness of the Algorithm

We now prove the correctness of our algorithm assuming the parameters picked by the
algorithm satisfy certain constraints. In Section 6.2.6, we will indicate appropriate set-
tings of parameters for which the algorithm achieves useful list decoding performance. In
Lemmas 6.2 and 6.3, Q can be any polynomial returned in Step 1 of the algorithm.

Lemma 6.2 If (xi, yi) is an input point and p is any polynomial such that yi = p(xi), then
(x− xi)r divides g(x) def= Q(x, p(x)).

Proof: Let p1(x) be the polynomial given by p1(x) = p(x+xi)− yi. Notice that p1(0) = 0.
Hence p1(x) = xp2(x), for some polynomial p2(x). Now, consider g1(x) def= Q(i)(x, p1(x)).
We first argue that g1(x− xi) = g(x). To see this, observe that

g(x) = Q(x, p(x)) = Q(i)(x− xi, p(x)− yi) =

Q(i)(x− xi, p1(x− xi)) = g1(x− xi).

Now, by construction, Q(i) has no coefficients of total degree less than r. Thus by substitut-
ing y = xp2(x) for y, we are left with a polynomial g1 such that xr divides g1(x). Shifting
back we have (x− xi)r divides g1(x− xi) = g(x). 2

Lemma 6.3 If p(x) is a polynomial of degree at most k such that yi = p(xi) for at least t
values of i ∈ [n] and rt > l, then y − p(x) divides Q(x, y), or equivalently, Q(x, p(x)) ≡ 0.

Proof: Consider the polynomial g(x) = Q(x, p(x)). By the definition of weighted degree,
and the fact that the (1, k)-weighted degree of Q is at most l, we have that g is a polyno-
mial of degree at most l. By Lemma 6.2, for every i such that yi = p(xi), we know that
(x − xi)r divides g(x). Thus if S is the set of i such that yi = p(xi), then

∏
i∈S(x − xi)r

divides g(x). (Notice in particular that xi 6= xj for any pair i 6= j ∈ S, since then we
would have (xi, yi) = (xi, p(xi)) = (xj , p(xj)) = (xj , yj).) By the hypothesis |S| ≥ t, and
hence we have a polynomial of degree at least rt dividing g which is a polynomial of de-
gree at most l < rt. This can happen only if g ≡ 0. Thus we find that p(x) is a root
of Q(x, y) (where the latter is viewed as a polynomial in y with coefficients from the ring
of polynomials in x). By the division algorithm, this implies that y−p(x) divides Q(x, y). 2

All that needs to be shown now is that a polynomial Q as sought for in Step 1 does exist.
The lemma below shows this conditionally.

Lemma 6.4 If

n

(
r + 1

2

)
<
(⌊ l
k

⌋
+ 1
)(
l + 1− k

2

⌊
l

k

⌋)
, (6.2)

then a polynomial Q as sought in Step 1 does exist (and can be found in polynomial time
by solving a linear system). Furthermore, Condition (6.2) is met if

n

(
r + 1

2

)
<
l(l + 2)

2k
. (6.3)
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Proof: Notice that the computational task in Step 1 is that of solving a homogeneous linear
system. A non-trivial solution exists as long as the rank of the system is strictly smaller
than the number of unknowns. The rank of the system may be bounded from above by
the number of constraints, which is n

(
r+1

2

)
. The number of unknowns equals the number

of monomials of (1, k)-weighted degree at most l and this number equals

b lkc∑
j2=0

l−kj2∑
j1=0

1 =
b lkc∑
j2=0

(l + 1− kj2)

= (l + 1)
(⌊

l

k

⌋
+ 1
)
− k

2

⌊
l

k

⌋(⌊
l

k

⌋
+ 1
)

(6.4)

which implies the claimed result. Also the quantity (6.4) is clearly at least(⌊
l

k

⌋
+ 1
)(

l + 1− l

2

)
≥ l

k
· l + 2

2

which implies the second claim as well. 2

We now record the main result of this section which quantifies the performance of the
algorithm as a function of the parameters r, t, l.

Proposition 6.5 Let parameters r, t, l satisfy rt > l and Condition 6.3, or even the weaker
Condition 6.2. Then, given any set of n pairs (xi, yi) ∈ F2, the number of degree k poly-
nomials p that satisfy p(xi) = yi for at least t values of i is at most bl/kc. Moreover the
algorithm Poly-Reconstruct with choice of parameters r, t, l, finds and outputs the list of all
such polynomials.

Proof: The correctness of the algorithm, i.e., the fact that it outputs all the relevant
polynomials that satisfy p(xi) = yi for at least t values of i, follows from Lemmas 6.3 and
6.4. The claimed bound on the number of polynomials follows from the fact that for any
such polynomial p, (y−p(x)) must be a factor of Q(x, y). The y-degree of Q is at most bl/kc
since its (1, k)-weighted degree is at most l (by the choice of Q). The number of factors
(y − p(x)) of Q(x, y) is clearly at most the y-degree of Q, and the result follows. 2

6.2.5 A “geometric” example

We now present examples that geometrically illustrate how the algorithm works. This will
also bring out the necessity for using multiplicities (i.e., the parameter r). The readers who
already obtained enough intuition from the analysis of the previous subsection can skip to
Section 6.2.6.

To present the examples, we work over the field R of real numbers. The collection of
pairs {(xi, yi) : 1 ≤ i ≤ n} then just form a collection of n points in the plane. We will
illustrate how the algorithm finds all polynomials of degree one, or in other words lines,
that pass through at least a certain number t of the n points. In other words, throughout
this section we fix the degree parameter k = 1.

Example 1: For the first example, we take n = 14 and t = 5. The 14 points on the plane
are as in Figure 6-2.

We want to find all lines that pass through at least 5 of the above 14 points. Since
k = 1, the (1, k)-weighted degree of a bivariate polynomial is simply its total degree. The
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Figure 6-2: Example 1: The set of 14 input points. We assume that the center-most point
is the origin and assume a suitable scaling of the other points.

first step of the algorithm must fit a non-zero bivariate polynomial Q(x, y) of total degree
l through these 14 points. Let us pick r = 1, i.e., we only insist the polynomial Q must
have each (xi, yi) as a “simple” zero. This gives one constraint for each of the 14 points.
Since there are 14 linear constraints in all on the coefficients of the polynomial Q, we can
fit a polynomial Q of total degree l = 4 (since such a polynomial has

(
4+2

2

)
= 15 > 14

coefficients) — this corresponds to Lemma 6.4 applied to this example.
A degree 4 polynomial that passes through the above 14 points is Q(x, y) = y4 − x4 −

y2 + x2. To see this pictorially, let us plot the locus of all points on the plane where Q has
zeroes. This gives Figure 6-3 below.

Figure 6-3: A degree 4 fit through the 14 points. The curve is the locus: y4−x4−y2+x2 = 0.
The two lines in the picture stretch to infinity, of course.

Note that the two relevant lines that pass through at least 5 points emerge in the picture
(these are the dashed lines in the picture). Algebraically, this corresponds to the fact that
Q(x, y) factors as Q(x, y) = (x2 + y2− 1)(y+x)(y−x), and the last two factors correspond
to the two lines that are the solutions. The fact that the above works correctly, i.e., the
fact that the relevant lines must be factors of any degree 4 fit through the 14 points, is a
consequence of Lemma 6.3 applied to this example (with the choice l = 4, r = 1 and t = 5).

Example 2: For the second example, we take n = 11 and t = 4. The 11 points on the
plane are as in Figure 6-4. We want to find all lines that pass through at least 4 of the above
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Figure 6-4: Example 2: The set of 11 input points.

11 points. Once again, as in Example 1, we can try and fit a non-zero degree 4 polynomial
through these 11 points (degree 3 gives only

(
5
2

)
= 10 coefficients, and cannot in general

interpolate an arbitrary set of 11 points). However, as we will shortly prove, this strategy,
no matter which degree 4 polynomial we fit through the 11 points, will not work for this
example.

Here is where our general multiplicity based approach kicks in. Specifically, we will now
try and fit a polynomial Q(x, y) that has each of the 11 input points as a zero of multiplicity
2. That is, we set the parameter r = 2. Now Lemma 6.4 (applied with n = 11, r = 2)
implies that there is a non-zero polynomial Q of degree l = 7 that has the required property
(since Condition (6.2) is satisfied for these values of n, r, l). Figure 6-5 below is a plot of
the locus of zeroes of one such polynomial. Note that the polynomial is a product of seven

Figure 6-5: A degree 7 polynomial that passes through each of the 11 points twice

degree one polynomials (i.e., lines) and hence has degree 7. Moreover, from the picture,
it is “clear” that the curve passes through each of the 11 input points twice. Also, the
five lines that pass through 4 or more of the points all emerge in the picture (these are
the dashed lines). The fact that the relevant lines must be factors of any degree 7 fit that
passes through each of the 11 points twice, is a consequence of Lemma 6.3 applied to this
example (with the choice l = 7, r = 2 and t = 4).
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Note that since there are five lines that are solutions, this proves that the same approach
as in Example 1 (based on fitting a degree 4 bivariate polynomial) will not work for this
example. This is because one cannot have five distinct lines all be factors of a degree 4
plane curve. This shows that the multiplicity based approach is necessary for this example.

6.2.6 Results for specific list sizes

Decoding with Constant-sized lists

Suppose we wish to use algorithm Poly-Reconstruct to do list-of-L decoding, that is, perform
polynomial reconstruction with the guarantee that the list of polynomials that have to be
output will be of size at most L. We now indicate the choice of parameters in the algorithm
to correct a maximum fraction of errors under this constraint.

Theorem 6.6 (List-of-L decoding) Consider the polynomial reconstruction problem with
inputs n, k, t and pairs {(xi, yi)}, 1 ≤ i ≤ n. Subdivide (0, 1) into L+ 1 intervals (ρj , ρj+1],
0 ≤ j ≤ L, where ρj = j(j+1)

L(L+1) . Let r = r(k/n), 1 ≤ r ≤ L+ 1 be such that k/n ∈ (ρr−1, ρr].
Then provided

t >
r + 1

2(L+ 1)
· n+

L

2r
· k , (6.5)

the number of solutions to the polynomial reconstruction problem is at most L. Moreover, the
algorithm Poly-Reconstruct, when it is run with suitable parameters r, l, finds and outputs
a list of size at most L that includes all solution polynomials.

Proof: Since we want to insist that the algorithm Poly-Reconstruct outputs at most L
solutions, we will also add the condition that y-degree of Q, degy(Q), equals L, in Step 1
of the algorithm. This will imply that Q has at most L roots, and hence the algorithm
will output at most L polynomials in Step 2. Now, arguing as in Lemma 6.4, a non-zero
polynomial Q with degy(Q) = L and (1, k)-wt-deg(Q) ≤ l as sought in Step 1 will exist
provided

(L+ 1)
(
l + 1− Lk

2

)
> n

(
r + 1

2

)
. (6.6)

This condition can be satisfied for any r by choosing

l =
⌊
nr(r + 1)
2(L+ 1)

+
kL

2

⌋
. (6.7)

Of course, since degy(Q) = L, we must have l ≥ (1, k)-wt-deg(Q) ≥ Lk. This gives the
condition k

n ≤
r(r+1)
L(L+1) on r. Let us pick r = r(k/n) to be the smallest integer in the range

1 ≤ r ≤ L + 1 such that k/n ≤ r(r+1)
L(L+1) .4 This is exactly the choice of r specified in the

statement of the theorem.
4The claim of the theorem actually holds for any value of r in the range 1 ≤ r ≤ L. For values of r

greater than or smaller than the one we pick the algorithm will be able to tolerate fewer errors than that
achieved by this particular choice of r. Essentially, the plot of the maximum number of errors corrected by
the algorithm for each value of r is a straight line, and the best performance is attained by taking the upper
envelope of all these straight lines. The value of r we pick is such that the r’th line forms the upper envelope
for the given value of k/n.
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Now, as in Proposition 6.5, the algorithm Poly-Reconstruct succeeds in finding a list of
at most L polynomials which satisfy p(xi) = yi for at least t values of i, provided t > l/r.
This condition will be satisfied for our choice of l from Equation (6.7) if

t >
n(r + 1)
2(L+ 1)

+
kL

2r
.

Hence Algorithm Poly-Reconstruct performs correct list-of-L decoding as long as the Con-
dition (6.5) stated in the theorem is satisfied. 2

Combinatorial implication for list decodability of Reed-Solomon codes: The
above result implies that an [n, k+ 1, n− k]q Reed-Solomon code is (e, L)-list decodable as
long as

e < n ·
(

1− r + 1
2(L+ 1)

− L

2r
k

n

)
, (6.8)

(where r is defined to be the least integer in the range 1 ≤ r ≤ L+1 for which k
n ≤

r(r+1)
L(L+1)).

Note that in the limit of L → ∞, this converges to e/n < 1 −
√
k/n (since we will have

r/L '
√
k/n), which is the Johnson bound on list decoding radius from Corollary 3.3. But

for a finite L, based on the bounds of Corollary 3.3 from Chapter 3, the Johnson radius for
list-of-L decoding for MDS codes (like Reed-Solomon codes) is (roughly)

e/n = 1−
√
k

n
+
(

1− k

n

)
· 1
L
. (6.9)

It can be verified that, at least for some range of parameters (especially for low values of
k/n), the bound of Equation (6.8) is stronger than that of Equation (6.9). As a simple
illustration, let us consider the case L = 2. For L = 2, the bound (6.8) implies that for
every k/n < 1/3, there are at most two codewords in every Hamming ball of radius γn for
some γ > 1

2 ·(1−k/n), i.e., greater than half the relative distance (in fact we have γ = 2
3−

k
n

in this case). The Johnson bound from Equation (6.9) on the other does not show that
list-of-2 decoding is possible beyond half the minimum distance for any value of k/n.

Hence, for the special case of Reed-Solomon codes we are able to prove stronger com-
binatorial results than the generic Johnson bound on list decodability, and curiously the
“improved” bound also comes with an “algorithmic” proof that demonstrates how to recover
the list of codewords efficiently.

Decoding with Polynomial-sized lists

We now allow the list size to be a polynomial (actually, quadratic) in n, and pick parameters
to squeeze out the maximum error-correction capability of the algorithm Poly-Reconstruct.
In Step 0 of the algorithm, pick parameters r, l such that

r
def= 1 +

⌊
kn+

√
k2n2 + 4(t2 − kn)
2(t2 − kn)

⌋
(6.10)

l
def= rt− 1 (6.11)

Lemma 6.7 If n, k, t satisfy t2 > kn, then for the choice of r, l made in Equations (6.10)
and (6.11) above, the conditions n

(
r+1

2

)
< l(l+2)

2k and rt > l both hold.
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Proof: Since l def= rt − 1, rt > l certainly holds. Using l = rt − 1, we now need to satisfy
the constraint

n

(
r + 1

2

)
<

(rt− 1)(rt+ 1)
2k

which simplifies to r2t2 − 1 > kn(r2 + r) or, equivalently,

r2(t2 − kn)− knr − 1 > 0.

Hence it suffices to pick r to be an integer greater than the larger root of the above quadratic,
and therefore picking

r = 1 +

⌊
kn+

√
k2n2 + 4(t2 − kn)
2(t2 − kn)

⌋
suffices, and this is exactly the choice made in Equation (6.10). 2

Theorem 6.8 Algorithm Poly-Reconstruct on inputs n, k, t and the points {(xi, yi) : 1 ≤
i ≤ n}, correctly solves the polynomial reconstruction problem provided t >

√
kn, for the

choice of parameters r, l as in Equations (6.10) and (6.11). Moreover, the size of the list
the algorithm outputs is at most O(

√
kn3) (which is in turn O(n2)).

Proof: The correctness of the algorithm for this choice of parameters follows from Proposi-
tion 6.5 and Lemma 6.7. It remains to prove the claim about the number of codewords. By
Lemma 6.3, the number M of such codewords is at most the degree degy(Q) of the bivariate
polynomial Q in y. Since the (1, k)-weighted degree of Q is at most l, degy(Q) ≤ bl/kc.
Choosing t = b

√
knc + 1 (which corresponds to the largest permissible value of the radius

e), we have, by the choice of l, that

M = O(l/k) = O(rt/k) = O(knt/k) = O(
√
kn3) ,

as desired. 2

6.2.7 Runtime of the Algorithm

We now present a runtime analysis of algorithm Poly-Reconstruct and prove that it can be
implemented to run efficiently (in time which is a reasonably slowly growing polynomial in
n).

As was briefly discussed at the end of Section 6.2.3, the algorithm can definitely be
implemented in polynomial time. However, we now give pointers to results which demon-
strate much faster implementations of the decoding algorithm. In particular, these imply
Õ(n2) def= O(n2 logO(1) n) time implementations of Algorithm Poly-Reconstruct for list de-
coding Reed-Solomon codes over poly(n)-sized fields with constant-sized lists (the constant
in the big-Oh notation will depend polynomially on the size of the list).

Lemma 6.9 ([NH99b]) For the algorithm Poly-Reconstruct with parameters r, l over a
field F, Step 1 can be implemented in O(n2r5) operations over F.

We refer the reader to [NH99b, Section 6] for a description of the above implementation.
Olshevsky and Shokrollahi [OS99] provide a different implementation using O(n2r4 logq r ·
l/k) field operations over Fq.
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Lemma 6.10 ([RR00]) The root finding step (Step 2) of Algorithm Poly-Reconstruct over
a field of size q can be implemented by a randomized algorithm that uses O((nl + l2/k ·
log q) log2(l/k)) field operations over Fq.

We refer the reader to [RR00, Section 5] for a description of the implementation of the
root-finding step. It is shown there that given a bivariate polynomial Q(x, y) of y-degree
at most b, one can find all degree k polynomials p ∈ Fq[x] that satisfy Q(x, p(x)) ≡ 0
using O(kb log2 b(n + b log q)) operations over Fq. For the application to Algorithm Poly-
Reconstruct, we have b = bl/kc. Gao and Shokrollahi [GS00] give another algorithm to solve
the problem in O(k2b3) time assuming log q ≤ k. For the interesting setting of parameters,
the complexity of Step 1 dominates the runtime of the algorithm. When the field size q is
very large, the bound for Step 2 from Lemma 6.10 could dominate.

The interested reader can find the details in the above references. Below, we record
the time bounds for the entire polynomial reconstruction algorithm. In the next section,
we will record the results for list decoding Reed-Solomon codes along with an explicit
runtime bound. Note that the result below simply presents the results of Theorem 6.6 and
Theorem 6.8 with explicit runtime bounds that follow from Lemmas 6.9 and 6.10. Actually,
slightly better bounds can be stated by carefully adding the bounds for Steps 1 and 2 of
the algorithm, but we prefer to state simpler and reasonably tight bounds below.

Proposition 6.11 The algorithm Poly-Reconstruct over Fq with inputs n, k, t can be im-
plemented to run in randomized:

(i) O(n2L5 log2 q logO(1) log q) time to find a list of size at most L that includes all poly-
nomials p that satisfy p(xi) = yi for at least t values of i, provided t > r+1

2(L+1) ·n+ L
2r ·k.

Here the parameter r is defined to be the smallest integer in the range 1 ≤ r ≤ L for
which k

n ≤
r(r+1)
L(L+1) .

(ii) O(k5n7 log2 q logO(1) log q) time to find a list of all polynomials p that satisfy p(xi) = yi
for at least t values of i, provided t >

√
kn.

(iii) O(n2ε−5 log2 q logO(1) log q) time to find a list of size at most O(1
ε

√
n
k ) that includes all

polynomials p that satisfy p(xi) = yi for at least t values of i, provided t ≥
√

(1 + ε)kn.

Proof: For Part (i), for list-of-L decoding we have r ≤ L + 1,5 and l = O(kL). Applying
Lemmas 6.9 and 6.10, the complexity of Step 1 is O(n2L5) field operations, and that of
Step 2 is O((nkL + kL2 log q) log2 L) = O(n2L2 log2 L log q) field operations. The overall
complexity is therefore certainly at most O(n2L5 log q) operations over Fq.

For Part (ii), for decoding under the condition t >
√
kn, we have r = O(kn) (from

Equation 6.10), and l = O(tr) = O(kn2). The complexity of Step 1 is O(n7k5) field
operations and that of Step 2 is at most O(kn4 log2 n log q) field operations, for an overall
complexity of O(n7k5 log q) operations over Fq.

For Part (iii), for decoding under the condition t ≥
√

(1 + ε)kn, we have r = O(1/ε)
(again from Equation 6.10), and l = O(rt) = O(ε−1

√
kn). Since the list size output by

the polynomial reconstruction algorithm is at most bl/kc = O(ε−1
√
n/k). The complexity

5For large L, we have r/L '
√
k/n and we can use this to get a slightly better runtime bound. But in

later applications of this result we will be mostly interested in the situation when k/n = Ω(1), and for such
a situation the improvement is only by a constant factor.
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of Step 1 is O(n2ε−5) field operations and that of Step 2 is at most O(n2ε−2 log q) field
operations, for an overall complexity of O(n2ε−5 log q) operations over Fq.

Since field operations over Fq can be implemented in O(log q logO(1) log q) time, the time
bounds claimed in the proposition follow. 2

A strongly polynomial time deterministic algorithm

Note two important features about the runtime bounds of Proposition 6.11 above: (a)
it is randomized, and (b) it does not give a strongly polynomial time bound, since the
number of field operations itself depends on q. The following result shows that one can
have a deterministic strongly polynomial time algorithm algorithm that provides a weaker
decoding guarantee. This result stated below is due to Augot and Pecquet [AP00], who prove
it by providing a strongly polynomial time implementation of Sudan’s earlier polynomial
reconstruction algorithm [Sud97a]. We refer the reader to [AP00] for further details about
the algorithm.

Proposition 6.12 ([Sud97a, AP00]) There is a deterministic, strongly polynomial time
algorithm for the polynomial reconstruction problem over Fq that solves it for parameters
n, k, t using O(n2 log n) operations over Fq, provided t >

√
2kn. Moreover, the size of the

list output by the algorithm is at most
√

2n/k.

6.2.8 Main theorems about Reed-Solomon list decoding

So far we stated our results for the polynomial reconstruction problem. Below we state the
result specialized to Reed-Solomon decoding.

Theorem 6.13 [Main Result on Reed-Solomon Decoding]

(i) For every integer L ≥ 1, an [n, k+1, n−k]q Reed-Solomon code can be list decoded to a
radius of e for e < n− r+1

2(L+1) ·n−
L
2r ·k using lists of size L in O(n2L5 log2 q logO(1) log q)

time. Here r is defined to be the smallest integer in the range 1 ≤ r ≤ L for which
k
n ≤

r(r+1)
L(L+1) .

(ii) An [n, k + 1, n − k]q Reed-Solomon code can be list decoded to a radius of e for e <
n−
√
kn in O(n12 log2 q logO(1) log q) time using lists of size O(n2).

(iii) If e ≤ n−
√

(1 + ε)kn, then one can perform list decoding in O(n2ε−5 log2 q logO(1) log q)
time using lists of size O(ε−1

√
n/k).

Proof: The statement (i) follows immediately from Proposition 6.11, Part (i), since the
Reed-Solomon decoding problem is a special form of the polynomial reconstruction problem
(cf. Proposition 6.1). Similarly, the statements (ii) and (iii) follow from Parts (ii) and (iii)
of Proposition 6.11. 2

“Tightness” of the performance bound

It is interesting to contrast the number of errors corrected by the above result with results in
the spirit of Chapter 4 that show combinatorial limits to list decodability by demonstrating
a received word with a large number of codewords within a certain Hamming distance
from it. We will need such results specialized to the case of Reed-Solomon codes if we
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wish to understand the maximum number of errors for which a Reed-Solomon code can
be list decoded using lists of a certain size. Since we decode up to the Johnson radius,
the performance of our algorithm will be the best possible if the Johnson bound is tight
for Reed-Solomon codes. However, we do not know this result. (Our results in Chapter 4
proved the tightness of the Johnson bound for some “contrived” binary code construction,
but not for Reed-Solomon codes.)

Justesen and Hφholdt [JH01] demonstrate that for certain Reed-Solomon codes, there
exist Hamming balls of radius close to (n−

√
kn) with Ω(n) codewords. This provides strong

evidence to the tightness of the Johnson bound (and the number of errors corrected by
our algorithm) for list decoding Reed-Solomon codes with constant-sized lists. This result,
however, applies only to certain values of the rate. They also obtain results that demonstrate
the tightness of the exact bound of Theorem 6.13 for list-of-L decoding for certain values
of the rate (namely the values j(j+1)

L(L+1) for 0 ≤ j ≤ L). Ruckenstein and Roth [RR01] extend
this result to a wider range of rates — in particular, they demonstrate the tightness of
Theorem 6.13 for all values of rate in the ranges [0, 2

L(L+1) ] and [L−1
L+1 , 1]. These bounds

are of interest in that they hint at a potential limitation to further improvements to the
list decoding approach, and they provide good evidence to the tightness of some of our
performance bounds. Ruckenstein and Roth [RR01] also demonstrate that for certain setting
of parameters, one cannot realize configurations exhibiting the tightness of the list-of-L
decoding bound of Theorem 6.13, in a Reed-Solomon code. Thus a precise understanding
of the combinatorics of list decoding Reed-Solomon codes is still lacking and the problem
certainly deserves further study.

6.2.9 Some Further Consequences

We now describe some other easy consequences and extensions of the polynomial reconstruc-
tion algorithm of Section 6.2.3. The first three classes of results are just straightforward
applications of the polynomial reconstruction algorithm. The fourth result, described in the
next section, revisits the curve-fitting algorithm to get a solution to a weighted polynomial
reconstruction problem.

Alternant codes

We now describe a family of codes called alternant codes. Alternant codes were first defined
and studied by Helgert [Hel74]. A good discussion of alternant codes appears in [MS81,
Chap. 12]. Alternant codes are a very broad class of codes which among other things include
Reed-Solomon codes and BCH codes. BCH codes (short for Bose-Chaudhuri-Hocquenghem
codes) are an extremely useful and well-studied family of codes, first introduced by [BR60,
Hoc59] (see [MS81, Chap. 9] for a thorough discussion of BCH codes). They possess several
of the nice algebraic properties of Reed-Solomon codes, but in addition have the advantage
that codes with large blocklengths can be defined even over a fixed, small alphabet (unlike
Reed-Solomon codes which require an alphabet size at least as large as the blocklength).

Definition 6.3 (Alternant Codes ([MS81], §12.2)) For positive integers m, k0, n, prime
power q, the field F = GF(qm), a vector ~α of distinct elements α1, . . . , αn ∈ GF(qm), and
a vector ~v of nonzero elements v1, . . . , vn ∈ GF(qm), the q-ary alternant code Aq,n,k0,~α,~v

comprises of those codewords of the Generalized Reed-Solomon code GRSF,n,k0,~α,~v that have
all components from GF(q).
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Since the Generalized Reed-Solomon code has distance exactly n − k0 + 1, it follows
that the respective alternant code, being a subcode of the Generalized Reed-Solomon code,
has distance at least n− k0 + 1. We term this the designed distance d′ = n− k0 + 1 of the
alternant code. The actual rate and distance of the code are harder to determine. The rate
lies somewhere between n−m(n− k0) and k0, and the distance d lies between d′ and md′.

The decoding algorithm of the previous section can be used to decode alternant codes
as well. Given a received word 〈r1, . . . , rn〉 ∈ GF(q)n, we use as input to the polynomial
reconstruction problem the pairs {(xi, yi)}ni=1, where xi = αi and yi = ri/vi are elements
of GF(qm) (here we are viewing each element ri ∈ GF(q) as an element of GF(qm)). The
list of polynomials output includes all possible codewords from the alternant code. Thus
the decoding algorithm for the earlier section is really a decoding algorithm for alternant
codes as well, with the caveat that its performance can only be compared with the designed
distance, rather than the actual distance. The following theorem summarizes the scope of
the decoding algorithm.

Theorem 6.14 Let A be an [n, k+1, d]q alternant code with designed distance d′ (and thus
satisfying d

m ≤ d′ ≤ d). Then there exists a polynomial time list decoding algorithm for A
decoding up to e < n−

√
n(n− d′) errors.

Discussion: We note that decoding algorithms for alternant codes given in classical texts
like [MS81, Ber68] seem to correct only up to half the designed distance. Hence the above
theorem improves upon those algorithms for every value of the designed distance. Since
alternant codes include BCH codes as a special case, in particular we also have an algorithm
to decode BCH codes up to the above radius. However, BCH codes can be defined over
small alphabets, even over GF(2), and then the above bound (n−

√
n(n− d′)) which does

account for the alphabet size is quite far from the Johnson radius (which for binary codes

is n−
√
n(n−2d′)

2 , from Theorem 3.2 of Chapter 3). But as noted by [KV00] it is possible
to use the soft decoding algorithm that we will shortly discuss in Section 6.2.10 to decode
q-ary BCH codes up to the q-ary Johnson radius. A similar situation arises with algebraic-
geometric codes, and in Section 6.3.8 we will discuss how to use soft decoding to decode
them up to the q-ary Johnson radius. The same argument will also apply to BCH codes, by
using the soft decoding algorithm from Theorem 6.21 instead of the soft decoding algorithm
for decoding AG-codes from Theorem 6.35.

Decoding with uncertain receptions

Consider the situation when, instead of receiving a single word y = 〈y1, y2, . . . , yn〉, for each
i ∈ [n], we receive a list of ` possibilities yi1, yi2, . . . , yi` such that one of them is the correct
symbol (but we do not know which one). Once again, as in normal list decoding, we wish
to find out all possible codewords which could have been possibly transmitted, except that
now the guarantee given to us is not in terms of the number of errors effected, but in terms
of the maximum number of uncertain possibilities at each position of the received word.
Let us call this problem decoding from uncertain receptions. In this situation, we have the
following result.

Theorem 6.15 List decoding from uncertain receptions on a [n, k + 1, d = n − k]q Reed-
Solomon code can be done in polynomial time provided the number of “uncertain possibili-
ties” l at each position i ∈ [n] is (strictly) less than n/k.
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Proof: Apply the solution to the polynomial reconstruction problem with input being the
set of pairs {(xi, yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ `}, the goal being to find all degree k polynomials
p such that p(xi) ∈ {yi1, . . . , yi`} for every i, 1 ≤ i ≤ n. Applying Proposition 6.11, Part
(ii), with the total number of pairs N = n` and t = n, we get that we can solve this problem
in polynomial time provided n >

√
kn`, or if ` < n/k. 2

We can also consider the situation when given lists Li of size ` at each position of the
code, we wish to find all Reed-Solomon codewords that agree with an element of the list
Li for at least a fraction α of the positions i.6 The polynomial reconstruction problem still
captures this problem, and below we state a version of the result that follows from Part (iii)
of Proposition 6.11.

Theorem 6.16 Let C be an [n, k + 1, n − k]q Reed-Solomon code. Suppose we are given
lists Li ⊆ Fq such that the average list size equals `, i.e.,

∑
i |Li| = `n. Then, there are

at most O(γ−1
√
n`/k) codewords of C which agree with an element of Li for at least αn

values of i, provided α >
√

(1 + γ)k`/n. Moreover, the list of all such codewords can be
found in randomized O(n2`2γ−5 log2 q logO(1) log q) time.

We can obtain a strongly polynomial time version of the above result using the result
of Proposition 6.12. This is very useful for certain later applications where we consider
Reed-Solomon codes over very large alphabets (compared to the blocklength).

Theorem 6.17 Let C be an [n, k+ 1, n− k]q Reed-Solomon code of rate r. Suppose we are
given lists Li ⊆ Fq such that the average list size equals `, i.e.,

∑
i |Li| = `n. Then, there are

at most
√

2n`/k codewords of C which agree with an element of Li for at least αn values of
i, provided α >

√
2k`/n. Moreover, the list of all such codewords can be found deterministi-

cally using O(n2`2r−O(1) log(n`)) operations over Fq, or in O(n2`2r−O(1) log(n`) log q logO(1) log q)
time. (For constant rate, the runtime equals O((n`)2 log(n`) log q logO(1) log q).)

The above versions of the result and the soft decoding algorithm from Proposition 6.21
to be discussed shortly are in fact the main forms of our decoding results for Reed-Solomon
codes that will be used repeatedly in later chapters.

Errors and Erasures decoding

The algorithm of Section 6.2.3 is also capable of dealing with other notions of corruption
of information. A much weaker notion of corruption than an error in data transmission
is that of an “erasure”. Here a transmitted symbol is either simply “lost” or received
in obviously corrupted shape (so we might as well declare it erased). We now note that
the decoding algorithm of Section 6.2.3 naturally handles the case when there are both
errors and erasures. Suppose n symbols were transmitted and n′ ≤ n were received and
s = n − n′ symbols got erased. (We stress that the problem definition specifies that the
receiver knows which symbols are erased.) This problem just reduces to a polynomial
reconstruction problem on n′ points. An application of Proposition 6.11 yields that e errors
can be corrected provided e < n′ −

√
n′k. Thus we get:

6This model of decoding will be formally defined and called list recovering in Chapter 9, where we will
study combinatorial aspects of codes with good list recoverability, and will also make use of the list recovering
property of Reed-Solomon codes.
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Theorem 6.18 The list decoding problem for [n, k+1, n−k]q Reed-Solomon codes allowing
for e errors and s erasures can be solved in polynomial time, provided e+s < n−

√
(n− s)k.

The classical results of this nature show that one can solve the decoding problem if
2e + s < n − k. To compare the two results we restate them. The classical result can be
rephrased as

n− (s+ e) >
n− s+ k

2
,

while our result requires that

n− (s+ e) >
√

(n− s)k.

By the Arithmetic mean vs. Geometric mean inequality it is clear that the second condition
holds whenever the first one holds.

6.2.10 Weighted polynomial reconstruction and soft decoding of RS codes

Soft decoding: The context

Moving on to a more general situation that includes both the errors-and-erasures model
and the model of decoding with uncertain receptions from the previous sections, we now
consider the case where the received symbol looks like a “combination” of several (or even,
all) possible field elements, with varying “degrees of confidence”. This model is referred to
in the literature as soft-decision decoding (or simply, soft decoding), as opposed to “hard
decoding” with a fixed received word which has been the object of study so far. Under soft
decoding the received “word” is really an n × q-matrix R = {rij} of non-negative rational
numbers, with an entry corresponding to each codeword position and each symbol of the
alphabet (we take the alphabet to be [q]). The entry rij indicates the weight with which
the i’th transmitted symbol may be taken to be j.7 Exactly how to set these weights
can itself be a non-trivial task depending on the specific code and channel under question.
We do not address this issue here, and just provide a “back-end” soft decoder for Reed-
Solomon codes that makes good use of the weights given the weight matrix R as input.
Koetter and Vardy [KV00] address the question of how to assign weights in order to get
good performance from soft decoding for several channel models. We also point to their
work for further discussion and pointers relating to soft decoding.

The soft decoding model is quite general and it captures all the previously discussed
noise models. The case of decoding from uncertain receptions is captured by the case when
rij = 1 for each field element in the list of “uncertain possibilities”, and rij = 0 for each
element not on this list. Similarly, the i’th symbol being declared an erasure is captured
by setting rij = 0 for every field element j. The “errors only” (or hard-decision) case with
received word y = 〈y1, . . . , yn〉 is captured by ri,yi = 1 and rij = 0 for j ∈ [q] \ {yi}.

Given an input reliability matrix R, the goal of soft decoding for Reed-Solomon codes
would be to find all polynomials p that are “close” to this R matrix. It is not totally clear
what the best measure of “closeness” is. One natural measure is to measure the closeness
of a polynomial p to R by the quantity S(p,R) =

∑n
i=1 ri,p(xi) (here x1, x2, . . . , xn are n

7In its most typical use, the soft information can be used to model situations where the “received word”
is itself returned by an earlier decoding stage — for example that performed by a source decoder or an inner
decoder in a concatenation scheme. In such a case, the decoder can set the weights rij to somehow quantify
the confidence it has in its “vote” for the i’th symbol being equal to j.
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distinct field elements that define the Reed-Solomon encoding of a polynomial p). The holy
grail in this setting is maximum likelihood soft-decision decoding, where the goal is to find
the polynomial p that maximizes S(p,R). This turns out to be a prohibitively difficult
algorithmic task, so one studies the bounded distance soft decoding problem. This problem
reduces to the problem of finding a list of all polynomials p such that S(p,R) is at least a
certain threshold.

In what follows, we provide a polynomial time bounded distance soft decoding algorithm
for Reed-Solomon codes. For a matrix R as input, the algorithm finds all degree k poly-
nomials p such that S(p,R) is at least

√
k times the L2 norm of the R matrix. We obtain

our soft decoding algorithm via a solution to a weighted generalization of the polynomial
reconstruction problem, which we define next.

Weighted polynomial reconstruction

We first formally define the problem.

Problem 3 (Weighted polynomial reconstruction)
Input: N distinct pairs {(x1, y1), . . . , (xN , yN )}, where each xi, yi ∈ F for some field F;
N non-negative weights w1, . . . , wN ;
degree parameter k and agreement parameter W .
Output: All polynomials p of degree at most k which satisfy∑

i:p(xi)=yi

wi ≥W .

Note: There is no requirement of distinctness on the various xi’s in the above specification.
This will be crucial to the application to soft decoding algorithms for Reed-Solomon codes.

We now discuss how the algorithm Poly-Reconstruct can be modified to solve the weighted
polynomial reconstruction problem for the case when the weights are non-negative integers.
The basic idea is to use multiplicities at the various points (xi, yi) in proportion to their
weights, in the interpolation step (Step 1 of the algorithm). Specifically, in Step 1, we
would find a polynomial Q which has a singularity of order wiρ at the point (xi, yi), for a
suitably large integer parameter ρ. Thus we would now have

∑n
i=1

(
ρwi+1

2

)
constraints. If

a polynomial p passes through the points (xi, yi) for every i ∈ S for some S ⊆ [n], then
y−p(x) will appear as a factor ofQ(x, y) provided

∑
i∈S ρwi is greater than (1, k)-wt-deg(Q).

Also (1, k)-wt-deg(Q) must be picked large enough such that Q has more coefficients than
the number of linear constraints it must satisfy (so that a non-zero Q with the required
properties will be guaranteed to exist). Optimizing over the weighted degree of Q yields
the following theorem – the proof is similar to Theorem 6.8.

Theorem 6.19 If the weights wi are non-negative integers, the weighted polynomial re-
construction problem with parameters k,W over Fq can be solved deterministically in time

polynomial in the sum of wi’s and q, provided W >
√
k
∑N

i=1w
2
i .

We now remove the requirement of integer weights and the pseudo-polynomial depen-
dence of the runtime on the wi’s (ideally we would like the algorithm to run in time polyno-
mial in the logarithm of the wi’s). Below we note that with an ε degradation in performance,
the algorithm can be implemented to run in poly(N, 1/ε) time, even when the weights are
arbitrary rational numbers.
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Lemma 6.20 For any tolerance parameter ε > 0, the weighted polynomial reconstruction
problem for N pairs {(xi, yi) ∈ F2

q} with associated non-negative rational weights wi, degree
parameter k and agreement parameter W , can be solved deterministically in time polynomial
in N , q and 1/ε, provided

W >

√√√√k

N∑
i=1

w2
i + εwmax.

Proof: Assume without loss of generality that w1 ≤ w2 ≤ · · · ≤ wN . Pick any large integer
L ≥ N

ε , and form the integer weights w′i = bLwi/wNc. Since wi ≤ wN for all i, the weights
w′i are all at most L. Therefore Theorem 6.19 implies that one can find, in poly(N,L) time,
a list of all polynomials p of degree less at most k that satisfy

∑
i:p(xi)=yi

w′i >

√√√√k
N∑
i=1

w′2i .

But since Lwi/wN ≥ w′i > Lwi/wN − 1, this implies that in poly(N,L, q) = poly(N, q, 1/ε)
time, we can find all polynomials p of degree at most k that satisfy the condition

∑
i:p(xi)=yi

(Lwi
wN
− 1
)
≥

√√√√k
N∑
i=1

(
Lwi
wN

)2

⇐=
∑

i:p(xi)=yi

wi ≥

√√√√k
N∑
i=1

w2
i +

NwN
L

⇐=
∑

i:p(xi)=yi

wi ≥

√√√√k
N∑
i=1

w2
i + εwN

(the last step follows since L ≥ N/ε). 2

Reed-Solomon soft decoding: Main result

We also record the following consequence for soft decoding of Reed-Solomon codes. Its proof
follows immediately from the above lemma. We will appeal to this result several times when
we discuss decoding algorithms for concatenated codes in Chapter 8 of the thesis.

Theorem 6.21 (Soft list decoding of Reed-Solomon codes) Consider an [n, k+1, n−
k]q Reed-Solomon code with messages being polynomials r over Fq of degree at most k. Let
the encoding function be r 7→ 〈r(x1), r(x2), . . . , r(xn)〉 where x1, . . . , xn are distinct ele-
ments of Fq. Let ε > 0 be an arbitrary constant. For each i ∈ [n] and α ∈ Fq, let wi,α be
a non-negative rational number. Then, there exists a deterministic algorithm with runtime
poly(n, q, 1/ε) that, when given as input the weights wi,α for i ∈ [n] and α ∈ Fq, finds a list
of all polynomials p ∈ Fq[x] of degree at most k that satisfy

n∑
i=1

wi,p(xi) ≥

√√√√k

n∑
i=1

∑
α∈Fq

w2
i,α + εmax

i,α
wi,α . (6.12)

Finally, we would like to point out that, once again, the error-correction performance of
the above result approaches what is indicated to be possible by the combinatorial bounds on
list decodability, specifically the “weighted Johnson bound” from Corollary 3.7 of Chapter 3.
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Significance of weighted polynomial reconstruction

The weighted polynomial reconstruction problem is at the heart of soft decoding algorithms
for Reed-Solomon codes (cf. [KV00]). It also plays a crucial role in decoding certain
concatenated codes, where the weights for Reed-Solomon decoding are passed by the inner
decoder [GS00, Nie00, GHSZ00, Gur01b]. This will be discussed in detail in Chapter 8
on concatenated codes. Thus, the weighted polynomial reconstruction is a very useful
subroutine that has found several applications to list decoding, and we view it as one of the
key contributions of this thesis.

Also, the basic algebraic technique behind weighted polynomial reconstruction extends
to more general codes than Reed-Solomon codes. In the next section, we will present a list
decoding algorithm for algebraic-geometric codes, which then also generalizes to a weighted
version (Section 6.3.7). In the next chapter, we will present a soft list decoding algorithm
for an even broader class of codes called “ideal-based” codes.

6.3 Algebraic-Geometric Codes

We now describe the extension of our algorithm to the case of algebraic-geometric codes.
Our extension shows that the algebra of the previous section extends to the case of algebraic
function fields, yielding an approach to the list decoding problem for algebraic-geometric
codes. In particular it reduces the decoding problem to some basis computations in an
algebraic function field and to a root-finding problem over the algebraic function field.
However neither of these tasks is known to be solvable efficiently given only the generator
matrix of the algebraic-geometric code (or some such standard “minimal” representation of
a linear code). But we will show that by precomputing a polynomial amount of additional
information about the linear code and the underlying algebraic structures, one can solve
both parts efficiently.

6.3.1 Overview

Algebraic-geometric codes (henceforth AG-codes) are defined by evaluations of “regular”
functions at a set of points on a “nice” algebraic curve. These were first defined by
Goppa [Gop81] in a seminal work, and are hence sometimes also referred to as geomet-
ric Goppa codes. Their properties are proved using some deep facts from the theory of
algebraic function fields. Before we describe the generalization of the Reed-Solomon decod-
ing algorithm to AG-codes, in Section 6.3.2 we first develop the necessary definitions and
preliminaries on algebraic function fields, and formally define algebraic-geometric codes.

We then present our algorithm for list decoding modulo some algorithmic assumptions
about the underlying structures. Under these assumptions, our algorithm yields an al-
gorithm for list decoding which corrects up to e < n −

√
n(n− d∗) errors in a code of

blocklength n and designed distance d∗. (The earlier best result for list decoding AG-codes,
due to [SW99], could correct up to about n−

√
2n(n− d∗) errors.)

Obtaining an efficient implementation of our decoding algorithm raises some funda-
mental questions about how elements of an algebraic function field are represented and
manipulated. We next discuss these issues in detail and demonstrate a representation of
AG-codes under which the list decoding algorithm can be implemented to run in polynomial
time. This turns out to be a non-standard representation (i.e., we do not how to implement
the algorithm in polynomial time given only the generator matrix or some such “standard”
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representation of the code). However, the necessary representation of the code is succinct
and is of size polynomial in the blocklength of the code.

6.3.2 Algebraic-geometric codes: Preliminaries

We now discuss the main notions associated with the theory of algebraic function fields
that will be necessary for defining and studying algebraic-geometric codes. The interested
reader may find further details in [Sti93, GS95a]. In the presentation below, we will assume
familiarity with the basic notions of field extensions, which can be found in any standard
algebra text, eg., [Art91]. We note that the definition of AG-codes presented here is in
line with that of the standard texts (in particular, we closely follow the presentation in
Stichtenoth’s book [Sti93]) — a different presentation which is somewhat less heavy on
algebraic terminology appears in the paper by the author and Sudan [GS99] where the
decoding algorithm discussed here first appeared.

An extension field K of a field k, denoted K/k, is an algebraic function field (or simply,
function field) over k if the following conditions are satisfied: (i) There is an element x ∈
K that is transcendental over k such that K is a finite extension of k(x), and (ii) k is
algebraically closed in K, that is, the only elements in K that are algebraic over k are those
in k.

For our applications to AG-codes, we will be interested in the case when k is a finite
field, i.e., k = Fq for some prime power q. A function field K/Fq can be obtained as K =
Fq(X)[y1, y2, . . . , ym] where each yi satisfies some polynomial equation over Fq(X)[y1, . . . , yi−1].
For the rest of this section, K will denote the function field in question.

Places and Valuations: A function field K/Fq has a set of places PK and the associated
set of valuations, given by a valuation map v : PK ×K → Z ∪ {∞}. The exact definition
of these notions can be found, for instance, in [Sti93]; we only abstract some properties
relevant to us below.

Intuitively the places correspond to “points” on the algebraic curve associated with the
function field K, and the valuation map tells us how many poles or zeroes a function in K
has at a specific place in PK . It has the property that for any f ∈ K, there are only finitely
many places P ∈ PK such that v(P, f) 6= 0. As is normal practice, for each P ∈ PK , we
denote by vP : K → Z∪{∞}, the map vP (·) = v(P, ·) which tells how many zeroes or poles
a given function has at P (with the convention vP (0) =∞ for any place P ). If vP (x) < 0,
we say x has a pole at P , and −vP (x) is called the pole order of x at P . Similarly, if
vP (x) > 0, we say that x has a zero at P , and in such a case vP (x) is the zero order of x at
P . The valuation vP at any place satisfies the following properties:

(a) vP (a) =∞ iff a = 0 and vP (a) = 0 for all a ∈ Fq \ {0}.

(b) vP (ab) = vP (a) + vP (b) for all a, b ∈ K \ {0}.

(c) vP (a+ b) ≥ min{vP (a), vP (b)} for all a, b ∈ K.

For those familiar with some commutative algebra terminology, we just recap how places
are formally defined from their corresponding valuations. For every valuation vP of K, the
ring of regular functions at P , denoted OP , is defined to be

OP = {x ∈ K : vP (x) ≥ 0} .
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This ring is a “discrete valuation ring” and in particular is a local ring with a unique
maximal ideal. This unique maximal ideal of OP is defined to be the “place” P associated
with vP , and is given by

P = {x ∈ K : vP (x) > 0} .

Intuitively, OP is the ring of functions in K that do not have any poles at a certain “point”
on the curve; the place P corresponds to this point, and is algebraically defined as the ideal
of functions in K that vanish at that “point”.

Degree of a place: Associated with every place is a degree abstracted via the map deg :
PK → Z

+. The degree, deg(P ), of any place P is a positive integer and intuitively means
the following: when we pick a function f ∈ K which has no poles at P and “evaluate” it
at P , we get a value in the field Fqdeg(P ) . Places of degree one correspond to rational points
on the curve. More formally, the notion of degree means the following: for every place P ,
the quotient ring OP /P is a finite field of size qdeg(P ).

Evaluations of functions at places: We can abstract the notion of evaluation of elements
of the function field at the places by a map eval : K × PK → F̄q ∪ {∞} (here F̄q =

⋃
i≥1 Fqi

is the algebraic closure of Fq). This map has the following properties:

(i) For every P ∈ PK and f ∈ K, eval(f, P ) = ∞ iff vP (f) < 0, and eval(f, P ) = 0 iff
vP (f) > 0.

(ii) If f ∈ K, P ∈ PK and vP (f) ≥ 0, then eval(f, P ) ∈ Fqdeg(P ) .

(iii) The map eval respects field operations; in other words, if vP (f1) ≥ 0 and vP (f2) ≥ 0,
then eval(f1 + f2, P ) = eval(f1, P ) + eval(f2, P ), and eval(f1 ∗ f2, P ) = eval(f1, P ) ∗
eval(f2, P ) (where we have used (+, ∗) to denote the addition and multiplication op-
erations in both K and F̄q).

Divisors: The divisor group DK of the function field K is a free abelian group on PK . An
element D of DK is thus represented by the formal sum

∑
P∈PK aPP where each aP ∈ Z,

and aP = 0 for all but finitely many P . We say D � 0 if aP ≥ 0 for all P ∈ PK . The
support of a divisor D, denoted supp(D), is the (finite) set {P ∈ PK : aP 6= 0}. The
degree map extends naturally to the divisor group DK and deg : DK → Z is defined as
deg(

∑
P aPP ) =

∑
P aP deg(P ).

For every f ∈ K \ {0}, there is an associated divisor, called the principal divisor and
denoted (f), which is defined by (f) =

∑
P vP (f)P . The following result states that degree

of any principal divisor equals 0. It is a well-known result and just states that every non-zero
function in the function field has an equal number of zeroes and poles.

Proposition 6.22 For any function field K/Fq and any f ∈ K \ {0}, deg((f)) = 0.

The Riemann-Roch Theorem: For every divisor D ∈ DK , one can define the linear
space of functions L(D) as

L(D) = {g ∈ K : (g) +D � 0}.

For example for a divisor D = aQ − bP where P,Q ∈ PK and a, b > 0, L(D) is the
space of all functions that have at least b zeroes at P and at most a poles at Q. It is
known that for any divisor D � 0, L(D) is a finite-dimensional vector space over Fq and
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dim(L(D)) ≤ 1 + deg(D) (see [Sti93] for a proof). A lower bound on dim(L(D)) is given
by the celebrated Riemann-Roch theorem for function fields, which is stated below. The
theorem statement also introduces the “genus” of a function field K/Fq, which in some
sense measures the “complexity” of the underlying algebraic curve. (A genus equal to zero
corresponds to the simplest case when K = Fq(X) is the field of all rational functions in
one variable.)

Theorem 6.23 [Riemann-Roch]: Let K/Fq be any function field. There is a non-
negative integer g, called the genus of K/Fq, such that

(a) For any divisor D ∈ DK , dim(L(D)) ≥ deg(D)− g + 1.

(b) There is an integer c, depending only on K/Fq, such that dim(L(D)) = deg(D)−g+1
whenever deg(D) ≥ c. Furthermore, c ≤ 2g − 1.

Algebraic-geometric codes: We are now ready to define the notion of an AG-code (also
known as geometric Goppa code). Let K/Fq be an algebraic function field of genus g, let
P0, P1, P2, . . . , Pn be distinct places of degree one in PK , and let G = P1 +P2 + · · ·+Pn and
D = αP0 be divisors of K/Fq (note that supp(G) ∩ supp(D) = ∅).

The algebraic-geometric code CL(G,D) = CL(G,α, P0) is defined by

CL(G,α, P0) := {(eval(f, P1), . . . , eval(f, Pn)) : f ∈ L(αP0)} ⊆ Fnq .

(Note that eval(f, Pi) ∈ Fq since vPi(f) ≥ 0 and deg(Pi) = 1.) It is clear that the defined
space is a linear space, since L(αP0) is an Fq-linear vector space. The following Proposition
follows from the Riemann-Roch theorem and quantifies the parameters of these codes. 8

Proposition 6.24 Let K/Fq be a function field of genus g, and let α, n be positive integers
with α < n. Let P0, P1, P2, . . . , Pn be distinct places of degree one in PK , and let G be
the divisor G = P1 + P2 + . . . + Pn. Then CL(G,α, P0) is an [n, k, d]q code with k =

dim(L(αP0)) ≥ α − g + 1 and d ≥ d∗
def= n − α. The quantity d∗ = n − α is called the

designed distance of the code. Moreover, if α ≥ 2g − 1, then k = α− g + 1.

Proof: The claims about the dimension follow from the Riemann-Roch theorem. For the
distance property, let f1 6= f2 ∈ L(αP0) be two distinct messages of CL(G,α, P0). Then
f1 − f2 ∈ L(αP0) as well, and hence f1 − f2 has at most α deg(P0) = α poles in all. By
Proposition 6.22, f1 − f2 has at most α zeroes, and hence eval(f1 − f2, Pi) = 0 for at most
α values of i, 1 ≤ i ≤ n. Therefore, the encodings of f1 and f2 agree on at most α places
among P1, P2, . . . , Pn, which proves that the distance of the code is at least n− α. 2

Significance of AG-codes: Codes constructed as above and achieving d/n, k/n > 0 (in the
limit of large n) are known for constant alphabet size q. In fact, such codes achieving bounds
better than those known by probabilistic constructions are known for q ≥ 49 [TVZ82]. Such
a situation, where an explicit construction is better than the best probabilistic construction,

8The AG-codes defined here are the so called “one-point divisor codes” since the space of functions are
allowed to have poles at only one place. While one can also study AG-codes defined using more general
divisors (i.e., allow poles at multiple places), one-point divisor codes are the most widely studied AG-codes,
and there is no clear quantitative advantage of using more general divisors in defining the code. Therefore, in
this thesis we will focus only on one-point divisor codes. An explicit generalization of the decoding algorithm
presented in this thesis to the case of AG-codes based on general divisors appears, for instance, in [Pec01].
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is quite rare in combinatorics. This is one of the primary reasons for the importance of
and enormous interest in algebraic-geometric codes. Moreover, AG-codes have a very rich
algebraic structure which can be exploited to design efficient decoding algorithms, as we do
in this section. Recently, Elkies [Elk01] defined a more general algebraic family of codes than
the AG-codes discussed here. His codes are non-linear and are based on some deep algebraic
properties of certain modular curves. For certain setting of parameters his codes provide an
asymptotic improvement over what is possible using “conventional” AG-codes. Thus the
underlying idea of defining codes by evaluations of “nice” functions on a suitably picked
set of points on a “nice” algebraic curve or variety is a very powerful one. Our decoding
algorithm gives a powerful and quite general method of dealing with such algebraic codes.

6.3.3 List decoding algorithm for algebraic-geometric codes

We now describe the extension of our Reed-Solomon list decoding algorithm to the case
of algebraic-geometric codes. We begin with a formal description of the problem – this is
the generalization of the polynomial reconstruction problem discussed in the decoding of
Reed-Solomon codes to the case of algebraic function fields.

Problem 4 (Function Reconstruction)
Input: Integers n, α, t; n distinct pairs {(Pi, yi)}ni=1 where each Pi is a place of degree
one of the function field K/Fq, and each yi ∈ Fq; and a place P0 of degree one with P0 /∈
{P1, . . . , Pn}.
Output: All functions h in L(αP0) that satisfy eval(h, Pi) = yi for at least t values of i,
1 ≤ i ≤ n.

As before, it is easily seen the list decoding problem for the AG-code CL(G,α, P0) from
(n − t) errors (with divisor G = P1 + P2 + . . . + Pn) reduces to the above reconstruction
problem. While in the AG-codes case the places Pi are distinct, note that this is not required
in the above specification, and indeed as with the case of polynomial reconstruction, we will
solve the above problem without assuming that the Pi’s are distinct.

Solution Idea

As with the Reed-Solomon case, we will first try to describe the data points {(Pi, yi)} by
some polynomial Q. We follow [SW99] and let Q be a polynomial in a formal variable y
with coefficients from K (i.e., Q ∈ K[y]). Now given a value of yi ∈ Fq, Q(yi) will yield an
element of K. By definition such an element of K can be evaluated at the place Pi ∈ PK .
We will require that Q have the property that Q(Pi, yi)

def= eval(Q(yi), Pi) equal zero, for
every i ∈ [n]. We will actually require more and insist that (Pi, yi) “behave” like a zero
of multiplicity r of Q; since Pi ∈ PK and yi ∈ Fq, we need to be careful in specifying the
conditions to achieve this, and we will return to this shortly. We will also insist that Q(y)
has a small number of poles (say, at most l) at P0 for any substitution of y with a function
in L(αP0). Having found such a Q, we then look for roots h ∈ L(αP0) of Q, and winnow
out those that do not satisfy eval(h, Pi) = yi for at least t values of i, 1 ≤ i ≤ n.

Description of the algorithm

Algorithm Function-Reconstruct(n, α, t;P0, P1, . . . , Pn ∈ PK)
Input: y1, y2, . . . , yn ∈ Fq
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Output: All functions h ∈ L(αP0) such that eval(h, Pi) = yi for at least t values of i ∈
{1, . . . , n}.

1. Pick parameters r and l suitably (as in the algorithm Poly-Reconstruct)

2. “Fit” the pairs (yi, Pi) by a “suitable” non-zero polynomial Q ∈ K[y]. Specifically
find Q ∈ K[y], Q 6= 0, such that

(i) Q(f) ∈ L(lP0) for every f ∈ L(αP0), and

(ii) for every i ∈ {1, 2, . . . , n} and h ∈ K, if eval(h, Pi) = yi then vPi(Q(h)) ≥ r.

3. Find all roots h ∈ L(αP0) of Q ∈ K[y]. For each of them check if eval(h, Pi) = yi for
at least t values of i, and if so, output h.

What remains to be done is to explicitly express the Conditions (i) and (ii) above in
a manner that allows for an algorithmic solution. To ensure requirement (i), it suffices if
the coefficient of the yj term in Q ∈ K[y] belongs to L((l − αj)P0). To require so, we
assume that we are explicitly given basis functions φ1, . . . , φl−g+1 for L(lP0) which satisfy
vP0(φj , x0) ≥ −(j+g−1) (i.e., φj has at most (j+g−1) poles at p0) and vP0(φj) > vP0(φj+1)

for 1 ≤ j < l − g + 1 (i.e., the pole orders at P0 of φj increase with j). Let s def=
⌊
l−g
α

⌋
. We

will then look for coefficients qj1,j2 ∈ Fq such that the polynomial Q ∈ K[y] can be written
of the form:

Q(y) =
s∑

j2=0

l−g+1−αj2∑
j1=1

qj1j2φj1y
j2 . (6.13)

By explicitly setting up Q as above, we impose the Condition (i) in the algorithm above.
To enforce Condition (ii), we need to “shift” our basis. This is done exactly as in the Reed-
Solomon case with respect to the yi’s; however, Pi ∈ PK and hence a different method is
required to handle it. The lemmas below show how this may be achieved.

Lemma 6.25 For every non-zero f, g ∈ K and P ∈ PK such that vP (f) = vP (g), there
exist α0, β0 ∈ Fq \ {0}, such that vP (α0f + β0g) > vP (f).

Proof: Let vP (f) = vP (g) = m and f−1 be the multiplicative inverse of f in K. Then
vP (f ∗f−1) = 0 and vP (f−1) = −vP (f) = −m. Therefore, vP (g∗f−1) = vP (g)+vP (f−1) =
0. Let eval(f ∗ f−1, P ) = α and eval(g ∗ f−1, P ) = β. We have α, β 6∈ {0,∞}, and since P
is of degree one, we have α, β ∈ Fq. Thus we find that eval(βf ∗ f−1 − αg ∗ f−1, P ) = 0.
Thus vP (βf ∗ f−1 − αg ∗ f−1) > 0 and so vP (βf − αg) > m, as required. 2

Lemma 6.26 Given non-zero functions φ1, . . . , φp of distinct pole orders at P0 satisfying
φj ∈ L((j + g − 1)P0), and a place Pi 6= P0, there exist non-zero functions ψ1, . . . , ψp ∈ K
that satisfy:

(i) vPi(ψj) ≥ j − 1 (i.e., ψj has at least (j − 1) zeroes at Pi)

(ii) There exist αPi,j1,j3 ∈ Fq for 1 ≤ j1, j3 ≤ p such that each function φj1 can be expressed
as a linear combination of the ψj’s of the form: φj1 =

∑p
j3=1 αPi,j1,j3ψj3.
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Proof: We prove a stronger statement by induction on p: If φ1, . . . , φp are linearly indepen-
dent functions (over Fq) that satisfy vPi(φj) ≥ m for each j = 1, 2, . . . , p for some m ≥ 0,
then there exist functions ψ1, . . . , ψp with vPi(ψj) ≥ (m+ j− 1) that generate the φj ’s over
Fq. Note that this will imply our lemma since the fact that φj ’s have distinct pole orders
at P0 implies that φ1, φ2, . . . , φp are linearly independent (this follows easily using the fact
that vP0(αf + βg) = min{vP0(f), vP0(g)} if vP0(f) 6= vP0(g)).

The statement claimed is obviously true for p = 1, with the choice ψ1 = φ1. Now let
p > 1. Assume without loss of generality that φ1 is a function with the least zero order
at Pi. By assumption, φ1 has at least m zeroes at Pi, i.e., vPi(φ1) ≥ m. We let ψ1 = φ1.
Now, for 2 ≤ j ≤ p, set φ′j = φj if vPi(φj) > vPi(φ1). Otherwise, if vPi(φj) = vPi(φ1),
using Lemma 6.25 to the pair (φ1, φj) of functions, we get αj , βj ∈ Fq − {0} such that the
function φ′j = αjφ1 + βjφj satisfies vPi(φ

′
j) > vPi(φ1) ≥ m. Since φj = β−1

j φ′j − αjβ
−1
j φ1

in this case, we conclude that in any case, for 2 ≤ j ≤ p, ψ1 = φ1 and φ′j generate φj .
Now φ′2, φ

′
3, . . . , φ

′
p are linearly independent (since φ1, φ2, . . . , φp are) and vPi(φ

′
j) ≥ m + 1

for 2 ≤ j ≤ p. Therefore the induction hypothesis applied to the functions φ′2, . . . , φ
′
p now

yields ψ2, . . . , ψp as required. 2

We are now ready to express Condition (ii) of Algorithm Function-Reconstruct which
requires that

vPi(Q(h)) ≥ r for all h ∈ K and i ∈ {1, 2, . . . , n} such that eval(h, Pi) = yi . (6.14)

Informally, we say that the above requirement forces (Pi, yi) to be a “zero” of multiplicity
r of the polynomial Q. Using Lemma 6.26 and Equation (6.13), we know that Q has the
form

Q(y) =
s∑

j2=0

l−g+1∑
j3=1

l−g+1−j2α∑
j1=1

qj1,j2αPi,j1,j3 ψj3,Pi y
j2 .

The shifting to yi is achieved by defining

Q(i)(y) def= Q(y + yi) . (6.15)

The requirement (6.14) on Q,Pi now becomes

vPi(Q
(i)(h)) ≥ r for all h ∈ K such that eval(h, Pi) = 0, i.e., ∀ h s.t. vPi(h) ≥ 1 . (6.16)

Now

Q(i)(y) =
s∑

j4=0

l−g+1∑
j3=1

q
(i)
j3,j4

ψj3,Piy
j4 , (6.17)

where

q
(i)
j3,j4

def=
s∑

j2=j4

l−g+1−αj2∑
j1=1

(
j2
j4

)
yj2−j4i · qj1,j2αPi,j1,j3 . (6.18)

The terms in Q(i)(y) that are divisible by yp contribute p towards the multiplicity of (Pi, 0)
as a “zero” of Q(i), or, equivalently, the multiplicity of (Pi, yi) as a zero of Q. Since
vPi(ψj3,Pi) ≥ (j3−1) by Lemma 6.26, we can achieve the required Condition (6.16) on Q(i),
or equivalently the required Condition (6.14) on Q, by insisting that q(i)

j3,j4
= 0 for all j3 ≥ 1,

j4 ≥ 0 such that j4 + j3 − 1 < r, i.e. j3 + j4 ≤ r (there are
(
r+1

2

)
such constraints for each

i ∈ {1, 2, . . . , n}).
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The above discussion shows that it is possible to solve Step 1 in Algorithm Function-
Reconstruct by finding a non-zero solution to a homogeneous linear system (with unknowns
being the coefficients qj1,j2 from the expansion (6.13) of the polynomial Q), modulo the
assumption that we “know” a certain basis φ1, φ2, . . . , φl−g+1 of L(lP0), and also the “basis
change coefficients” αPi,j1,j3 (from Lemma 6.26). The coefficients of the polynomial will also
be found and expressed in terms of their representation in terms of the basis 〈φ1, . . . , φl−g+1〉.
To solve Step 2, we need a subroutine to find roots of univariate polynomials over function
fields, to which we turn next.

6.3.4 Root finding over algebraic function fields

Before discussing the root finding algorithm, we discuss some issues concerning the repre-
sentation of elements of a function field that deserve attention at this point. The decoding
algorithm discussed above relies strongly on the algebraic properties of the underlying func-
tion field. In particular, it relies on the ability to perform certain operations over these
fields. These operations include basic field operations such as addition and multiplication,
but also some non-trivial operations such as evaluating functions at “places”, and finding
roots of polynomials over these fields.

One of the essential bottlenecks towards the unified presentation of our algorithm for
all AG-codes is that one needs a generic method to represent the elements of an algebraic
function field so that (a) these representations are short for the elements of interest in the
construction of the algebraic-geometric codes; and (b) basic operations are efficient under
this representation. By carefully picking the representation of the algebraic-geometric code,
we are able to meet both the requirements above. By doing so, we are able to present a
compact and general theorem about list decoding of AG-codes.

As mentioned earlier, algorithms that involve function fields, and in particular decoding
algorithms for AG-codes, raise several issues on how to represent elements from the function
field K and the places PK .

In order to implement Algorithm Function-Reconstruct efficiently over a function field
K, we would like to perform the following basic operations efficiently: (i) Given two elements
x, y ∈ K, compute their sum and product in K; (ii) Given f ∈ K and P ∈ PK , compute
vP (f) and eval(f, P ); and (iii) Given a divisor D � 0, compute a basis for the vector space
L(D) over Fq (it suffices to solve this for one-point divisors D = αP0).

It is a priori unclear that these operations can performed in polynomial time for every
function field K. First of all, the function field K is an infinite set, so one cannot assume
that operations in K (like sum and product) are unit operations. Instead one must fix a
representation for the elements and give explicit algorithms to perform these operations
that are efficient with respect to the size of the representation of an element. A natural
representation to consider is to express elements of K as ratio of two homogeneous multi-
variate polynomials. For this representation, the field operations in K can be done in time
polynomial in the sum of degrees of the respective polynomials. However, for question (iii)
above, it is not known whether for general function fields there always exists a basis for
L(D) over Fq with a succinct representation (i.e., one of size polynomial in deg(D)) as the
ratio of polynomials (see [SW99] for a discussion concerning this point).

For applications to decoding, one does not need to work with all of K, but instead can
focus attention only on elements in L(D) for some divisor D � 0 (in fact for D = lP0

for some place P0). This allows us the option of representing elements of L(D) as vectors
in Fdim(L(D))

q which represent their coordinates with respect to some fixed basis of L(D)
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over Fq. Since it is known that dim(L(D)) ≤ deg(D) + 1, this representation will be small
provided deg(D) is small. Indeed, this is what we exploited already in our “solution” to
Step 1 of Algorithm Function-Reconstruct. In order to be able to perform the root-finding
step also efficiently, we augment this representation suitably. Before explaining this, we
formally describe the basic root-finding task that we wish to solve, and describe an algebraic
algorithm to solve it (this is along the lines of the algorithms of [NH99a, GS00]). We then
discuss the representation issues this algorithm motivates, and in the next section give a
full list decoding algorithm with the required representation explicitly spelled out.

Procedure ROOT-FIND(K,D)(Q)

Input: A degree m polynomial Q =
∑m

i=0 aiy
i ∈ K[y] where each ai ∈ L(D) for some divisor

D � 0.

Output: All roots of Q that lie in L(D).

1. Let R ∈ PK be a place (outside supp(D)) that has degree r > deg(D). “Reduce” H
modulo the place R — namely, compute bi = eval(ai, R) for 0 ≤ i ≤ m and consider
the polynomial P =

∑m
i=0 biY

i ∈ Fqr [Y ].

2. Compute the roots, say α1, . . . , αt, of P that lie in Fqr using a root-finding algorithm
for finite fields. (This can be accomplished in deterministic poly(q, r) time by an
algorithm due to Berlekamp [Ber70].)

3. For each αj , 1 ≤ j ≤ t, “find” βj ∈ L(D) such that eval(βj , R) = αj , if any such βj
exists.

The tricky issue in the above algorithm is that we need to find a place R of large enough
degree and then be able to evaluate functions f ∈ L(D) at R. To aid this we “represent” a
place R by the values eval(φi, R), for 1 ≤ i ≤ p where p = dim(L(D)) and φ1, . . . , φp is a
basis of L(D) over Fq. Together with the representation of any element of L(D) as a linear
combination of the φi’s this clearly enables us to evaluate any element of L(D) at R. Since
each eval(φi, R) ∈ Fqr where r = deg(R), for purposes of evaluation by members of L(D),
one can represent R as a vector of length p with entries in Fqr and present it as auxiliary
“advice” input to the root-finding algorithm. Given this table of evaluations of the basis
functions at R, Step 3 just amounts to solving a linear system of equations over Fq, and
therefore can also be performed efficiently. (We will shortly argue that for each αj , there
can exist at most one βj ∈ L(D) such that eval(βj , R) = αj . Therefore, the operation of
Step 3, which “lifts” roots in Fqr to roots in L(D), is well-defined.)

It should be clear that given this representation, the above algorithm can in fact be
implemented efficiently. We next argue the correctness of the above root-finding proce-
dure. Then we will integrate it with the solution to the interpolation step (Step 1) of
Function-Reconstruct to describe the full list decoding algorithm for AG-codes, with all the
representation details explicitly spelled out.

The two simple lemmas below are necessary for the correctness of the algorithm.

Lemma 6.27 For any function field K, there exists a place of degree m in PK for every
large enough integer m.

Proof: By the Hasse-Weil Bound (see, for example, [Sti93, Theorem V.2.3]), the number
Nm of places of degree m in PK satisfies |Nm − qm − 1| ≤ 2gqm/2 where g is the genus
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of the function field K. Hence if m ≥ m0 where m0 is the smallest integer that satisfies
qm0−1

2qm0/2
> g, then Nm ≥ 1. 2

Lemma 6.28 If f1, f2 ∈ L(A) for some divisor A � 0 and eval(f1, R) = eval(f2, R) for
some place R with deg(R) > deg(A), then f1 = f2.

Proof: Suppose not, so that f1 − f2 6= 0. Then, by Proposition 6.22, deg((f1 − f2)) = 0.
But f1 − f2 ∈ L(A) and vR(f1 − f2) ≥ 1, so that deg((f1 − f2)) ≥ deg(R)− deg(A) > 0, a
contradiction. Hence f1 = f2. 2

The correctness of ROOT-FIND follows easily from the above two lemmas. The first
lemma implies that a place R as required in the first step of ROOT-FIND exists. The
second lemma implies that reducing the polynomial modulo R (of degree greater than
deg(D)) “preserves” all its roots that lie in L(D), since “lifting” the root from Fqr to L(D)
is an “injective” operation.

It is clear that given the place R as advice in the form of the table of values of eval(φ,R)
for φ ranging over a set B of basis functions for L(D), the root-finding algorithm can be
implemented in polynomial time. (We also assume the coefficients of the polynomial Q,
which are elements of L(D), are input in the form of the coefficients of their expansion
in terms of the same basis B.) We can thus record the following which states that the
root-finding step of Algorithm Function-Reconstruct can be implemented efficiently.

Theorem 6.29 There is an efficient root-finding algorithm that, for any function field K
and any divisor D � 0, given an “advice” that depends only on D and is of size polynomial in
deg(D), finds, in poly(m,deg(D)) time, all roots in L(D) of any input degree m polynomial
in K[y] all of whose coefficients lie in L(D).

6.3.5 An explicit list decoding algorithm

With the individual efficient implementations of both the interpolation and root-finding
steps of Function-Reconstruct in place, we now move on to the full description of an explicit
polynomial time list decoding algorithm for AG-codes, together with all parameter choices.
The algorithm works with a polynomial size advice (or “non-uniform” input) that depends
only the code (and not on the received word which is being decoded). This will imply
that AG-codes admit a succinct representation given which Function-Reconstruct can be
implemented to run in polynomial time. In the next section, we will formally establish the
correctness of the algorithm and analyze its error-correction performance for our specific
parameter choices.

We only discuss the version of Function-Reconstruct for decoding with polynomial-sized
lists (i.e., the result of Theorem 6.8 generalized to AG-codes). The analogous generalization
of Theorem 6.6 for decoding with constant-sized lists to AG-codes follows similarly — we
omit the details. Recall that the object of Function-Reconstruct is to find, for input pairs
(Pi, yi), 1 ≤ i ≤ n, where each Pi ∈ PK is a place of K/Fq and each yi ∈ Fq, a list of all
h ∈ L(αP0) such that eval(h, Pi) = yi for at least t values of i.

Algorithm Function-Reconstruct(n, α, t;P0, P1, . . . , Pn ∈ PK)

Input: y1, y2, . . . , yn ∈ Fq
Output: All functions h ∈ L(αP0) which satisfy eval(h, Pi) = yi for at least t values of

i ∈ {1, . . . , n}.

126



Parameters: n, α, t; the genus g of K. Based on these the algorithm computes parameters
r, l.

Non-uniform input: Fix a set of linearly independent functions {φj1 : 1 ≤ j1 ≤ l− g + 1} ⊆
L(lP0) such that vP0(φj1) ≥ −(j1 + g − 1) (i.e., φj1 has at most (j1 + g − 1) poles at P0).
Note that these functions span a subspace W of L(lP0) of dimension (l − g + 1), and by
the Riemann-Roch theorem, if l ≥ 2g − 1, they span the entire space L(lP0). As shown in
Lemma 6.26, for each i, 1 ≤ i ≤ n, there exists a basis {ψj3,Pi : 1 ≤ j3 ≤ l − g + 1} of the
subspace W of L(lP0) such that vPi(ψj3,Pi) ≥ j3 − 1. The explicit information which the
decoding algorithm needs as advice information (or non-uniform input) is the following:

(a) The values eval(φj1 , Pi) ∈ Fq for 1 ≤ i ≤ n and 1 ≤ j1 ≤ l − g + 1.

(b) The “basis change” coefficients {αPi,j1,j3 ∈ Fq : 1 ≤ i ≤ n, 1 ≤ j1, j3 ≤ l − g + 1} such
that for every i and every j1, we have φj1 =

∑
j3
αPi,j1,j3ψj3,Pi (as elements in K).

(c) A place R ∈ PK with deg(R) = s > l represented through the table of values
eval(φj1 , R) for 1 ≤ j1 ≤ l − g + 1 (note that each such evaluation lies in Fqs).

(We stress here that the above information depends on the specific set of places P0, P1, . . . , Pn,
but not on the yi’s, and is moreover of size polynomial in n — indeed it is of size O(nl2 log q),
and l is at most cubic in n for the choice made in the algorithm. In our application to de-
coding AG-codes, this means that the polynomial amount of advice information necessary
for our algorithm depends only on the code and not on the actual received word that is
being decoded. In other words, we can simply view the above information as comprising a
non-standard, but succinct, representation of the underlying AG-code.)

Step 0: Compute parameters r, l which satisfy

rt > l and
(l − g)(l − g + 1)

2α
> n

(
r + 1

2

)
. (6.19)

In particular, set

r
def= 1+

⌊
2gt+αn+

√
(2gt+αn)2−4(g2−1)(t2−αn)

2(t2−αn)

⌋
, (6.20)

l
def= rt− 1 . (6.21)

Step 1: (Interpolation Step) Find Q ∈ L(lP0)[y] of the form

Q(y) =
s∑

j2=0

l−g+1−αj2∑
j1=1

qj1j2φj1y
j2 ,

for s def=
⌊
l−g
α

⌋
; i.e., find values of the coefficients {qj1,j2 ∈ Fq} such that the following

conditions hold:

1. At least one qj1,j2 is non-zero (so that Q is a non-zero polynomial in K[y]).

2. For every i ∈ [n], ∀j3, j4, j3 ≥ 1, j4 ≥ 0 such that j3 + j4 ≤ r,
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q
(i)
j3,j4

def=
s∑

j2=j4

l−g+1−αj2∑
j1=1

(
j2
j4

)
yj2−j4i · qj1,j2αPi,j1,j3 = 0.

Step 2: (Root-finding step) Using the root-finding algorithm ROOT-FIND from Sec-
tion 6.3.4 together with the place R which is supplied to the algorithm, “find” all
roots h ∈ L(αP0) ⊆ L(lP0) of the polynomial Q ∈ K[y]. For each such h, check if
eval(h, Pi) = yi for at least t values of i, and if so, include h in output list. (Since h
is “found” by finding its coefficients with respect to the basis functions φj1 and the
algorithm is given the values eval(φj1 , Pi) for 1 ≤ i ≤ n and 1 ≤ j1 ≤ l − g + 1, each
eval(h, Pi) can be computed efficiently.)

Step 3: Output the list of all functions h ∈ L(αP0) found in Step 2.

Since Step 1 just involves solving a homogeneous linear system of equations and Step
2 involves root-finding for which we gave an efficient algorithm in Section 6.3.4, it is clear
that the above algorithm runs in polynomial time given the advice information it takes as
input. Since the list decoding problem for AG-codes reduces to the Function Reconstruction
problem, we thus have a polynomial time list decoding algorithm for AG-codes (assuming
the required representation of the code). We next analyze the error-correction performance
of the algorithm for the specific choice of parameters made in the algorithm.

6.3.6 Analysis of the Algorithm

We now analyze the performance of Function-Reconstruct. We first verify that the choice
of r, l made in the algorithm satisfy the required Condition (6.19).

Lemma 6.30 If n, α, t satisfy t2 > αn, then for the choice of r, l made in the algorithm
(in Equations (6.20) and (6.21)), the conditions (l−g)(l−g+2)

2α > n
(
r+1

2

)
and rt > l both hold.

Proof: The proof parallels that of Lemma 6.7. The condition rt > l certainly holds since
we pick l def= rt− 1. Using l = rt− 1, the other constraint becomes

(rt− g)2 − 1
2α

> n

(
r + 1

2

)
which simplifies to

r2(t2 − αn)− (2gt+ αn)r + (g2 − 1) > 0.

If t2−αn > 0, it suffices to pick r to be an integer greater than the larger root of the above
quadratic, and therefore picking

r
def= 1+

⌊
2gt+αn+

√
(2gt+αn)2−4(g2−1)(t2−αn)

2(t2−αn)

⌋

suffices, and this is exactly the choice made in the algorithm. 2

Lemma 6.31 If n
(
r+1

2

)
< (l−g)(l−g+2)

2α , then Q(y) as sought in Step 1 does exist (and can
be found in polynomial time by solving a linear system).
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Proof: The proof follows that of Lemma 6.4. The computational task in Step 1 is once
again that of solving a homogeneous linear system. A non-trivial solution exists as long as
the number of unknowns exceeds the number of constraints. The number of constraints in
the linear system is n

(
r+1

2

)
, while the number of unknowns equals

s∑
j2=0

(l − g + 1− αj2) ≥ (l − g)(l − g + 2)
2α

. 2

We next prove that any Q found in the interpolation step will have all the required
functions h, namely those that satisfy eval(h, Pi) = yi for at least t values of i, as roots.

Lemma 6.32 For i ∈ {1, 2, . . . , n}, if h ∈ K satisfies eval(h, Pi) = yi, then vPi(Q(h)) ≥ r.

Proof: Using Equation (6.17), we have the following for every place P :

eval(Q(h), P ) =
s∑

j4=0

l−g+1∑
j3=1

q
(i)
j3,j4

eval(ψj3,Pi , P )(eval(h, P )− yi)j4 .

Now if eval(h, Pi) = yi, we get

eval(Q(h), P ) =
s∑

j4=0

l−g+1∑
j3=1

q
(i)
j3,j4

eval(ψj3,Pi , P )(eval(h, P )− eval(h, Pi))j4 . (6.22)

By our choice of Q, q(i)
j3,j4

= 0 for j3 + j4 ≤ r. Also, vPi(ψj3,Pi) ≥ j3−1, and if h(i) is defined

by its value on places in PK as eval(h(i), P ) def= eval(h, P )−eval(h, Pi), then vPi((h
(i))j4) ≥ j4.

It then follows from Equation (6.22) that vPi(Q(h)) ≥ r. 2

Lemma 6.33 If h ∈ L(αP0) is such that eval(h, Pi) = yi for at least t values of i ∈
{1, 2, . . . , n} and rt > l, then Q(h) ≡ 0; i.e. h is a root of Q ∈ K[y].

Proof: By our choice of Q in the interpolation step, we have Q(h) ∈ L(lP0) for all h ∈
L(αP0). Hence vPi(Q(h)) ≥ 0 for each i ∈ [n]. If eval(h, Pi) = yi for at least t values of i,
using Lemma 6.32, we get

∑
i∈[n] vPi(Q(h)) ≥ rt > l, and hence the zero order of Q(h) is

greater than l. Since Q(h) ∈ L(lP0), the pole order of Q(h) is at most l. Since there are
more zeroes than poles for Q(h), appealing to Proposition 6.22, we therefore conclude that
we must have Q(h) ≡ 0. Thus h is a root of Q. 2

Our main theorem on list decoding AG-codes now follows from Lemmas 6.30-6.33 and the
polynomial runtime claimed in the previous section.

Theorem 6.34 Let C = CL(G,α, P0) be an AG-code of blocklength n and designed mini-
mum distance d∗ = n−α. Then there exists a representation of the code of size polynomial
in n, given which there exists a polynomial time list decoding algorithm for C that decodes
up to e < n−

√
αn = n−

√
n(n− d∗) errors.
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6.3.7 Weighted list decoding of AG-codes

We now state the generalization of the result of Theorem 6.34 to an algorithm that can
exploit soft information (weights), similar to the soft decoding algorithm for Reed-Solomon
codes from Section 6.2.10. The proof method is similar to the Reed-Solomon case and
involves using multiplicities in proportion to the weights of the various pairs in the inter-
polation step. We omit the details.

Theorem 6.35 For every q-ary AG-code C of blocklength n and designed minimum distance
d∗ = n − α, there exists a representation of the code of size polynomial in n under which
the following holds. Let ε > 0 be an arbitrary constant. For 1 ≤ i ≤ n and γ ∈ Fq, let wi,γ
be a non-negative real. Then one can find in poly(n, q, 1/ε) time, a list of all codewords
c = 〈c1, c2, . . . , cn〉 of C that satisfy

n∑
i=1

wi,ci ≥

√√√√(n− d∗)
n∑
i=1

∑
γ∈Fq

w2
i,γ + εmax

i,γ
wi,γ . (6.23)

6.3.8 Decoding up to the “q-ary Johnson radius”

For Reed-Solomon codes of blocklength n and minimum distance d, the quantity n −√
n(n− d) closely approximates the Johnson radius since the alphabet size is very large

(it is at least n). Similarly, for AG-codes over very large alphabets, the result of Theo-
rem 6.34 decodes almost up to the Johnson bound on list decoding radius of the concerned
AG-code. However, as discussed earlier, AG-codes of growing blocklength can also be de-
fined over a fixed alphabet, say q. When q � n, the quantity (n−

√
n(n− d)), while always

greater than d/2 so that we are still decoding beyond half the designed minimum distance,
is no longer an accurate estimate of the Johnson radius for q-ary codes (which the reader

might recall from Theorem 3.2 of Chapter 3 is n(1− 1
q ) ·

(
1−

√
1− d/n

1−1/q

)
).

However, as was insightfully noted by Koetter and Vardy [KV00], it is possible to im-
prove the number of errors corrected by our result from Theorem 6.34, using the soft
decoding algorithm from Theorem 6.35. This is quite surprising since the result of The-
orem 6.34 is for hard decoding where the channel just outputs one of the q symbols as
the received symbol at each position, and thus (seemingly) provides no soft information
whatsoever. In fact, using the soft decoding algorithm with the right choice of weights, one
can decode up to (exactly) the q-ary Johnson bound on list decoding radius! Thus, as with
Reed-Solomon codes, algebraic-geometric codes can also be efficiently decoded up to their
“a priori combinatorial list decoding potential”, namely the q-ary Johnson radius.

The actual setting of weights which allows for decoding up to the q-ary Johnson radius
is the following: Let δ = d∗/n be the relative designed distance of the AG-code, and let

τ
def=
(

1− 1
q

)(
1−

√
1− qδ

q − 1

)
(6.24)

be the desired fraction of errors to be list decoded (this is just the q-ary Johnson radius
normalized by the blocklength). It is a straightforward calculation to check that such a τ
satisfies

τ2

q − 1
+ (1− τ)2 = 1− δ . (6.25)
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If the i’th received symbol of the received word y is yi ∈ Fq, then we set wi,yi = 1− τ and
wi,γ = τ/(q − 1) for γ ∈ Fq \ {yi}, and then apply Theorem 6.35 to this choice of weights.
Assuming there are e errors, Condition (6.23) of Theorem 6.35 implies that the algorithm
successfully finds all codewords within Hamming distance e from y provided

(n− e) · (1− τ) + e · τ

q − 1
>

√
(n− d∗)n

( τ2

q − 1
+ (1− τ)2

)
. (6.26)

We now prove that for τ defined as in Equation (6.24), the above condition is satisfied as long
as e < τn. (We have ignored the ε slack term needed in Condition (6.23) for convenience,
but this has a negligible effect on the performance, which is explicitly accounted for in the
formal statement below.) Indeed, setting e = γn (for some γ < τ) and using Equation
(6.25), Condition (6.26) above is satisfied as long as

(1− γ)(1− τ) +
γτ

q − 1
> 1− δ

⇐= 1− τ − γ
(

1− qτ

q − 1

)
> 1− δ . (6.27)

Since τ < (1− 1/q) and γ < τ , the left hand side of the above inequality is greater than

1− τ − τ
(

1− qτ

q − 1

)
=

τ2

q − 1
+ (1− τ)2 = 1− δ ,

as desired, where the last step follows from Equation (6.25).
Hence, one can efficiently list decode q-ary AG-codes of relative designed distance δ up

to a fraction τ of errors, for τ as defined in Equation (6.24), or, in other words, up to the
q-ary Johnson bound on list decoding radius. For easy reference, we state the formal result
below.

Theorem 6.36 ([GS99, KV00]) For every ε > 0 and for every q-ary AG-code C of block-
length n and designed relative distance δ, there exists a representation of the code of size
polynomial in n, given which there exists a polynomial time list decoding algorithm for C
that decodes up to

n
(

1− 1
q

)(
1−

√
1− qδ

q − 1
− ε
)

errors.

6.3.9 List decodability offered by the best-known AG-codes

The results of the previous sections imply that for AG-codes, assuming they are suitably
represented, there are efficient list decoding algorithms to decode up to the Johnson radius
(and hence beyond half the designed distance). We now apply these results to the best
known AG-codes (in terms of the asymptotic rate vs. distance trade-off) in order to infer
the existence of very good list decodable codes. We next present a discussion of the various
best known constructions of algebraic-geometric codes.

Let K/Fq be a function field that has at least n + 1 places P0, P1, . . . , Pn of degree
one. Let C be a q-ary algebraic-geometric code CL(G,α, P0) over K of blocklength n and
designed distance d∗ = n − α. Let g = g(K) be the genus of K. By Proposition 6.24,
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the dimension k of C is at least α− g + 1, and distance d is at least the designed distance
d∗ = n− α. Hence the rate R and relative distance δ of C satisfy R+ δ ≥ 1− g/n.

In order to obtain the best trade-off between R and δ for an asymptotically good family
of AG-codes, it is therefore desirable to find a sequence of function fields Ki/Fq, i ≥ 1, such
that each Ki has at least ni + 1 places of degree one where ni →∞ as i→∞, and Ki has
genus gi, with lim supi gi/ni < 1 and as small as possible. Constructions of such a sequence
of function fields is a non-trivial task. In fact the limiting value of ratio gi/ni for a sequence
of function fields Ki/Fq with ni → ∞ cannot be smaller than 1/(

√
q − 1) — this is the so

called Drinfeld-Vlădut bound [DV83] (see also [Sti93, Section V.3]). The amazing fact, which
is a major accomplishment in the theory of algebraic function fields, is that for every q which
is an even power of a prime, there are known constructions of towers of function fields that
meet the Drinfeld-Vlădut bound, i.e., they achieve lim supi gi/ni = 1/(

√
q − 1). The first

such constructions were due to Ihara [Iha81] and Tsfasman, Vlădut and Zink [TVZ82]. The
authors of [TVZ82] combined the construction of such function fields together with Goppa’s
idea of obtaining codes from algebraic curves, to obtain a major breakthrough result in
coding theory. Specifically, they obtained the trade-off R+ δ ≥ 1− 1√

q−1 between the rate
R and relative distance δ for a family of linear codes over Fq when q was a square. This gives
an improvement over the Gilbert-Varshamov bound R ≥ 1 −Hq(δ) (which is the trade-off
achieved by random linear codes) for a certain range of δ for q ≥ 49. The construction
of [TVZ82] was, however, very complicated and their proofs required deep results from
algebraic geometry and the theory of modular curves. The concerned modular curves were
not explicitly specified and it was extremely hard to obtain algorithms of reasonable time
complexity to compute a representation of the concerned AG-code (even though Manin
and Vlădut [MV85] gave an algorithm — of high complexity — showing how to construct
the corresponding codes; see also [KTV84, L9́8] for a discussion of algorithms for code
construction on modular curves, and the work of Elkies [Elk97] for a discussion of explicit
equations for certain modular curves).

In a major step forward in 1995, Garcia and Stichtenoth [GS95b, GS96] (see also the
survey [GS95a]) presented two explicitly described towers of function fields that attain
the Drinfeld-Vlădut bound for every square prime power q. These constructions are a lot
simpler than the constructions due to Ihara or Tsfasman et al [TVZ82]. In a significant
recent development, Shum et al [SAK+01] (see also [Shu00]) present a near-cubic time
algorithm to compute the generator matrix of the codes corresponding to the algebraic
curves from [GS96]. We record the above discussion in the following statement:

Fact 6.1 For every q which is an even power of a prime, there is a polynomial time con-
struction of algebraic-geometric codes whose rate R and relative distance δ satisfy

R+ δ ≥ 1− 1
√
q − 1

.

The above trade-off is often referred to as the “TVZ bound”.

As a corollary we have the following which gives good constructions of codes with frac-
tional list decoding radius (1− ε).

Corollary 6.37 For every ε > 0, there exist a polynomial time constructible family Cε of
AG-codes with rate R(Cε) = Ω(ε2), relative designed distance δ(Cε) ≥ (1 − O(ε2)) over an
alphabet of size q(Cε) = O(1/ε4). Applying the Johnson bound from Theorem 3.2, we have
LDRL(Cε) ≥ 1− ε for L = O(1/ε2).
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By Theorem 6.34, we have a polynomial time algorithm to list decode an AG-code of
relative designed distance δ up to a fractional radius (1−

√
1− δ). Using this result on the

codes from the above corollary, we get the following:

Theorem 6.38 For every ε > 0, there exists a polynomial time constructible family of
AG-codes with the following properties:

(i) It is defined over an alphabet of size O(1/ε4).

(ii) It has rate Ω(ε2) and relative distance at least (1−O(ε2)).

(iii) There exists a representation of each code of the family, of size polynomial in its
blocklength, given which there is a polynomial time decoding algorithm to list decode
the code up to a fraction (1− ε) of errors, using lists of size O(1/ε2).

The above result gives codes of very good list decodability (list decoding radius (1− ε))
and reasonable (namely, Ω(ε2)) rate. The result of Theorem 5.1 implies that the best
possible rate for codes with such list decodability is Θ(ε) (for an alphabet size of 1/εO(1)).
Hence the above result, while providing a non-trivial and interesting trade-off between list
decodability and rate for codes over a large alphabet, is not optimal. Moreover, the decoding
complexity of the codes is quite high due to the corresponding situation for algebraic-
geometric codes. It is also not known (at least so far) if the representation of the code
necessary for decoding can be found in polynomial time (we only know that it is succinct).9

In light of these limitations of the result of Theorem 6.38, in Chapter 9, we will return to
the question of alternate lower complexity constructions of codes that are efficiently list
decodable up to a fraction (1− ε) of errors.

6.4 Concluding Remarks and Open Questions

We have given a polynomial time algorithm to decode up to a fraction (1−
√

1− δ) of errors
for Reed-Solomon codes of relative distance δ. We also generalized the algorithm for the
broader class of algebraic-geometric codes. Our algorithm is able to correct a number of
errors exceeding half the minimum (designed) distance for any rate. We also presented soft
decoding algorithms for these codes. The main results of this chapter are Theorems 6.13,
6.16, and 6.21 for Reed-Solomon decoding, and Theorems 6.34 and 6.35 for list decoding
AG-codes.

The Reed-Solomon list decoding algorithm, in addition to its obvious importance to
coding theory and practice, is also at the core of several complexity-theoretic applications.
The main common theme of these applications is to deduce average-case hardness results
for certain functions based on worst-case hardness assumptions. List decoding provides a
way to “recover” the codeword even when several symbols are in error, and this (roughly)
corresponds, in the complexity theory applications, to being able to compute the function
on every input given, say, a circuit to compute it (or a related function) on a small fraction
of the inputs. More details on these applications can be found in Chapter 12.

The Reed-Solomon decoding algorithm is also used in list decoding algorithms for Reed-
Muller codes, using clever reductions of the multivariate polynomial reconstruction problem
to the univariate polynomial reconstruction problem (cf. [AS97, STV99]).

9Though, judging by the recent progress made by [SAK+01]) on the question of the generator matrices
of such codes, we believe an answer in the affirmative to this question will be found soon.
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Some natural questions left open regarding the material of this chapter are mentioned
below. The first question concerns the true limit on the number of efficiently correctable
errors for Reed-Solomon codes.

Open Question 6.1 Can one efficiently list decode a family of Reed-Solomon codes of rate
r beyond a fraction (1−

√
r) of errors? As a first step, what is the true list decoding radius

(for polynomial-sized lists) for Reed-Solomon codes?

Partial progress on the latter question above for decoding with constant-sized lists ap-
pears in [JH01, RR01]. (As mentioned earlier, these results provide good evidence that the
performance of Theorem 6.6 is tight for decoding with constant-sized lists.) We conjecture
that asymptotically, (1 −

√
r) is the largest fraction of errors that can be decoded with

polynomial-sized lists for Reed-Solomon codes of rate r, for every value of the rate r. If
true, this will make our decoding algorithm for Reed-Solomon codes optimal in terms of the
fraction of errors corrected. A resolution of this conjecture appears rather difficult, though.
The next question concerns the computational complexity of list decoding Reed-Solomon
codes.

Open Question 6.2 Is there a near-linear time (i.e O(n1+o(1)) time) list decoding algo-
rithm for decoding an [n, k + 1, n − k] Reed-Solomon code up to a radius n − (1 + ε)

√
kn

(for ε > 0 a fixed, but arbitrarily small constant)?

Recall that the best runtime known so far is quadratic in the blocklength.

Open Question 6.3 For a family of AG-codes that meet the Drinfeld-Vlădut bound (for
example the codes based on the Garcia-Stichtenoth tower of function fields), can one compute
the non-standard representation necessary for our list decoding algorithm from Section 6.3.5
in polynomial time?

6.5 Bibliographic notes

The first time Reed-Solomon codes appeared as codes was in 1960 in the work of Reed
and Solomon [RS60], though they had already been explicitly constructed by Bush [Bus52]
in 1952, using the language of orthogonal arrays. Though their importance was not im-
mediately realized, Reed-Solomon codes have since received a lot of attention and study.
The Reed-Solomon decoding problem itself has a long history and is one of the central
problems in all of coding theory. The first polynomial time algorithm to decode up to
half the distance was discovered by Peterson [Pet60], even before the notion of polynomial
time was formalized as a metric of feasibility of an algorithm! Owing to the importance
of the problem, several works have investigated more efficient implementations of the algo-
rithm: here we mention the Berlekamp-Massey algorithm [Ber68, Section 7.4], [Mas69] and
the Euclid-based algorithm [Bla83, Chapter 7], [SKHN75]. These are “syndrome computa-
tion” based algorithms, and have quadratic runtimes which can be improved to near-linear
time (specifically, O(n logO(1) n) field operations) using Fast Fourier Transform based meth-
ods (cf. [Jus76]). Other algorithms with quadratic runtimes for decoding Reed-Solomon
codes, and which involve no explicit “syndrome computation”, are the Berlekamp-Welch
algorithm [WB86] and Blahut’s time-domain decoder [Bla83, Chapter 9].

However, these algorithms are all limited by the combinatorial barrier of half the dis-
tance of the code. Despite several years of research, there were no known efficient algorithms
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to correct significantly more errors by resorting to the list decoding approach. The only im-
provements over the algorithm of Peterson [Pet60] (in terms of number of errors corrected)
were decoding algorithms due to Sidelnikov [Sid94] and Dumer [Dum89] which corrected
d
2 + Θ(log n) errors in polynomial time. The first significant breakthrough in terms of er-
rors corrected came when Sudan [Sud97a, Sud97b] gave an algorithm to correct (about)
n −

√
2n(n− d) errors. His algorithm improved over the classical d/2 bound for all rates

less than 1/3, and for low-rates corrected almost twice as many errors than the previous
algorithms. Sudan’s algorithm builds upon ideas from earlier work by Ar, Lipton, Rubin-
feld and Sudan [ALRS99], and an elegant presentation of the Berlekamp-Welch decoding
algorithm due to Gemmell and Sudan [GS92]. (We should mention that it is non-trivial
to ferret out this particular view of the Berlekamp-Welch algorithm from the original pa-
per [WB86].) Despite the very good performance for low rates, for rates larger than 1/3,
Sudan’s algorithm did not give any improvement over the classical algorithms, and even for
lower rates fell short of decoding up to the Johnson bound on list decoding radius.

Following the result of [Sud97a], Roth and Ruckenstein [RR00] investigated efficient
implementations of the algorithm, and obtained a near-quadratic time bound (for decod-
ing with constant-sized lists). Portions of this result were used in Section 6.2.7. Also,
Shokrollahi and Wasserman [SW99] generalized the algorithm to algebraic-geometric codes.
However, the error-correction capabilities of these algorithms were all limited to half the
distance for large rates.

The decoding algorithm discussed in this chapter, which decodes both Reed-Solomon
and algebraic-geometric codes up to the Johnson radius and hence beyond half the distance
for every value of the rate, appears in [GS99]. This result sparked a renewed interest in
decoding Reed-Solomon and AG-codes.

Several works investigated questions about the efficient implementation of the polyno-
mial time algorithm for Reed-Solomon codes from [GS99]. Nielsen and Hφholdt [NH99b]
presented a fast implementation of the interpolation step of the decoding algorithm, which
we referred to in Section 6.2.7, though they did not present an explicit runtime analysis.
Independently, Olshevsky and Shokrollahi [OS99] gave efficient algorithms for the solving
the interpolation step based on a general “displacement method” applied to find non-zero
elements in the kernel of certain structured matrices. Gao and Shokrollahi [GS00] presented
efficient algorithms for the root-finding step. The work of [RR00] and [GS00] both needed
to find roots of univariate polynomials over Fq to solve the second step of the decoding
algorithm. This was avoided by Augot and Pecquet [AP00], who presented an efficient im-
plementation of the second step based on Hensel lifting. Their result gives the only known
strongly polynomial time implementation of the list decoding algorithm, though it applies
only to the earlier algorithm of Sudan [Sud97a], and not the general “multiplicity” based
algorithm discussed in this chapter.

The soft (or weighted) decoding algorithm for Reed-Solomon codes, and its counterpart
for AG-codes, have also sparked a lot of interest. Prior to the result of Theorem 6.21, the
only general, provable soft decoding algorithms for Reed-Solomon codes appear to be the
Generalized Minimum Distance (GMD) decoding algorithm due to Forney [For66a], which
gave a (unique) soft decoding algorithm that worked under a fairly general condition, and
the improvement by Berlekamp [Ber96] who gave a very efficient soft-decision decoding algo-
rithm that expanded the error-correction radius by 1 (compared to GMD decoding). Koetter
and Vardy [KV00] investigate the best setting of weights for use in the soft list decoding
algorithm when decoding under fairly general probabilistic channels. The soft decoding
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algorithms are also exploited in decoding concatenated codes [GS00, Nie00, GHSZ00], and
this will be discussed in detail in Chapter 8.

The unique decoding problem for AG-codes has been considered by several authors for
over a decade. Some of the notable works are [JLJ+89, SV90, Pel89, JLJH92, FR93], and
these gave decoding algorithms to unambiguously decode an AG-code of designed distance
d∗ up to b(d∗ − 1− r)/2c errors where r is some integer between 0 and the genus g. The
last of these works could in fact efficiently decode up to half the designed distance, i.e., up
to b(d∗ − 1)/2c errors. The first list decoding algorithm for AG-codes, that could decode
well beyond half the designed distance at least for low rates, appeared in the work of
Shokrollahi and Wasserman [SW99]. They generalized Sudan’s list decoding algorithm
for Reed-Solomon codes [Sud97a, Sud97b] to AG-codes. Their algorithm was improved in
[GS99], and the resulting algorithm, which was discussed in this chapter, can decode beyond
half the designed distance for every value of the rate.

The algorithm presented in [GS99] for AG-codes actually only gave a polynomial time
reduction of the list decoding problem to certain algorithmic tasks over the underlying
function field, including the task of finding roots of univariate polynomials over the function
field. It was, however, not clear how to implement the corresponding steps efficiently for
every function field.

Accordingly, the complexity of these steps has been studied by several authors, including
Gao and Shokrollahi [GS00], Hφholdt and Nielsen [NH99a], Wu and Siegel [WS00], and
Augot and Pecquet [AP00]. However, none of the results provide a general polynomial time
algorithm for all function fields. This is due to the following two reasons: (a) Either these
algorithms work only for specific function fields; for example the algorithms in [NH99a]
work for function fields of Hermitian curves, and those in [GS00] work for function fields of
nonsingular plane algebraic curves, or (b) as in [AP00, WS00], the algorithms reduce the
concerned questions to certain “more basic” algorithmic tasks on function fields, and it is
not clear how to perform even these “basic” tasks efficiently for every function field.

The approach taken in this chapter was to build upon some of the above-mentioned
works to show that there is a polynomial amount of precomputed information, given which
we can have a completely general solution to the list decoding problem for AG-codes. This
approach was taken in the paper [GS01b]. Independently of our work, Matsumoto [Mat99]
also gave a completely general implementation of the list decoding algorithm for AG-codes
discussed in Section 6.3.3, and his algorithms also require only a polynomial amount of
precomputed information as advice.

Much of the technical content discussed in this chapter appears in the papers [GS99,
GS01b], though our presentation here is a lot more integrated and elaborate in nature.
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Chapter 7

A Unified Framework for List
Decoding of Algebraic Codes

Be wise! Generalize!

Piccayune [sic] Sentinel

7.1 Introduction

In the previous chapter we presented list decoding algorithms for two widely-studied families
of algebraic codes: Reed-Solomon codes and AG-codes. Owing to the importance of these
codes, these results can be viewed as providing strong evidence to the general utility of list
decoding as an algorithmic notion. Indeed, as we shall see in future chapters, they set the
stage for a whole body of results about list decoding.

The reader might have already noticed a great deal of similarity between the general
structure of the decoding algorithms for Reed-Solomon codes and AG-codes. Since Reed-
Solomon codes are a special instance of AG-codes, the decoding algorithm for AG-codes is
just a generalization of the Reed-Solomon decoding algorithm, and this should explain the
great deal of similarity between the algorithms. In this chapter, we will present a further
generalization of the decoding algorithm by presenting a unified algorithm for soft decoding a
general family of algebraic codes (which we call ideal-based codes). The decoding algorithms
for Reed-Solomon and AG-codes are then just special cases of this general paradigm. Such
a unified framework for list decoding is important for two reasons. Firstly, such unifications
are elegant and highlight the essence of the idea without any vagaries that might result from
a specific situation. Secondly, it reduces the list decoding problem for specific instantiations
of ideal-based codes, including the Reed-Solomon and AG-codes we studied in the previous
chapter, to the efficient implementation of certain core algorithmic steps when applied to
the specific context in question. To illustrate this point, after developing the general list
decoding algorithm, we will apply it to a “new” situation, namely to list decoding Chinese
Remainder codes (henceforth, CRT codes).

Recall that CRT codes, also called Redundant Residue codes, are the number-theoretic
analogue of Reed-Solomon codes. They are defined by picking n relatively prime integers
p1 < p2 < · · · < pn. The messages m of the code are integers in the range 0 ≤ m <

∏k
i=1 pi

for some k, 1 ≤ k < n. A message m is encoded by its residues modulo all the pi’s,
i.e., m 7→ 〈m mod p1,m mod p2, . . . ,m mod pn〉. By the Chinese Remainder theorem, the
message m is uniquely specified by any k of its residues modulo p1, p2, . . . , pn, and hence
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the above forms a redundant encoding of the message m. Indeed, this argument shows
that two codewords (corresponding to encodings of m1,m2 with m1 6= m2) differ in at least
(n− k + 1) positions. Hence, the distance of the code can be shown to equal (n− k + 1).

There has been a lot of interest in decoding CRT codes [Man76, Man78, GRS00, Bon00],
but all these works fall short of list decoding CRT codes up to the Johnson radius, and in
fact even fall short of decoding to half the minimum distance in general.1

Our general weighted list decoding algorithm for ideal-based codes, when applied to the
case of CRT codes with a specific choice of weights (the exact choice ends up being a non-
trivial guess), almost immediately gives an improvement to the prior results and decodes
up to close to the Johnson bound. In fact, by choosing the parameters in the algorithm
appropriately, the algorithm can decode up to the corresponding “weighted” Johnson bound
(see Theorem 7.9) for every choice of weights. We also give a more efficient algorithm based
on the Generalized Minimum Distance (GMD) decoding, to decode CRT codes up to half
the minimum distance. GMD decoding was first discovered by Forney [For66b], who applied
it to the soft decoding of Reed-Solomon codes.

We should mention here that by the very nature of the topic, the contents of this chapter
are somewhat heavy on algebra. The results of this chapter put the algorithms from the
previous chapter in a unified context and thus elucidate them better, but they are not
necessary to the understanding of the results in the following chapters.

7.1.1 Overview

We begin in the next section by discussing the necessary preliminaries and terminology from
commutative algebra concerning rings and ideals. These will be necessary for the definition
of ideal-based codes and in the development of the list decoding algorithm for ideal-based
codes. In Section 7.3 we give a formal definition of ideal-based codes and explain how
Reed-Solomon codes, AG-codes and CRT codes can all be obtained as specific examples of
ideal-based codes. In Section 7.4 we enlist some basic assumptions about the underlying
rings and ideals, and prove the basic distance property of ideal-based codes. We add some
further assumptions and develop a general weighted (soft) list decoding algorithm for ideal-
based codes in Section 7.5. We then apply the results to the specific context of CRT codes
in Section 7.6 and obtain a polynomial time soft decoding algorithm for CRT codes. We
then apply it to specific interesting choices of weights to deduce results for CRT codes that
decode up to the Johnson bound. Finally, in Section 7.7, we discuss the GMD decoding
algorithm to decode CRT codes up to half the minimum distance.

7.2 Preliminaries

We quickly recall the basic algebraic definitions necessary for this chapter. If necessary,
the reader can find further details and examples in any of the standard algebra texts (eg.
[Art91]).

Rings: A ring is an algebraic structure (R,+, ·) consisting of a set R together with two
binary operations (+, ·), normally called addition and multiplication respectively, which
satisfy the following axioms:

1This limitation is for the Hamming metric of measuring distance between the received word and the
codewords. Indeed, the result of [GRS00] provides a list decoding algorithm to decode up to the Johnson
bound for a certain “natural” weighting of codeword positions of the CRT code.
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• R is an abelian group under the operation +, with identity denoted by 0. This abelian
group is denoted by R+.

• R is closed under the operation ·, and ∀ x, y, z ∈ R we have

– x · y = y · x (Commutativity)

– x · (y · z) = (x · y) · z (Associativity)

– x · (y + z) = x · y + x · z (Distributive property of · over +)

• There exists an identity element for multiplication, denoted by 1, which satisfies 1·x =
x · 1 = x for every x ∈ R.

The terminology relating to rings is not completely standardized. In some texts, rings are
defined without the requirement of the commutativity of multiplication and/or the existence
of the multiplicative identity 1. In their terminology, the above definition will correspond
to a subclass of rings called commutative rings with identity. We will work exclusively with
commutative rings with identity, and hence we included these axioms in our definition of
rings.

A ring is said to be an integral domain if a · b = 0 implies that either a = 0 or b = 0 or
both. All rings we deal with will be integral domains.

A field is a ring together with the additional property that for every non-zero element
x ∈ R, there exists a unique inverse x−1 ∈ R such that x ·x−1 = x−1 ·x = 1. In other words,
a field is a ring whose non-zero elements form an abelian group under the multiplication
operation.

Ideals:

An ideal I of a ring R is, by definition, a subset of R with the following properties:

(i) I is a subgroup of R+.

(ii) If a ∈ I and r ∈ R, then r · a ∈ I.

In any ring, the set of multiples of a particular element a forms an ideal called the principal
ideal generated by a, and is denoted (a). The set consisting of 0 alone is always an ideal called
the zero ideal, and is denoted (0). Likewise, the whole ring R is also an ideal (generated by
the element 1), called the unit ideal, and is denoted (1).

One can define sum, product and intersection operations on ideals as follows. The
intersection of ideals I, J is simply their intersection as subsets of R. The sum of I, J is
defined as I+J = {a+b : a ∈ I and b ∈ J}. The product of I and J , denoted I ·J (or, IJ),
is defined to be all finite linear combinations of the form a1b1 + a2b2 + . . . + ambm where
each ai ∈ I and each bi ∈ J . In other words, IJ is the smallest ideal which contains all
elements of the form ab where a ∈ I and b ∈ J . It is easily checked that if I, J are ideals of
R, then so are I ∩ J , I + J and IJ . Note that for every pair of ideals I and J , IJ ⊆ I ∩ J .
For an ideal I, the power ideal In, for n ≥ 1, is defined in the obvious way as: In = I if
n = 1, and In = I · In−1 if n > 1.

Quotient rings: Let I be an ideal of a ring R. Consider the relation on R defined by a ∼ b
if a− b ∈ I. It is easily checked that ∼ is an equivalence relation, and therefore it partitions
R into equivalence classes. These equivalence classes are called the cosets of the ideal I.
For a ∈ R, we denote by a/I the coset to which a belongs. The set of cosets of I themselves
form a ring, denoted R/I , by inheriting the addition and multiplication operations from R.

139



Specifically, one defines (+, ·) for R/I by: a/I + b/I
def= (a+ b)/I and a/I · b/I def= (a · b)/I.

It is easy to check that these operations are well-defined and that R/I forms a ring under
these operations. The ideals of R/I are in one-one correspondence with the ideals of R that
contain I.

As an example, if R = Z and I = (n) is the ideal generated by n, then R/I = Z/(n) is
the ring of integers modulo n.

Prime and Maximal Ideals:

An ideal I of a ring R is a prime ideal if a · b ∈ I implies that at least one of a, b belongs
to I. This is equivalent to the condition that the quotient ring R/I is an integral domain.
The terminology “prime ideal” comes from the fact that if R is the ring of integers Z and
I = (m) is the ideal generated by an integer m, then I is a prime ideal if and only if m is a
prime number.

An ideal I is a maximal ideal if I 6= R and I 6⊆ J for any ideal J 6= I,R. An equivalent
definition is that I is maximal iff the quotient ring R/I is a field.

Two ideals I, J of R are said to be coprime if I + J = R (i.e., if 1 ∈ I + J). The
terminology comes from the fact that if the ring R = Z and I = (m) and J = (n) for
integers m,n, then I, J are coprime ideals if and only if m,n are coprime integers. For
coprime ideals I, J , we have IJ = I ∩ J .2

7.3 Ideal-based codes

We now describe the basic principle that underlies the construction of several families of
algebraic error-correcting codes, including Reed-Solomon codes, Algebraic-geometric codes,
Chinese Remainder codes (and also Number field codes [Len86, Gur01c], though we do not
discuss them in this thesis).

An algebraic error-correcting code is defined based on an underlying ring R (assume
it is an integral domain), whose elements r come equipped with an appropriate notion of
“size”, denoted size(r). For example, for Reed-Solomon codes, the ring is the polynomial
ring F[X] over a (large enough) finite field F, and the “size” of f ∈ F[X] is related to its
degree as a polynomial in X. Similarly, for the CRT code, the ring is Z, and the “size” is
the usual absolute value.

The messages of the code are the elements of the ring R whose size is at most a parameter
B (this parameter governs the rate of the code). The encoding of a message m ∈ R is given
by

m 7→ Enc(m) = 〈m/I1,m/I2, · · · ,m/In〉 ,

where Ij , 1 ≤ j ≤ n are n pairwise coprime ideals of R (we will assume that each of the
quotient rings R/Ij is finite). Here m/Ij denotes the residue of m modulo the ideal Ij , and
will belong to a finite alphabet whose size equals |R/Ij |. The formal definition follows:

Definition 7.1 Let R be an integral domain; let I1, I2, . . . , In be n pairwise coprime ideals
in R such that each R/Ij is finite, and let B be an arbitrary positive real. Further assume
that there is a non-negative function size : R → R

+ that associates a non-negative size
2The easy proof of this fact goes as follows. Since IJ ⊆ I ∩ J , we only have to prove that if f ∈ I ∩ J

and I + J = R, then f ∈ IJ . Let a ∈ I and b ∈ J be such that a+ b = 1. Now, f = f · (a+ b) = f · a+ f · b.
Now, clearly both f · a and f · b belong to IJ . Hence f ∈ IJ , as desired.
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with each element of the ring R. Then, the “ideal-based” code C[R; I1, I2, . . . , In; size, B] is
defined to be the set of codewords

{〈m/I1,m/I2, . . . ,m/In〉 : m ∈ R ∧ size(m) ≤ B} (7.1)

7.3.1 Examples of ideal-based codes

Chinese Remainder codes (CRT codes): Taking R = Z; Ij = (pj), the principal ideal
generated by the n mutually coprime integers p1, p2, . . . , pn; and size(m) = |m|, the absolute
value of m, we get the definition of CRT codes from the above definition.

Reed-Solomon codes: We get the Reed-Solomon code from the above definition by taking
R = Fq[X] where Fq is a finite field with at least n elements (i.e. q ≥ n), and Ij = (X −αj)
— the ideal generated by the polynomial (X − αj) — for 1 ≤ j ≤ n, where α1, . . . , αn are
distinct elements of Fq. The notion of size is defined by size(p) = qdeg(p). In other words,
the messages are polynomials in Fq[X] of degree at most k, for some parameter k.

Algebraic-geometric codes: We now describe how the AG-codes from the previous chap-
ter can also be obtained as a special case of ideal-based codes. Let K/Fq be a function field
and P0 be any fixed place of K/Fq. For i ≥ 0, let L(iP0) be the set of functions in K which
have no poles outside P0 and have at most i poles at P0. To specify an AG-code in the
above ideal-theoretic language, we take the ring R =

⋃
i≥0 L(iP0), and the ideal Ij to be a

place Pj such that P1, P2, . . . , Pn and P0 are all distinct places. (Recall from the previous
chapter that a place P is by definition the unique maximal ideal of the ring OP of regular
functions at P , and since clearly OP ⊆ R if P 6= P0, such a place can also be viewed as an
ideal of R.) The notion of size we use is related to the pole order at the place P0; specifically
we set size(x) = q−vP0

(x). Hence the set {x ∈ R : size(x) ≤ qα} equals L(αP0), as with the
usual definition of AG-codes.

7.4 Properties of Ideal-based codes

We now develop a set of axioms/assumptions about the ringR which will allow us to quantify
the distance properties of the ideal-based code defined in Equation (7.1) above. We will
later add a few further assumptions which will allow us to specify a unified list decoding
algorithm for ideal-based codes and perform a quantitative analysis of its error-correction
capabilities.

7.4.1 Axioms and assumptions

Let R be an integral domain (a commutative ring where a · b = 0 implies either a = 0 or
b = 0). We assume the following properties for the ring R:

1. [Size of Elements]: There exists a function size : R→ R such that for all x, y ∈ R:

(S1) size(x) ≥ 0, and size(x) = 0⇔ x = 0, and size(1) = size(−1) = 1.

(S2) There exists an integer 1 ≤ a ≤ 2 such that size(x+y) ≤ a ·max{size(x), size(y)};
in other words, size satisfies a certain kind of “triangle” inequality.3

3We point out that it is a well-known fact that if the stated inequality holds for some a ≤ 2, then the
“regular” archimedean triangle inequality size(x+y) ≤ size(x)+size(y) also holds. Hence the name “triangle
inequality” for this property.
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(S3) size(xy) ≤ size(x)size(y)

2. [Size of Ideals]: There exists a function ∆ that maps each non-zero ideal I of R to a
positive real number ∆(I) such that

(I1) If x is a non-zero element of an ideal I, then ∆(I) ≤ size(x).

(I2) For every pair of coprime ideals I, J , ∆(IJ) ≥ ∆(I)∆(J).

The above axioms suffice to define a code and state the distance property that the code
will satisfy.

7.4.2 Distance property of ideal-based codes

Lemma 7.1 Assume that the assumptions (S1-S3) and (I1, I2) hold. Consider the code
C[R; I1, . . . , In; size, B] where the ring R satisfies the above assumptions (S1-S3) and (I1,
I2). Assume further that the ideals Ij are ordered so that ∆(I1) ≤ ∆(I2) ≤ · · · ≤ ∆(In).
Then the minimum (Hamming) distance of this code is at least (n − t + 1) where t is the
smallest integer satisfying:

t∏
i=1

∆(Ii) > a ·B .

Proof: Let two distinct codewords in C corresponding to messages x, y agree on s residues,
and let t be as in the statement of the lemma. We will show that s < t. Since size(x) ≤ B
and size(y) ≤ B, we have size(x − y) ≤ a · B by axiom (S2). On the other hand, (x − y)
belongs to at least s ideals, and since the Ij ’s are pairwise coprime, (x− y) belongs to the
product of at least s ideals, say that of Ij1 , . . . , Ijs . Then, using axioms (I1) and (I2), we
have

size(x− y) ≥ ∆(
s∏
i=1

Iji) ≥
s∏
i=1

∆(Iji) ≥
s∏
i=1

∆(Ii) .

Together with size(x− y) ≤ aB, this implies that

s∏
i=1

∆(Ii) ≤ aB <
t∏
i=1

∆(Ii) ,

which shows that s < t and completes the proof. 2

To quantify the rate of these codes, we need a lower bound on the number of elements
of R that have size at most B. We will later add axioms that guarantee this and further
properties about the size of ideals that we will need to argue about the performance of our
list decoding algorithm. We now turn to the specification of our list decoding algorithm.

7.5 List decoding ideal-based codes

We directly tackle the general “weighted” list decoding problem which is described below.
We use the notation from the previous section and focus on list decoding an ideal-based
code C[R; I1. . . . , In; size, B] with message space M = {x ∈ R : size(x) ≤ B}.
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Input: A vector r = 〈r1, . . . , rn〉 where ri ∈ R/Ii for 1 ≤ i ≤ n, non-negative real weights
w1, w2, . . . , wn, and agreement parameter W .

Required Output: A list of all m ∈ M such that
∑n

i=1wiai > W where ai is defined to be
equal to 1 if m/Ii = ri and 0 otherwise.

To describe our list decoding algorithm, we assume the weights are some appropriate integers
z1, z2, . . . , zn. Our algorithm will then output all codewords that satisfy a certain weighted
condition in terms of the zi’s. The description of how to pick the zi’s to get useful results
for specific input weights w1, w2, . . . , wn will be described later when we apply the general
algorithm to the case of the CRT code.

7.5.1 High level structure of the decoding algorithm

Before formally describing the algorithm, we first give some intuition on how it is designed
based on the earlier Reed-Solomon decoding algorithm. Recall that our goal is to efficiently
find a list of all m ∈ R with size(m) ≤ B such that C(m) and the received word r have
sufficient weighted agreement.

Following the Reed-Solomon and AG-codes case, the basic idea will be to “interpolate”
a polynomial c ∈ R[y] (based on the received word r) with the property that every m for
which C(m) has sufficient weighted agreement with the received word must be a root of the
polynomial c(y) (this polynomial c was called Q in the algorithms of the previous chapter).
Then, by finding the roots of c(y) and pruning out the spurious roots, we can recover all
the codewords with sufficient weighted agreement with r.

We are able to construct such a polynomial c by pursuing two objectives, which are in
turn adaptations of the objectives from the case of decoding Reed-Solomon and AG-codes:

1. To ensure that the polynomial c has the property that for any m ∈ R that satisfies
m/Ii = ri, we have c(m) ∈ Mi, for some suitable sequence of coprime ideals Mi,
i = 1, 2, . . . , n. This in turn implies that for any m ∈ R we have c(m) ∈

∏
iM

ai
i ,

where ai = 1 if m/Ii = ri, and ai = 0 otherwise.

2. To ensure that the coefficients cj of c(y) =
∑`

j=0 cjy
j are small, i.e., each size(cj)

is sufficiently small. The aim of this step is to ensure that size(c(m)) is small, say
size(c(m)) < F , for every m with size(m) ≤ B.

By combining Objectives 1 and 2, we see that for any m ∈ R with size(m) ≤ B, c(m)
on the one hand has size less than F , and on the other hand belongs to

∏
iM

ai
i . Hence if,

c(m) 6= 0, we must have
F > size(c(m)) ≥ |R/Mi|ai , (7.2)

where the second step uses axioms (I1), (I5). Therefore, if the boolean “agreement” vector
a = 〈a1, a2, . . . , an〉 between C(m) and r satisfies the weighted condition∑

i

ai log |R/Mi| > logF ,

then Condition (7.2) cannot hold, and hence we must have c(m) = 0. Naturally, the
performance of the algorithm depends on the choices of the ideals Mi and the parameter
F . Our algorithm will pick Mi = Izii (where zi’s are the input integer weights), and F to
be a sufficiently large integer for which a polynomial c ∈ R[y] meeting Objectives 1 and 2
exists. Precise details follow in the next section.
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(Weighted) List-decoding algorithm:

Input: A vector r = 〈r1, . . . , rn〉 where ri ∈ R/Ii for 1 ≤ i ≤ n, non-negative integers
z1, z2, . . . , zn and parameter Z.

Required Output: A list of all m ∈ M such that
∑n

i=1 ziai > Z (where ai is defined to
be equal to 1 if m/Ii = ri and 0 otherwise).

1. Pick parameters `, F appropriately.

2. Find a non-zero polynomial c ∈
∏n
i=1 J

zi
i of degree at most ` with the property

that size(c(m)) ≤ F for every m ∈ R with size(m) ≤ B.

3. Find all roots of c that lie in R and report those roots ζ such that size(ζ) ≤ B
and the condition

∑n
i=1 ziai > Z is satisfied (where ai is defined to be equal to 1

if ζ/Ii = ri and 0 otherwise).

Figure 7-1: A general list decoding algorithm for ideal-based codes

7.5.2 Formal description of the decoding algorithm

Before describing the algorithm we need some auxiliary definitions and notation.

• Let R[y] be the ring of polynomials in y with coefficients from R.

• For 1 ≤ i ≤ n, let Ji be the ideal in R[y] defined as {a(y)(y − ri) + b(y) · p|a, b ∈
R[y] and p ∈ Ii}. It is readily checked that Ji is an ideal in R[y] and further that if
m ∈ R satisfies m/Ii = ri, then c(m) ∈ Ii for every c ∈ Ji.

The algorithm is formally described in Figure 7-1. We stress that we do not know efficient
implementations of all the steps in the algorithm for a general ideal-based code, but for
specific codes like Reed-Solomon codes and AG-codes these do have efficient implementa-
tions. We will later show how with a moderate “slack” they can also be implemented in
polynomial time for CRT codes.

7.5.3 Further assumptions on the underlying ring and ideals

In order to analyze the error-correction capability of the algorithm above, we add some
further axiomatic assumptions. The following assumptions need to apply only to the ideals
I1, . . . , In specified in the construction of the code.

(I3) For each i, we have ∆(Iki ) ≥ ∆(Ii)k for all positive integers k.

(I4) For each i, we have that |R/Iki | ≤ |R/Ii|k for all positive integers k.

(I5) For each i, we have that ∆(Ii) ≥ |R/Ii|.

We also add the following assumption on the number of elements in R with bounded
size. This is not only critical in order to quantify the rate of the code, but is also used in
the analysis of the list decoding algorithm.
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(S4) There exists a positive constant α depending only on the ring R such that for all
positive integers F , the number of elements x of R with size(x) < F is at least αF .

Note that for the CRT code (R = Z), we have α ' 2, while for Reed-Solomon and
AG-codes we have α = 1.

7.5.4 Analysis of the list decoding algorithm

We now specify the parameter choices in the above algorithm for it to output all the “rele-
vant” codewords, and determine the exact condition (specifically the value of the agreement
parameter Z) for which the algorithm will succeed in finding all codewords that satisfy∑

i aizi > Z.

The following sequence of lemmas will be used in the analysis.

Lemma 7.2 If c ∈ Jzii , then for every m ∈ R with m/Ii = ri, we have c(m) ∈ Izii .

Proof: Every c ∈ Jzii is the sum of a finite number of terms each of the form

zi∏
s=1

(as(y)(y − ri) + bs(y)ps) ,

where as, bs ∈ R[y] and ps ∈ Ii for 1 ≤ s ≤ zi. Substituting y = m where m/Ii = ri, we
have each of the s terms in the product belongs to Ii, and hence the entire term belongs to
Izii . Since this is true for each term of c(m), it follows that c(m) itself is in Izii , as desired.
2

Lemma 7.3 For each i, 1 ≤ i ≤ n, |R[y]/Jzii | ≤ |R/Ii|(
zi+1

2 ).

Proof: We need to estimate the number of different residues that polynomials in R[y] can
have modulo Jzii . Let c ∈ R[y] be any polynomial. Expand c(y) in terms of sums of powers
of (y − ri) (i.e., use the change of variable y′ = y − ri, and write down c(y′ + ri)). Since
(y− ri)m ∈ Jzii for m ≥ zi, to compute the residue of c modulo Jzii , we can ignore all terms
of degree at least zi. Thus we can assume that

c/Jzii =
zi−1∑
s=0

αs(y − ri)s , (7.3)

for suitable coefficients αs. Now since αs(y− ri)s ∈ Jzii if αs ∈ Izi−si , it follows that we may
assume that αs is reduced modulo Izi−si in the above, or in other words that αs ∈ R/Izi−si .
Hence the number of possibilities for αs is at most |R/Izi−si | ≤ |R/Ii|zi−s using assumption
(I4). Combining with Equation (7.3), we obtain that the total number of possible residues
modulo Jzii , in other words |R[y]/Jzii |, is at most

zi−1∏
s=0

|R/Ii|zi−s = |R/Ii|(
zi+1

2 ) ,

as claimed. 2
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Corollary 7.4 We have

|R[y]/
n∏
i=1

Jzii | ≤
n∏
i=1

|R/Ii|(
zi+1

2 ) .

Proof: First of all, note that since the Ii’s are all coprime (i.e., Ii + Ij = R for i 6= j), we
also have the Ji’s to be pairwise coprime. This in turn implies that the ideals Jzii are all
pairwise coprime. Therefore,

|R[y]/
n∏
i=1

Jzii | =
n∏
i=1

|R[y]/Jzii | ≤
n∏
i=1

|R/Ii|(
zi+1

2 )

where the second step follows from Lemma 7.3. 2

Before stating the next lemma, we need the following notation. Let bk be the least integer
such that for all x1, x2, . . . xk ∈ R, we have size(x1+x2+· · ·+xk) ≤ bk max{size(x1), . . . , size(xk)}.
We clearly have b1 = 1, b2 ≤ a (recall that a was the parameter used in the “triangle” in-
equality (S2)). Of course if a = 1, then each bk = 1, and one can show that as long as
a ≤ 2, bk ≤ k. (This follows because it is a standard exercise to show that a ≤ 2 implies
size satisfies the “familiar” triangle inequality size(x+ y) ≤ size(x) + size(y), from which of
course bk ≤ k follows easily.) Thus, for Reed-Solomon and algebraic-geometric codes, we
have bk = 1 for all k ≥ 1, while for CRT codes we have bk = k for all k ≥ 1.

Lemma 7.5 For positive integers B,F ′, the number of polynomials c ∈ R[y] of degree at
most ` with the property that size(c(m)) < F ′ whenever size(m) ≤ B is at least(

αF ′

b`+1B`/2

)`+1

.

Proof: Consider polynomial c(y) = c0+c1y+. . .+c`y` where each cj ∈ R for 0 ≤ j ≤ `. We
will pick coefficients so that for any m with size(m) ≤ B, we will have size(cjmj) < F ′/b`+1.
Note that this will imply that size(c(m)) < F ′ whenever size(m) ≤ B. This requirement on
cj will be satisfied if size(cj) < F ′ ·B−j/b`+1 (here we are using (S3)). Also, by assumption
(S4) there at least αF ′

Bjb`+1
such choices for cj . Hence the total number of polynomials c ∈ R[y]

with the required property is at least(
αF ′

b`+1

)`+1

·
∏̀
j=0

B−j =
(

αF ′

b`+1B`/2

)`+1

,

as claimed. 2

We are now ready to prove that for suitable choices of `, F a non-zero polynomial with
the desired properties as in Step 2 of the list decoding algorithm exists in

∏n
i=1 J

zi
i .

Lemma 7.6 Let `, B, F be positive integers which satisfy the following condition:

F ≥ B`/2 ·
(a · b`+1

α

)( n∏
i=1

|R/Ii|(
zi+1

2 )
)1/(`+1)

. (7.4)

Then there exists a non-zero c ∈
∏n
i=1 J

zi
i which satisfies the property that size(c(m)) < F

for every m ∈ R with size(m) ≤ B.
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Proof: The proof follows from Corollary 7.4, Lemma 7.5, and the pigeonhole principle.
Specifically, if Condition (7.4) is satisfied, then we have(

α · F/a
b`+1B`/2

)`+1

>
n∏
i=1

|R/Ii|(
zi+1

2 ) ,

and thus the number of degree ` polynomials c ∈ R[y] with size(c(m)) < F/a whenever
size(m) ≤ B is greater than the total number of residues of polynomials modulo

∏n
i=1 J

zi
i .

Hence, by the pigeonhole principle there must exist two distinct polynomials c1, c2 ∈ R[y] of
degree at most ` such that (c1− c2) ∈

∏n
i=1 J

zi
i . Since size(c1(m)) < F/a and size(c2(m)) <

F/a for every m with size(m) ≤ B, we have by assumption (S2) that size((c1− c2)(m)) < F

for each such m. Thus the claim of the lemma is satisfied with c
def= (c1 − c2). 2

Lemma 7.7 Let c ∈
∏zi
i=1 J

zi
i be such that size(c(x)) < F for every x ∈ R with size(x) ≤ B.

Then, any m ∈ R that satisfies size(m) ≤ B and∏
i:m/Ii=ri

|R/Ii|zi ≥ F (7.5)

must be a root of c, i.e., must satisfy c(m) = 0.

Proof: Let m be any such element of R. Since size(m) ≤ B, by the property of c, we have

size(c(m)) < F . (7.6)

Since c ∈ Jzii for each i, 1 ≤ i ≤ n, by Lemma 7.2, we have c(m) ∈ Izii for each i such that
m/Ii = ri. Hence

c(m) ∈
∏

i:m/Ii=ri

Izii .

Now, using assumptions (I1), (I2), (I3) and (I5), we have that if c(m) 6= 0, then

size(c(m)) ≥
∏

i:m/Ii=ri

∆(Izii ) ≥
∏

i:m/Ii=ri

∆(Ii)zi ≥
∏

i:m/Ii=ri

|R/Ii|zi . (7.7)

From (7.7) and (7.6) it follows that if Condition (7.5) is satisfied, we have a contradiction
and therefore must have c(m) = 0, as desired. 2

7.5.5 Performance of the list decoding algorithm

We are now ready to state and prove the main result of this section on the performance of
our list decoding algorithm from Section 7.5.1.

Theorem 7.8 For every set of non-negative integers z1, z2, . . . , zn, for a suitable choice of
parameters `, F , the list decoding algorithm on receiving as input a word r = 〈r1, . . . , rn〉
with ri ∈ R/Ii, can find a list of size at most ` which includes all messages m ∈ R with
size(m) ≤ B that satisfy

n∑
i=1

aizi log qi >
1

`+ 1

n∑
i=1

(
zi + 1

2

)
log qi + log(a/α) +

`

2
logB + log b`+1 . (7.8)

where we use the shorthand qi = |R/Ii|, and ai is an indicator variable defined to be 1 if
m/Ii = ri and 0 otherwise.

147



Proof: The proof follows easily from the statements of Lemma 7.6 and Lemma 7.7. Indeed,
one can choose

F =

⌈
B`/2 ·

(a · b`+1

α

)( n∏
i=1

|R/Ii|(
zi+1

2 )
)1/(`+1)

⌉
, (7.9)

and for this choice of F , the algorithm can find a non-zero c ∈
∏n
i=1 J

zi
i with size(c(m)) < F

whenever size(m) ≤ B (since by Lemma 7.6 such a c exists). By Lemma 7.7, the algorithm
will output a list of all m ∈ R with size(m) ≤ B such that

n∏
i=1

qaizii ≥ F .

Note that the number of solutions the algorithm outputs is at most `, since it only outputs a
subset of the roots of a degree ` polynomial over the integers. Also, since both the terms on
the right and left hand sides of the above condition are integers, taking logarithms we note
that the above condition is implied by the decoding Condition (7.8) stated in the theorem.
2

Remark: There is a natural notion of an “approximate solution” for Step 2 in the list
decoding algorithm. We know that for F defined as in Equation (7.9), there exists a non-
zero polynomial c ∈

∏n
i=1 J

zi
i that satisfies size(c(m)) < F whenever size(m) ≤ B. It is

conceivable that, in certain contexts, finding such a c for this “optimum” choice of F might
be difficult to accomplish efficiently. In such a case, suppose the algorithm only manages
to find a non-zero polynomial c ∈

∏n
i=1 J

zi
i with a factor β slack in the size guarantee,

namely a polynomial c such that size(c(m)) < F ′ for every m with size(m) ≤ B, where
F ′ = βF . Then, it is easy to check that such an algorithm can decode under a condition
similar to (7.8) with an additional log β term on the right hand side. We will make use
of this fact when considering an efficient implementation of the decoding algorithm for the
specific context of decoding CRT codes in Section 7.6.2.

7.5.6 Obtaining algorithms for Reed-Solomon and AG-codes

We now briefly indicate how the Reed-Solomon and AG-code list decoding algorithms from
the previous chapter can be obtained from Theorem 7.8 above. Note that the list decoding
algorithm of Figure 7-1 is really only a general algorithmic schema, and one needs to imple-
ment each of its steps efficiently in order to apply it and get polynomial time list decoding
algorithms for specific families of ideal-based codes. Hence, our aim below is only to show
that this algorithm gives (more or less) the same parameters as the specific polynomial time
algorithms discussed in the previous chapter.

For Reed-Solomon codes over a field Fq, each qi = q, α = 1, and a = 1 in assumption
(S2) (and hence b`+1 = 1 as well). If the code is defined by evaluations of polynomials of
degree at most k, then since size(p) = qdeg(p), we have B = qk. Substituting these we get
the algorithm finds all codewords that have “z-weighted” agreement with r more than

1
`+ 1

n∑
i=1

(
zi + 1

2

)
+
`

2
k

which for large `, is approximately
√
k
∑

i zi(zi + 1) which approaches the performance of
the soft decoding algorithm for Reed-Solomon codes from Section 6.2.10 (by taking the zi’s
to be large multiples of the weights wi).
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For AG-codes over Fq, once again each qi = q, a = 1 and b`+1 = 1. If the underlying
function field has genus g, then α = q−g. Also, B = qα

∗
if the message space of the AG-

code is L(α∗P0). Hence Theorem 7.8 implies that one can find all codewords that have
“z-weighted” agreement with r more than

1
`+ 1

n∑
i=1

(
zi + 1

2

)
+
`

2
α∗ + g

which for large ` again approaches the performance of the soft decoding algorithms for
AG-codes from Chapter 6.

We already knew the decoding algorithms for Reed-Solomon codes and AG-codes from
the previous chapter, but the above indicates the generality of our decoding algorithm
for ideal-based codes. In the next section, we will exploit the generality of our algorithm
from Figure 7-1 to devise a list decoding algorithm for Chinese Remainder (CRT) codes.
Indeed, it was the design of a good decoding algorithm for CRT codes that motivated us to
dig deeper into the algebra underlying the list decoding algorithms and unveil the unified
decoding algorithm for ideal-based codes described in Figure 7-1.

7.6 Decoding algorithms for CRT codes

In this section, we discuss efficient decoding algorithms for the CRT code. Recall that a
CRT code is specified by a sequence p1 < p2 < . . . < pn of relatively prime integers and
an integer k < n. Let K =

∏k
i=1 pi; N =

∏n
i=1 pi. For easy reference, we say such a CRT

codes as being specified by parameters (p1, p2, . . . , pn;K). We associate to each integer
m ∈ {0, 1, . . . ,K − 1} the codeword 〈m1,m2, . . . ,mn〉, where mi = m mod pi. We will
abuse notation and refer to both this sequence and m as a codeword. We consider a received
word to be a sequence r = 〈r1, r2, . . . , rn〉 of integers with 0 ≤ ri < pi for each i ∈ [n]. For a
given sequence of weights ~w = 〈w1, . . . , wn〉, the ~w-weighted agreement (or simply weighted
agreement, when the weighting we are referring to is clear) between a codeword m < K
and a received word r is the defined to be the quantity

∑
i aiwi, where ai = 1 if mi = ri,

and ai = 0 otherwise.
Our goal in this section is to efficiently find a list of all non-negative integers m < K

such that the encoding of m and the received word r have sufficient weighted agreement.
We note that a simple transformation makes it equivalent for us to find integers m where
|m| ≤ K/2, whose encodings have sufficient agreement with r. It is this version of the
problem that we focus on for describing our decoding algorithms.

In this section, we present two efficient decoding algorithms for the CRT code. In the
first (which is our main) decoding algorithm, the goal is to efficiently find a list of all
codewords m such that m and the received word r have sufficient weighted agreement. In
particular, we are able to give an efficient list decoding algorithm which outputs all m
with |m| ≤ K/2 such that m mod pi = ri for at least

√
k(n+ ε) values of i (for any ε,

with the running time of the algorithm depending polynomially on 1/ε). Thus, we are
able to efficiently list decode the CRT code up to (essentially) the Johnson bound on list
decoding radius (from Corollary 3.3 with distance d = n − k + 1). This improves the
earlier works of [GRS00, Bon00] which could only find the codewords which agreed with
the received word in at least Ω(

√
kn log pn/ log p1) positions. Our algorithm is obtained

by efficient implementations of the steps of the general decoding algorithm of Figure 7-1,
specialized for the case of the CRT code. This gives a general weighted decoding algorithm
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which successfully list decodes as long as a certain “weighted” condition is satisfied. The
above claimed bound is then obtained by an appropriate choice of weights in the weighted
algorithm (the exact setting of weights turns out to be a non-trivial guess).

For any sequence of positive weights ~β, our second decoding algorithm efficiently (in
near-quadratic time) recovers the unique codeword m with highest ~β-weighted agreement
with a received word r, as long as there is a codeword whose ~β-weighted distance from
r is less than half the ~β-weighted minimum distance of the code. This is accomplished
by adapting the GMD decoding algorithm due to Forney, introduced for Reed-Solomon
codes in [For66b], to CRT codes in Section 7.7. Note that in particular this result gives
the first polynomial time algorithm to correct up to (n − k)/2 errors (i.e., decode up to
half the minimum distance) for the CRT code. In view of our more powerful list decoding
algorithm, the main role of this result can be viewed as highlighting the role of GMD
decoding in the task of decoding the CRT code, plus achieving a simpler, faster algorithm
for unique decoding of CRT codes.

7.6.1 Combinatorial Bounds on List Decoding

Before delving into the decoding algorithms, we first state a generalized Johnson-type bound
which specifies a fairly general condition under which list decoding using “small” lists can
be performed. This result will indicate the kind of performance that we can hope for from
our list decoding algorithms for the CRT codes, since in order to efficiently output a list of
codewords as possible answers, we need an a priori guarantee that the list size will be small.

The result below gives a generalization of the weighted Johnson bound from Chapter 3
(specifically the result of Corollary 3.7) to the case when the various codeword positions
have different contributions towards the distance of the code.

Theorem 7.9 Let C be a code of blocklength n with the i’th symbol coming from an alphabet
of size qi, for 1 ≤ i ≤ n. Let the distance Dα of the code be measured according to a weighting
vector ~α = 〈α1, . . . , αn〉. In other words, for any two distinct codewords c1, c2 ∈ C, we have∑

i:c1i 6=c2i αi ≥ Dα (assume each αi ≥ 1 without loss of generality). For a weighting vector
~β = 〈β1, . . . , βn〉 and a received word r = 〈r1, . . . , rn〉 ∈ [q1] × · · · × [qn], define the set
S~β(r,W ) to consist of all strings z (in the space [q1] × [q2] × · · · × [qn]) with weighted ~β-
weighted agreement with r at least W , i.e., which satisfy

∑
i:ri=zi

βi ≥ W . Then, for all r,
the set S~β(r,Wβ) has at most (2

∑n
i=1 qi) codewords from C, provided that:

Wβ ≥

[
(

n∑
i=1

αi −Dα)
n∑
i=1

β2
i

αi

]1/2

, (7.10)

and has at most L codewords from C, provided that

Wβ ≥

[( n∑
i=1

αi −Dα +
Dα

L

) n∑
i=1

β2
i

αi

]1/2

. (7.11)

Remark: A more complicated and stronger bound than the above theorem can be proved
by taking into account the size of the alphabets qi’s (akin to the weighted Johnson bound of
Theorem 3.6 that took into account the alphabet size). This is, however, not very important
for us since we want to use the above bound to only informally indicate the “near-tightness”
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of the error-correction performance of our list decoding algorithms for the CRT code, and
the above bound suffices for this purpose. Moreover, for the CRT code the qi’s are typically
large primes, and for large alphabets the difference between the stronger bound and the
above bound becomes negligible.

Proof of Theorem 7.9: The proof follows along the lines of Theorem 3.1. Let ~β be a
weighting vector and W an agreement parameter. Let c1, . . . , cm be all the codewords in
S~β(r,Wβ), where r ∈ [q1]× · · · × [qn] is the “received word”.

We will embed elements of [q1] × · · · × [qn] as vectors in RQ where Q =
∑n

i=1 qi, with
the i’th block being a vector of length qi corresponding to the i’th symbol. For the received
word r, we will let the i’th block (which is of length qi) have a value of βi/

√
αi at position

number ri, and 0’s elsewhere. By abuse of notation, we denote the resulting vector in RQ

also by r. For each of the codewords cj, 1 ≤ j ≤ m, we will let the i’th block have a value
of
√
αi at position number cj,i (i.e., the i’th symbol of the codeword cj), and 0’s elsewhere.

Once again, since it is convenient to do so, we denote the resulting vectors in RQ also by
c1, . . . , cm.

It is easy to see from the above choices that 〈cj, r〉 equals the ~β-weighted agreement
between cj and r (i.e., 〈cj, r〉 =

∑
i:cj,i=ri

βi), and that 〈cj, ck〉 equals the ~α-weighted agree-
ment between cj and ck. Therefore, we have, for every 1 ≤ j < k ≤ m,

〈cj, r〉 ≥ Wβ (7.12)

〈cj, ck〉 ≤ Aα
def=

( n∑
i=1

αi −Dα

)
(7.13)

The idea now is to pick a suitable parameter γ > 0 such that the pairwise dot products
between the vectors (cj − γr) are all non-positive. This is similar to the idea used in the
proof of Theorem 3.1, and the details are in fact simpler in this case (since the conditions
under which we want to show a small list size do not depend on the alphabet sizes qi).

Equations (7.12) and (7.13) together with the facts that 〈r, r〉 =
∑n

i=1 β
2
i /αi, implies,

for j 6= k,

〈cj − γr, ck − γr〉 ≤ Aα − 2γWβ + γ2
n∑
i=1

β2
i

αi
. (7.14)

We will therefore have 〈cj − γr, ck − γr〉 ≤ 0, provided

Wβ ≥
γ

2

n∑
i=1

β2
i

αi
+
Aα
2γ

. (7.15)

The right hand side is minimized for γ = (Aα)1/2 · (
∑

i
β2
i
αi

)−1/2, and for this choice of γ,
Condition (7.15) becomes

Wβ ≥
[
Aα

n∑
i=1

β2
i

αi

]1/2

. (7.16)

Now appealing to the geometric Lemma 3.4, Part (i), we get that the number of codewords
m is at most 2Q (since the pairwise dot products of the Q-dimensional real vectors (cj−γr)
are all non-positive). Thus, the number of codewords which lie in S~β(r,Wβ) if Condition
(7.16) holds is at most 2Q, which proves the first assertion of the theorem. The second
assertion also follows similarly, by picking the parameter γ such that the pairwise dot
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products of the unit vectors along (cj − γr) is at most −1/(L − 1), and then appealing to
geometric Lemma 3.5. We omit the details. 2

We now apply the result of Theorem 7.9 to specific choices of ~α and ~β for the CRT code.
For a CRT code we have, in the ideal-based language, R = Z and Ii = (pi) for relatively
prime integers p1 < p2 < · · · < pn. Hence qi = pi for 1 ≤ i ≤ n. Furthermore the “size” of
the ideals satisfy ∆(Ii) = |R/Ii| = pi. If we consider messages to be integers m in the range
−K/2 < m ≤ K/2 where K =

∏k
i=1 pi, then it is easy to prove using ideas in Lemma 7.1

that the ~α-weighted distance of the CRT code is

- at least (n− k + 1) for the all-ones weight vector (the case when αi = 1 for every i),
and

- at least log(N/K) for case when αi = log pi.

Using these in the bound of Theorem 7.9 we get (roughly) the following conditions under
which CRT list decoding is feasible (combinatorially):∑

i

ai log pi >
√

(logK + ε) logN (7.17)∑
i

ai >
√

(k + ε)n (7.18)

∑
i

aiβi >
(

(logK + ε)
∑
i

β2
i

log pi

)1/2
(7.19)

(Note that the third condition above implies the first with the choice of weights βi = log pi.)
In fact, the algorithm of Goldreich, Ron, and Sudan [GRS00] could list decode under the first
condition (7.17). In some sense the case αi = βi is the most natural one for the CRT code.
However, neither the algorithm of [GRS00] nor the improvement due to Boneh [Bon00],
could work as well for other weightings (including the case βi = αi = 1 from the second
condition above). In the next section, we apply our general decoding algorithm for ideal-
based codes to the case of CRT codes to remedy this defect of earlier algorithms, and give a
weighted list decoding algorithm which, by appropriately choosing the weights, can decode
under each of the above conditions.

7.6.2 Weighted list decoding algorithm

We now apply Theorem 7.8 to the case of CRT codes and get the following.

Theorem 7.10 For a CRT code with parameters (p1, p2, . . . , pn;K), given a received word
r = (r1, r2, . . . , rn) with 0 ≤ ri < pi, and non-negative integers ` and zi for 1 ≤ i ≤ n,
we can find in time polynomial in n, `,

∑
i log pi and

∑
i zi, a list of size at most ` which

includes all codewords m that satisfy

n∑
i=1

aizi log pi > log(`+ 1) +
`

2
logK +

1
`+ 1

n∑
i=1

(
zi + 1

2

)
log pi , (7.20)

where as usual we define ai = 1 if mi = ri and ai = 0 otherwise.
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Proof: We will show that the above condition implies the condition under which the
decoding algorithm of Figure 7-1, when applied to the CRT case, successfully list decodes
the received word. It will then remain to argue that for the CRT code each of the steps of
the algorithm can be implemented in polynomial time.

For the CRT code, we have |R/Ii| = |Z/(pi)| = pi for 1 ≤ i ≤ n, a = 2, and b`+1 = `+ 1
(since the integers satisfy the “familiar” archimedean triangle inequality). Furthermore,
since there are (2F − 1) integers of absolute value less than F for any positive integer F ,
we can assume that α ≥ (2− γ) for some small γ > 0 (in fact we can take γ = o(1) in the
parameters involved). Also since the messages are integers of absolute value at most K/2,
we have B = K/2. Plugging these parameters into the general bound of Equation (7.8) we
get the condition

n∑
i=1

aizi log pi > log(`+1)+
`

2
log(K/2)+

1
`+ 1

n∑
i=1

(
zi + 1

2

)
log pi+log(2/(2−γ)) . (7.21)

Note that in fact the above condition poses a weaker requirement than that of Condition 7.20
stated in the theorem, since we have an `

2 log(K/2) term on the right hand side instead of
`
2 logK as stated in the theorem — the additional log(2/(2−γ)) term is of course negligible in
comparison. Hence the general algorithm can also decode under the condition stated in the
theorem. The reason for the slack in Condition (7.20) is that we now also want a polynomial
time implementation of its various steps, and hence can only find an “approximation” to the
best polynomial c ∈ Z[y] in Step 2 of the algorithm. As discussed in the remark following
Theorem 7.8, this necessitates a slight weakening of the error-correction performance. We
discuss the details next.

The two non-trivial steps in the algorithm of Figure 7-1, when applied to the CRT code,
are (i) finding a non-zero degree ` polynomial c with integer coefficients in the ideal

∏
i J

zi
i

such that |c(m)| < F for all m with |m| ≤ K/2, and (ii) finding the roots of c and looking
for candidate codewords among its roots. The second task can be done in polynomial time
using, for instance, the algorithm for factoring polynomials with integer coefficients due to
Lenstra, Lenstra and Lovász [LLL82].4 For the first task, Lemma 7.6 applied to the CRT
case implies that for

F = dF ∗e where F ∗
def= (`+ 1)(K/2)`/2

(∏
i

p
(zi+1

2 )
i

)1/(`+1)
,

there exists a non-zero c ∈
∏
i J

zi
i with |c(m)| < F whenever |m| ≤ K/2 (in fact the

coefficients cj of c will satisfy |cj | < F
(`+1)(K/2)j

for 0 ≤ j ≤ `). We will now prove that

for F ′ which 2`/2 times larger than F , we can find, in polynomial time, a c ∈ Z[y] that
satisfies |c(m)| < F ′ for every m with |m| ≤ K/2. We do this by reducing this problem to
that of finding a short lattice vector in a suitably defined lattice, and then appealing to the
well-known approximate shortest lattice vector algorithms due to [LLL82].

We can view degree ` polynomials as vectors in Z`+1 in the obvious way. Note that
the ideal J =

∏
i J

zi
i , when restricted to polynomials of degree at most `, can be viewed

as an integer lattice, say L, of dimension (` + 1). Therefore, finding a suitable non-zero
polynomial c ∈ J with small coefficients amounts to finding a short non-zero lattice vector

4Since the root finding task is easier than a general factorization task, there are faster ways to solve the
root finding problem. A brief discussion about this appears in [GRS00].
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in L. This can be accomplished using the LLL algorithm, provided we can compute a basis
for the lattice L. We now demonstrate how this can be done efficiently.

Note that L = ∩iLi where Li is the lattice corresponding to degree ` polynomials in
Jzii , for 1 ≤ i ≤ n. Explicit bases for the individual lattices Li are easily obtained by
considering the generating polynomials for Jzii restricted to polynomials of degree at most
`. Let z̃i = min{zi, `}. The first z̃i + 1 vectors in our basis correspond to the generating
polynomials {p(zi−a)

i (y − ri)a : 0 ≤ a ≤ z̃i} from the ideal Izii . For example, corresponding
to pzi−2

i (y − ri)2, we add the vector (r2
i · p

zi−2
i , − 2ri · pzi−2

i , pzi−2
i , 0, . . . , 0).

If ` > zi, then we also add vectors corresponding to the polynomials {ya · (y − ri)zi}`−zia=1 .
Let M (i) be the (` + 1) by (` + 1) matrix whose rows are the vectors from this basis. It
is straightforward to check that the integer linear combinations of these vectors correspond
exactly to the set of polynomials of degree at most ` in the ideal Jzii .

Thus bases for each Li can be computed efficiently. Using standard techniques (see the
discussion immediately following this proof), given bases for the (full-dimensional) lattices
Li, a basis B for the intersection lattice L = ∩iLi can be computed in polynomial time.

With this basis in hand, our goal is to find a short vector in L (intuitively, short vectors
in the lattice L correspond to polynomials in

∏
i J

zi
i with small coefficients). We argued

earlier that there exists a vector c = (c0, c1, . . . , c`) ∈ L with |cj | ≤ F
(`+1)(K/2)j

, and we
would like to find a vector in L with components not much bigger than this. To do so, it is
convenient to work with a re-scaled version L′ of the lattice L where (v0, v1, . . . , v`) ∈ L iff
(v0, v1 · (K/2), . . . , v` · (K/2)`) ∈ L′. The vector corresponding to c in L′ has L2-norm less
than F/

√
`+ 1. Applying the LLL algorithm to the (` + 1)-dimensional lattice L′, we can

therefore find a non-zero vector w = (w0, . . . , w`) ∈ L′ with L2-norm ‖w‖2 < 2`/2F/
√
`+ 1

in polynomial time. By Cauchy-Schwartz, we have that the L1-norm of w satisfies ‖w‖1 ≤√
`+ 1·‖w‖2 < 2`/2F . Clearly this implies that the polynomial w(y) = w0+w1y+. . .+w`y`

satisfies |w(m)| < 2`/2F whenever |m| ≤ K/2.
Thus one can apply Lemma 7.7 with F replaced by 2`/2F . Hence the decoding Condition

(7.21) must be modified by adding a log(2`/2) = `/2 term to the right hand side, and then we
will have a polynomial time list decoding algorithm working under the modified condition.
We therefore conclude that one can list decode in polynomial time and output every m with
|m| ≤ K/2 that satisfies

n∑
i=1

aizi log pi > log(`+ 1) +
`

2
logK +

1
`+ 1

n∑
i=1

(
zi + 1

2

)
log pi ,

as claimed in the theorem.5 For easy reference, the CRT list decoding algorithm is described
in Figure 7.6.2. 2

Discussion of the assumed lattice algorithm: In the above proof we assumed a subrou-
tine to compute the basis for an intersection lattice given the basis of the individual lattices.
We now discuss how this may be done — further details and a more formal treatment may
be found in [Coh93, Mic99].

5The astute reader might have noticed and be slightly bothered by the fact that we have ignored the
log(2/(2− γ)) term from Equation (7.21). This would cause an o(1) difference to the result stated. Never-
theless, the result of Theorem 7.10 is itself accurate in its stated form. This is because, instead of the LLL
algorithm, one can use Schnorr’s improvement to the LLL algorithm, which finds an 2ε` approximation to
the shortest lattice vector in polynomial time, for any desired constant ε > 0. In this way, we can in fact
weaken the requirement of Condition (7.20) by subtracting (1/2− ε)` from the right hand side.
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List Decode(~r, `, z1, z2, . . . , zn)

1. Let Izi1 be the set of polynomials that are integer linear combinations of {pai (x −
ri)(zi−a)}zia=0.

2. Compute a basis for the lattice L of all degree ` polynomials belonging to
⋂n
i=1 I

zi
i .

3. Scale this lattice by multiplying the i’th coordinate by (K/2)i−1 to produce the
lattice L′.

4. Run LLL to find a short vector v′ in L′; let it correspond to a degree ` polynomial
c(x) ∈ Z[x].

5. Find all integer roots m of c(x) (for example, by factoring c(x) over Z[x] us-
ing [LLL82]).

6. For each root m with |m| ≤ K/2, define the vector ~a = (a1, a2, . . . , an) by ai = 1
if m ≡ ri(modpi), and ai = 0 otherwise. Output m if ~a satisfies Condition (7.20).

Figure 7-2: The list decoding algorithm for Chinese Remainder codes

Let L be any full-dimensional lattice of dimension d, with basis given by the rows of the
matrix M . We define the dual L∗ of the lattice L to be {u ∈ Rd : u · v ∈ Z for all v ∈ L}.
Note that the rows of

(
M−1

)T give a basis for L∗.
Note also that given bases for two lattices L1 and L2, a basis for (the closure of) the

union of the two lattices, denoted L1 ∪ L2, can be found efficiently using algorithms for
computing the Hermite Normal Form of a generating set of vectors. Now, to compute a
basis for the intersection of two lattices L1 and L2, observe that L1 ∩ L2 = (L∗1 ∪ L∗2)∗.
Therefore, by combining the facts above, one obtains an efficient algorithm for computing a
basis for the intersection of full-dimensional lattices given bases for the individual lattices.

7.6.3 Applications to “interesting” weight settings

The result of Theorem 7.10 gives a general list decoding algorithm that works as long as a
certain “weighted” condition is satisfied. We now get specific results for the CRT code for
interesting choices of weights on the coordinate positions, through an appropriate choice of
parameters (like `, zi) in Theorem 7.10. We begin by proving a version of Theorem 7.10
with arbitrary (not necessarily integer) values of zi. The proof is somewhat technical but
the main idea is simple: approximate the zi’s by large integers z∗i , and pick a large enough
“list size” parameter `.

Theorem 7.11 For list decoding of CRT codes, for any tolerance parameter ε > 0, and
non-negative reals zi, when given as input a received word r, we can in time polynomial in
n, logN and 1/ε, find a list of all codewords such that

n∑
i=1

aizi log pi ≥

√√√√logK
( n∑
i=1

z2
i log pi + εz2

max

)
, (7.22)

where the ai’s are defined as earlier.

Proof: We may assume that zmax = 1 (note that the condition of (7.22) is invariant under
scaling of the zi’s, so this can be ensured by dividing out all weights by zmax). We will

155



prove the claimed result by appealing to Theorem 7.10 on a suitably chosen set of integer
weights z∗i .

Let A be a large integer to be specified later in the proof. Set z∗i = dAzie. By Theo-
rem 7.10, for any positive integer ` we can successfully list decode (in poly(n, logN,A, `)
time) provided

n∑
i=1

aiz
∗
i log pi > log(`+ 1) +

`

2
logK +

1
`+ 1

n∑
i=1

(
z∗i + 1

2

)
log pi.

We would like to pick a good choice for `. Since Azi ≤ z∗i < Azi + 1, the above condition is
met whenever

n∑
i=1

aizi log pi ≥
log(`+ 1)

A
+

`

2A
logK +

A

2(`+ 1)

n∑
i=1

(
z2
i +

3
A
zi +

2
A2

)
log pi . (7.23)

Define Zi = z2
i + 3

Azi + 2
A2 for 1 ≤ i ≤ n. Let us pick

` =
⌈
A

√∑n
i=1 Zi log pi

logK

⌉
− 1. (7.24)

It is not difficult to see that for this choice of `, Condition (7.23) is met whenever

n∑
i=1

aizi log pi ≥
1
A

log
(
A

√∑n
i=1 Zi log pi

logK
+ 1
)

+

√√√√logK
( n∑
i=1

Zi log pi
)
. (7.25)

For A ≥ 10 logN
ε , the right side of Equation (7.25) above is at most

O(
log logN

logN
) +

√√√√logK
( n∑
i=1

z2
i log pi +

ε

2

)
≤

√√√√logK
( n∑
i=1

z2
i log pi + ε

)
for large N . Thus, Condition (7.25) is met provided

∑
i=1

aizi log pi ≥

√√√√logK
( n∑
i=1

z2
i log pi + ε

)
,

and the proof is complete by noting that A = O( logN
ε ) and ` = O(ε−1 log3/2N), and so the

overall runtime is polynomial in n, logN and ε−1. 2

Corollary 7.12 For list decoding of CRT codes, for any tolerance parameter ε > 0, and
non-negative real weights βi, when given as input a received word r, we can, in time poly-
nomial in n, logN and 1/ε, find a list of all codewords whose ~β-weighted agreement with r
satisfies:

n∑
i=1

aiβi ≥

√√√√logK

(
n∑
i=1

β2
i

log pi
+ εmax

j

β2
j

log pj

)
.
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Proof: Follows by setting zi = βi/ log pi in the result of the above theorem. 2

Note that the above corollary implies that we can essentially “match” the combinatorial
bound of Condition (7.19). Let us now collect further results for the “usual” uniform
weighting of the codeword positions, namely βi = 1 for each i.

Theorem 7.13 For list decoding of CRT codes with parameters (p1, p2, . . . , pn;K), for any
ε > 0, we can in time polynomial in n,

∑
i log pi and 1/ε, find a list of all codewords which

agree with a received word in t places provided t ≥
√
k(n+ ε).

Proof: Let us apply Theorem 7.11 with zi = 1/ log pk+1 for 1 ≤ i ≤ k, zi = 1/ log pi for
k < i ≤ n, and ε′ = ε log pk+1. This gives that we can decode whenever the number of
agreements t is at least

k − logK
log pk+1

+

√√√√ logK
log pk+1

(
logK

log pk+1
+

n∑
i=k+1

log pk+1

log pi
+ ε′

)
.

Define ∆ def= k − logK
log pk+1

; clearly ∆ ≥ 0. Since log pk+1 ≤ log pi for i = k + 1, · · · , n, the

above condition is met whenever t ≥ ∆ +
√

(k −∆)(n−∆ + ε). Now, a simple application
of the Cauchy-Schwartz inequality shows that ∆+

√
(k −∆)(n−∆ + ε) ≤

√
k(n+ ε), and

thus our decoding algorithm works whenever t ≥
√
k(n+ ε). 2

Theorem 7.14 For list decoding of CRT codes with parameters (p1, p2, . . . , pn;K), for any
ε > 0, we can in time polynomial in n,

∑
i log pi and 1/ε, find a list of all codewords which

agree with a received word in t places provided

t ≥

√√√√logK

(
n∑
i=1

1
log pi

+ ε

)
.

Proof: This follows from Corollary 7.12 with βi = 1 for 1 ≤ i ≤ n. 2

Note that the result of Theorem 7.13 matches the combinatorial bound of Condition (7.18).
The bounds in Theorem 7.13 and Theorem 7.14 are incomparable in general.

7.7 GMD decoding for CRT codes

For integers k, n, relatively prime integers p1 < p2 < · · · < pn, K =
∏k
i=1 pi, and any

integer j, 1 ≤ j ≤ n, Goldreich, Ron, and Sudan [GRS00] gave a near-linear time algorithm
to compute the unique integer m in the range −K/2 < m ≤ K/2, if any, that satisfies

j∑
i=1

ai log pi >
1
2

(
j∑
i=1

log pi +
k∑
i=1

log pi

)
(7.26)

where ai is defined in the usual way: ai = 1 if m = ri(mod pi) and ai = 0 otherwise.
Note that the above algorithm decodes up to half the minimum ~w-weighted distance (1

2 ·
log(N/K)) for the “natural” weighting wi = log pi of the CRT code. Using this algorithm
as the basic subroutine and running a GMD style algorithm similar to Forney [For66b],
we are able to perform such a decoding for any “user-specified” choice of weights ~β =
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〈β1, β2, . . . , βn〉. In other words, we give a soft decoding algorithm for CRT codes for
the case of unambiguous decoding (the result of Theorem 7.10 being for the case of soft
decoding with lists of size `). While the list decoding algorithm decodes under a more
general condition than the soft decoding algorithm to be discussed here, the advantage
of this GMD based decoding algorithm is its simplicity and faster runtime (we will get a
near-quadratic time algorithm).

To obtain the claimed decoding algorithm, we prove a more general result that applies
to any code, and then apply it to the CRT code. Suppose we have an arbitrary code C
of blocklength n. We show how to use a decoding algorithm designed for any weighting ~α
to produce one that works for the desired weighting ~β. Define Aα =

∑n
i=1 αi −Dα where

Dα is ~α-weighted distance of the code, so that Aα is the maximum ~α-weighted agreement
between two distinct codewords of C. Aβ for the weight vector ~β is defined similarly. We
are now ready to state and prove the main result of this section:

Proposition 7.15 Let C be an arbitrary code of blocklength n. Let ~α, ~β ∈ Rn+ be positive
real vectors such that β1

α1
≥ β2

α2
≥ · · · ≥ βn

αn
, and let Aα, Aβ for the code C defined as

described above. Suppose we have a polynomial time algorithm Algα that when given as
input a received word r = 〈r1, . . . , rn〉 and an index j (1 ≤ j ≤ n), can find the unique
codeword c ∈ C, if any, whose ~α-weighted agreement with r in the first j codeword positions
is more than 1

2(
∑j

i=1 αi+Aα). Then, for any vector of positive reals ~β = 〈β1, . . . , βn〉, there
is a polynomial time algorithm Algβ that when given as input a received word r, outputs the
unique codeword, if any, whose ~β-weighted agreement with r is at least

1
2

( n∑
i=1

βi +Aβ + βmax

)
.

Moreover, the run-time of Algβ is at most O(n) times that of Algα.

Proof: Recall that the codeword positions i are ordered so that β1

α1
≥ β2

α2
≥ · · · ≥ βn

αn
.

Define

Ãβ
def= max

x∈[0,1]n∑
αixi≤Aα

{
n∑
i=1

βixi

}
. (7.27)

Note that under the condition x ∈ {0, 1}n, the above would just define Aβ; we relax the
condition to x ∈ [0, 1]n in the above to define Ãβ. Clearly Ãβ ≥ Aβ . It is also easy to
verify that Ãβ < Aβ + βmax. We will present an algorithm to find the unique codeword
c = 〈c1, c2, . . . , cn〉 ∈ C, if any, that satisfies

n∑
i=1

aiβi >
1
2

(
n∑
i=1

βi + Ãβ) (7.28)

(where ai = 1 if ci = ri and 0 otherwise), and this will imply the claimed result (since
Ãβ < Aβ + βmax). We now assume such a codeword c exists, as otherwise there is nothing
to prove.

The algorithm Algβ will simply run Algα for all values of j, 1 ≤ j ≤ n, and pick the
closest codeword among the (at most n) codewords which the runs of Algα returns. If this
algorithm fails to find the codeword c that satisfies Condition (7.28), then, by the hypothesis
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of the Theorem, the following condition must hold for every j, 1 ≤ j ≤ n:

2
j∑
i=1

aiαi ≤
j∑
i=1

αi +Aα . (7.29)

Let x̃ = 〈1 1 · · · 1 ε 0 · · · 0〉 be a vector such that
∑n

i=1 αix̃i = Aα (here 0 ≤ ε < 1). Denote
by ` the last position where x̃i = 1 (so that x̃` = 1 and x̃`+1 = ε). By our definition (7.27)
Ãβ ≥

∑
i βix̃i (in fact by the ordering of the codeword positions it is also true that Ãβ =∑

βix̃i, though we will not need this). Now for j ≥ ` + 1, Aα =
∑n

i=1 αix̃i =
∑j

i=1 αix̃i.
Also, for 1 ≤ j ≤ `, we have the obvious inequality

∑j
i=1 aiαi ≤

∑j
i=1 αi =

∑j
i=1 αix̃i,

which implies

2
j∑
i=1

aiαi ≤
j∑
i=1

αi +
j∑
i=1

αix̃i .

Combining the above with Equation (7.29) we obtain that the following uniform condition
that holds for all j, 1 ≤ j ≤ n:

2
j∑
i=1

aiαi ≤
j∑
i=1

αi +
j∑
i=1

αix̃i . (7.30)

Multiplying the jth inequality above by the non-negative quantity ( βjαj −
βj+1

αj+1
) for 1 ≤

j ≤ n (define βn+1 = 0 and αn+1 = 1), and adding the resulting inequalities, we get

2
n∑
i=1

aiβi ≤
n∑
i=1

βi +
n∑
i=1

βix̃i ≤
n∑
i=1

βi + Ãβ ,

which contradicts Condition (7.28). Thus the codeword c that satisfies (7.28), if any, will
indeed be output by the algorithm Algβ . 2

Theorem 7.16 For the CRT code with parameters (n, k; p1, p2, . . . , pn), for any received
word r = 〈r1, r2, . . . , rn〉, there is a polynomial time (in fact near-quadratic time) algorithm
to find the unique codeword m = (m1,m2, . . . ,mn), if any, that agrees with r in at least
n+k

2 positions.

Proof: By the result of [GRS00], we have a near-linear time decoding algorithm for the
weighting αi = log pi and Aα = logK (where K = p1p2 · · · pk). For ~β equal to the all-
ones vector, we have Aβ = k − 1. Therefore, by Proposition 7.15, we can find the unique
codeword m that agrees with r in at least (n+ k)/2 places, as claimed. 2

7.8 Bibliographic Notes

The redundancy property of the Chinese Remainder representation has been exploited often
in theoretical computer science. For example, the Karp-Rabin pattern matching algorithm
is based on this redundancy [KR81]. The CRT representation of an integer allows one
to reduce computation over large integers to that over small integers. This is also useful
in certain complexity-theoretic settings, a notable example being its use in showing the
hardness of computing the permanent of 0/1 matrices [Val79].
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The natural error-correcting code (the CRT code) that results from the Chinese Re-
mainder representation has also been studied often in the literature (see [SJJT86, KKLS94]
and the references there in). The CRT code was proposed as an alternate method for im-
plementing secret sharing [Den83, AB83]. Mandelbaum [Man76, Man78] was the first to
consider the basic algorithmic question of decoding the CRT code up to half the minimum
distance. He succeeded in giving such a decoding algorithm; however, the runtime of his
algorithm was polynomial only when the pi’s are very close to one another, and could be
exponential in n otherwise. Goldreich, Ron and Sudan [GRS00] present and analyze a vari-
ant of Mandelbaum’s algorithm, which can be implemented in near-linear time, and can
unique decode the CRT code up to (n−k) log p1

log p1+log pn
errors. This is a close approximation to half

the distance when the primes are reasonably close to one another.
Inspired by the success of list decoding algorithms for Reed-Solomon and AG-codes,

Goldreich et al [GRS00] considered the list decoding problem for CRT codes. They presented

a polynomial time algorithm to list decode CRT codes up to (about) (n−
√

2kn log pn
log p1

) errors.
For primes which are close to one another and for small values of k/n, this decodes well
beyond half the distance of the code. However, this is not the case when the primes vary
widely in size and/or the “rate” k/n is large. One of the motivations of the list decoding
algorithm in [GRS00] was an application to the average-case hardness of the permanent
on certain random matrices — a discussion of this connection appears in the conference
version [GRS99] of the same paper. H̊astad and Näslund [HN98] used the algorithm of
[GRS00] to construct new hardcore predicates based on one-way functions.

Subsequent to this, Boneh [Bon00] improved the list decoding algorithm of [GRS00]. His

algorithm could correct up to about (n−
√
kn log pn

log p1
) errors. One weakness common to all the

above results on CRT decoding is their poor(er) performance if the primes vary significantly
in size. This can cause the algorithm of Mandelbaum [Man76] to take exponential time,
while it degrades the number of errors that the algorithms of Goldreich et al. [GRS00],
or Boneh [Bon00] can correct. This weakness is due to an eccentricity of the CRT code:
its alphabet size is not uniform, and so the “contribution” of an error is not independent
of its location (knowing a residue modulo a larger pi correctly gives more information
than knowing a residue modulo a smaller pi). Hence one needs to suitably “reweight” the
coordinate positions in order to compensate for this inherent disparity between the various
positions. This is exactly what the weighted decoding algorithm we discussed in this chapter
allows us to do. It thereby permits efficient decoding up to about (n −

√
kn) errors, and

thus completely removes the dependence of the number of correctable errors on the size of
the pi’s. It was the development of this soft decoding algorithm for CRT codes that caused
us to examine in greater detail the algebra underlying the various list decoding algorithms
and unveil the unified ideal-theoretic view of decoding presented in this chapter.

The CRT decoding algorithms discussed in this chapter appear in [GSS00]. The general
“ideal-theoretic” approach to list decoding algebraic codes was sketched in [GSS00] as an
appendix, and it has been further developed and expanded for presentation in this chapter.
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Chapter 8

List Decoding of Concatenated
Codes

8.1 Introduction

The decoding algorithms for Reed-Solomon and AG-codes provide the first results which
algorithmically exploit the potential of list decoding well beyond half the minimum distance.
In addition, these codes are widely studied and used, and thus these algorithms are not only
theoretically interesting, but could also have a lot of practical impact. In this chapter, we are
interested in polynomial time constructible linear codes over Fq for a small, fixed q, which
can be efficiently list decoded from a large, and essentially “maximum” possible, fraction
of errors, and which have good rate. Codes over small alphabets are desirable for several
applications. Of particular interest to us will be binary codes. Such small alphabet codes
with high list decodability cannot be directly obtained from Reed-Solomon or algebraic-
geometric codes. Recall that Reed-Solomon codes require the alphabet size to be at least
as large as the blocklength of the code. While AG-codes can be defined over an alphabet
of fixed size q, their performance is limited by certain algebraic barriers. In particular
these rule out the existence of good binary AG-codes, and even for larger q limit their list
decodability to much less than what is in general possible for q-ary codes.

The reader will recall that in Chapter 5 we had investigated trade-offs between list
decodability and rate for q-ary codes. The results of this chapter can be viewed as an
attempt to constructivize, to whatever extent possible, the existential bounds established
in Chapter 5.

While Reed-Solomon and AG-codes do not yield good list decodable q-ary codes for small
q, we show in this chapter that concatenated codes that use them as outer codes along with
appropriate inner codes do achieve small alphabet size together with excellent algorithmic
list decodability properties. The concatenated codes are decoded in two steps: in the first
step, a decoding of the portions of the received word corresponding to the various inner
encodings is performed. The inner code, owing to its small dimension, can be decoded by
brute-force in the allowed runtime (which is polynomial in the entire blocklength). The inner
decoding passes to the outer decoder, information concerning the possible symbols at each
position, together with appropriate weights or confidence information. The decoding is then
completed by running the soft (list) decoding algorithms for the outer Reed-Solomon or AG-
code from Chapter 6. This represents a novel use of the soft decoding algorithm, and is one of
the few such uses where a simple worst-case analytic bound on the number of errors corrected
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by the algorithm can be proved. (In contrast, a large body of literature on soft decoding
applies it to probabilistic channels and obtains either analytic or experimental estimates of
the decoding error probability under the specific error model (cf. [For66a, For66b, KV00]).)

8.2 Context and motivation of results

We are interested in families of q-ary codes that can be efficiently list decoded from a
large fraction of errors. Decoding from a fraction of errors beyond (1− 1/q) is information-
theoretically impossible for q-ary codes (of positive rate). This is because a random received
word will differ from any particular codeword in a expected fraction (1− 1/q) of positions.
Therefore, list decoding beyond a fraction (1− 1/q) of errors will require a list size propor-
tional to the total number of codewords, and hence an exponential list size for code families
with positive rate.

Therefore, we are interested in families of q-ary codes that can be list decoded from a
fraction p of errors, for 0 < p < (1− 1/q). Having fixed the desired level of error-resilience,
the quantity we would like to optimize is the rate of the code family. This is exactly in
the spirit of the results from Chapter 5, except that we are now interested in both explicit
specifications or polynomial time constructions of the code, and efficient list decoding
algorithms (and not just a good combinatorial list decodability property).

The main tools used for the above pursuit are concatenated codes with outer Reed-
Solomon or AG-codes and inner codes with good combinatorial list decodability and/or
distance properties. This gives a polynomial time construction (and sometimes even explicit
specification) of, say, a binary code with good combinatorial list decodability. We enhance
the nice combinatorial properties of concatenated codes with algorithmic ones, by presenting
fairly general schemes to efficiently decode these codes to close to their Johnson radius
(which is the a priori “list decoding capacity” of any code).

In order to present the above constructive results, we focus on the “high-noise regime”,
i.e., list decoding up to a fraction (1 − 1/q − ε) of errors for q-ary codes. For such codes,
the results of Chapter 5 imply that the best rate achievable is Θ(ε2). Our goal will be to
approach this performance with explicit codes and efficient decoding algorithms. We loosely
refer to codes that can correct such a large fraction (approaching (1 − 1/q)) of errors as
highly list decodable.

We focus on the high-noise regime since it brings out the asymptotics very well. Even
optimizing the exponent of ε in the rate is a non-trivial problem to begin with in this
context. Hence, working in the high-noise regime implies that (at least for current results)
we need not be very careful with the constant factors in the rate that are independent of
ε (since the εO(1) term is the dominant one in the rate). Moreover, there is a natural and
well-posed goal of approaching the “optimal” rate, i.e., obtaining the best possible exponent
of ε in the rate. We note here that this is a very asymptotic and computer science style
perspective, and indeed the motivation comes partly from applications of list decoding to
complexity theory, to be discussed in Chapter 12, where the high-noise regime is the most
interesting and useful one to focus on. Coding theorists are sometimes disturbed by the
low rate in the way we state some of our results. But we would like to stress that the low
rate is unavoidable since we are targeting decoding from a very large fraction of errors.
Moreover, we believe that optimizing our techniques for the high-noise (and consequently
low-rate) regime is a good first step, and that the techniques can eventually be applied to a
more careful, thorough investigation of the situation where we do not wish to correct such

162



a large fraction of errors. The results of the next two chapters will also be motivated by
and stated for the high-noise regime – these chapters will deal with codes over large (but
constant-sized) alphabets and erasure codes, respectively.

8.3 Overview of Results

We present list decoding algorithms for several families of concatenated codes. Recall that
the distance of a concatenated code whose outer code has distance D and inner code has
distance d is at least Dd (and this quantity is referred to as the designed distance of the
concatenated code). Unique decoding algorithms to decode up to the product bound, namely
to correct fewer than Dd/2 errors, are known based on Generalized Minimum Distance
decoding of the outer code [For66b, Jus72] (this is also discussed in detail in Appendix A of
this thesis). The focus of this chapter is on list decoding algorithms that permit recovery
well beyond the product bound for certain families of concatenated codes. A discussion of
the specific results follows.

In Section 8.4, we give list decoding algorithms for codes where the outer code is a
Reed-Solomon or Algebraic-geometric code and the inner code is a Hadamard code. Our
algorithms decode these codes up to the Johnson bound on list decoding radius. These
algorithms also serve as a beautiful illustration of the power of our soft decoding algorithms
for list decoding Reed-Solomon and AG-codes from Chapter 6. The construction with an
appropriate algebraic-geometric outer code, upon picking parameters suitably, gives us a
construction of q-ary codes of rate Ω(ε6) list decodable up to a fraction (1 − 1/q − ε) of
errors.

In Section 8.5, we present a decoding algorithm for concatenated codes with outer Reed-
Solomon or AG-code and an arbitrary inner code. The algorithm falls short of decoding up
to the Johnson radius, but decodes well beyond half the distance when the rate of the outer
code is small. In particular, it gives an alternative construction of q-ary codes of rate Ω(ε6)
decodable up to a fraction (1−1/q−ε) of errors. The advantage of this construction is that
one can use Reed-Solomon codes as opposed to the more complicated AG-codes necessary
for the earlier result using Hadamard codes. The construction and decoding algorithms are
consequently also easier and faster.

Finally, in Section 8.6, we use special purpose codes as inner codes in a concatenated
construction to obtain binary linear codes of rate Ω(ε4) efficiently list decodable from a
fraction (1/2−ε) of errors. The inner codes are a more general variant of the ones guaranteed
by Theorem 5.5 of Chapter 5. We should remark that we are able to obtain this result only
for binary codes.1

We stress here that our construction that has rate Ω(ε4) is not obtained by constructing
a large distance binary code and then appealing to the Johnson bound to argue that the
list decoding radius is at least (1/2 − ε). Indeed, this will require the relative distance to
be at least (1/2−O(ε2)) and the best known polynomial time constructions of such codes
yield a rate of only about Ω(ε6). In fact, a polynomial time construction of binary code

1We know how to achieve a similar performance for general alphabets if we relax the requirement of
linearity. The next chapter will discuss several non-linear code constructions with good list decodability.
The codes, though not linear, will be based on “pseudolinear” codes, and will possess succinct representation
and be efficiently encodable/decodable. Using random q-ary pseudolinear codes as inner codes will permit
us to obtain codes of rate Ω(ε4) list decodable up to a fraction (1− 1/q− ε) of errors, for every prime power
q. We, however, do not elaborate on this point further.
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Figure 8-1: Reed-Solomon concatenated with a Hadamard code

families of relative distance (1/2 − O(ε2)) and rate Ω(ε4) will asymptotically match the
Gilbert-Varshamov bound at low rates, and will be a major breakthrough in coding theory.

The results of this chapter focus exclusively on linear codes. Some results in the next
two chapters will resort to a certain “limited” amount of non-linearity.

8.4 Decoding concatenated codes with inner Hadamard code

We present list decoding algorithms for concatenated codes with an outer algebraic code
and inner Hadamard code. The motivation of considering the Hadamard code is its nice
properties which we exploit to decode the concatenated codes up to their Johnson radius.
Concatenated codes with algebraic-geometric outer code and inner Hadamard code are
among the best explicitly known codes in terms of the rate vs. distance trade-offs. By
decoding such codes up to the Johnson radius, we will get codes of good rate and very high
list decodability. This is our primary motivation for considering decoding algorithms for
such concatenated codes.

Recall the definition of Hadamard codes from Chapter 2. The q-ary Hadamard code of
dimension m encodes an x ∈ Fmq by 〈x · z〉z∈Fmq (i.e. by its dot product over Fq with every
vector z ∈ Fmq ). It has blocklength qm and minimum distance (1 − 1/q) · qm; in fact all
non-zero codewords in the code have Hamming weight (1− 1/q) · qm.

The codes considered in this section will be the concatenation of a Reed-Solomon or
AG-code over GF(qm) with the q-ary Hadamard code of dimension m. Note the number
of outer codeword symbols (i.e., qm) exactly equals the number of Hadamard codewords,
so concatenation of these codes is well-defined. Figure 8-1 depicts the structure of a Reed-
Solomon concatenated with a Hadamard code. The encoding of a message (a polynomial)
p will be Had(p(x1))Had(p(x2)) · · ·Had(p(xn)), where x1, . . . , xn are distinct elements in
GF(qm) that are used in defining the Reed-Solomon code. (To encode an element α ∈
GF(qm) using the Hadamard code, one views α as a string of length m over GF(q) using
some fixed representation of GF(qm) as vectors of length m over GF(q).)

Jumping ahead to how our decoding will proceed, the inner decoder will “decode” the
Hadamard code and pass information concerning the possible symbols at each position,
together with appropriate weights. Suppose the i’th block (corresponding to the inner
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Figure 8-2: The basic idea behind our decoding algorithms for concatenated codes. For
each position of the outer code, the inner decoding passes a weight or confidence rating for
every element of the field F = GF(q). These are then used by a soft list decoding algorithm
for the outer code to finish the decoding.

encoding of the i’th outer codeword symbol) of the received word is ri. It is natural that
the weight that the inner decoder gives to a symbol α ∈ GF(qm) for position i should
be a decreasing function of ∆(Had(α), ri) (where ∆(x, y) measures the Hamming distance
between x and y). This is because, intuitively, the larger this distance, the smaller is the
likelihood that the i’th symbol of the outer codeword was α. In fact, the inner decoder will
set weights to be a decreasing linear function of this distance (the linearity makes possible
a precise analysis of the number of errors corrected). Specifically, the weight for symbol α
for the i’th block ri of received word will be set to

(
1− q

q − 1
∆(ri,Had(α))

qm

)
.

The decoding is then completed by running the soft (list) decoding algorithms for the
outer Reed-Solomon or AG-code from Chapter 6 with these choice of weights. This is in fact
the procedure used for decoding all of the concatenated codes in this chapter. Figure 8-2
illustrates the basic structure of our decoding schemes for concatenated codes.

Recalling the statements of Theorems 6.21 and 6.35, the sum of the squares of the weights
is an important quantity that governs the performance of the decoding algorithm. Good
upper bounds on this sum will permit a good analysis of the error-correction performance
of the algorithm. Below, we provide such an upper bound for the choice of weights made
by the inner decoder in decoding the Hadamard code.

Proposition 8.1 Let q be a prime power and let m be a positive integer. Let Had : Fqm →
F
qm
q be the q-ary Hadamard code of dimension m and blocklength qm. Let f ∈ Fq

m

q be an
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arbitrary vector of length qm over Fq. Then

∑
α∈GF(qm)

(
1− q

q − 1
· ∆(f,Had(α))

qm

)2
≤ 1 . (8.1)

Remark: For the case q = 2, (1 − 2∆(f,Had(α))/2m) equals the Fourier coefficient f̂α
of f with respect to Had(α), viewed as a linear function mapping Fmq to Fq. In this case,
the statement of the Proposition in fact holds with equality, and is simply the standard
Plancherel’s identity

∑
α f̂

2
α = 1. The result for the non-binary case appears in [Kiw97],

and the proof there is based on the MacWilliams-Sloane identities for the weight distribution
of dual codes; we give a more elementary proof below.

Proof: The proof works by embedding any string f ∈ Fq
m

q as a qm+1-dimensional real unit
vector. The embedding will be such that for every α 6= β ∈ GF(qm), the vectors associated
with the Hadamard codewords Had(α) and Had(β) will be orthogonal (in the usual real dot
product over Rq

m·q). Furthermore, the embedding will be such that the quantity

(
1− q

q − 1
· ∆(f, g)

qm

)
for every two functions f, g ∈ Fq

m

q will simply be the dot product of the vectors associated
with f, g. The result will then follow since the sum of the squares of the projections of a
unit vector along pairwise orthogonal vectors can be at most 1.

Suppose the q elements of Fq are γ1, γ2, . . . , γq. Associate a q-dimensional vector ei
with γi as follows (eil denotes the l’th component of ei): eii =

√
(q − 1)/q and eil =

−1/
√
q(q − 1) for l 6= i. Note that this definition satisfies 〈ei, ei〉 = 1 and 〈ei, ej〉 =

−1/(q − 1) for i 6= j. For a string f ∈ Fq
m

q , we view f as the qm+1-dimensional vector
obtained in the obvious way by juxtaposing the q-dimensional vectors for each of the qm

values which f takes on its domain, and then normalizing it to a unit vector (by dividing
every component by

√
qm). By abuse of notation, we will denote the real vector associated

with f also by f .
Note that when we take the inner product 〈f, g〉, we get a contribution of 1/qm corre-

sponding to the positions where f, g agree, and a contribution of −1
(q−1) · q

−m corresponding
to places where f, g differ. Hence we have

〈f, g〉 = (qm −∆(f, g)) · q−m + ∆(f, g) ·
( −1
q − 1

)
· q−m = 1− q

q − 1
· ∆(f, g)

qm
.

Now, for α 6= β ∈ GF(qm), ∆(Had(α),Had(β)) = (1 − 1/q) · qm (recall that two distinct
codewords in the Hadamard code corresponding to Fmq agree on exactly qm−1 places and
differ at qm−1(q − 1) places). Thus, for α 6= β, we have 〈Had(α),Had(β)〉 = 0. Also
by our choice of vectors, 〈Had(α),Had(α)〉 = 1. Hence the qm vectors associated with the
Hadamard codewords are pairwise orthogonal unit vectors. Using this fact the result follows
since ∑

α∈Fmq

(
1− q

q − 1
∆(f,Had(α))

qm

)2
=
∑
α

〈f,Had(α)〉2 ≤ 〈f, f〉 = 1 . 2
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8.4.1 Reed-Solomon concatenated with Hadamard code

We now use the above result to analyze the error-correction capability of Reed-Solomon
codes concatenated with Hadamard code, when using the soft decoding algorithm for Reed-
Solomon together with the weights passed by the Hadamard decoding.

Theorem 8.2 Let C be q-ary code of blocklength n and relative distance δ, that is obtained
by concatenation of a Reed-Solomon code over GF(qm) with the Hadamard code of dimension
m, for some m. Then, there is a polynomial time list decoding algorithm for C that decodes
up to E errors where

E = n
(

1− 1
q

)(
1−

√
1− qδ

q − 1

)
−O(1) .

(In other words, one can decode such a code up to, essentially, the q-ary Johnson bound on
list decoding radius.)

Proof: The relative distance of a q-ary Hadamard code is (1−1/q), and in fact all non-zero
codewords have the same Hamming weight. Hence, it follows that in order for the relative
distance of the concatenated code C to be δ, the relative distance of the outer Reed-Solomon
code, call it CRS, must be qδ/(q − 1). Let the blocklength of CRS be n0 ≤ qm, and its
dimension be (k0 + 1), where

k0 = n0

(
1− qδ

q − 1

)
. (8.2)

Let x1, x2, . . . , xn0 be distinct elements of GF(qm) that are used to define CRS. Thus,
the messages of CRS (and hence C, too) are degree k0 polynomials over GF(qm), and a
polynomial p is encoded under CRS as 〈p(x1), p(x2), . . . , p(xn0)〉. The blocklength n of the
overall concatenated code C satisfies n = n0q

m, and its dimension equals (k0 + 1)m.
Let y ∈ Fnq be a “received word”; the task of list decoding that we wish to solve is to

obtain a list of all codewords of C within a Hamming distance of E from y. For 1 ≤ i ≤ n0,
denote by yi the portion of y in block i of the codeword (i.e., the portion corresponding to
the Hadamard encoding of the ith symbol of the outer code).

We now perform the “decoding” of each of the n0 blocks yi as follows. For 1 ≤ i ≤ n0

and α ∈ GF(qm), compute the Hamming distance ei,α between yi and Had(α), and then
compute the weight wi,α as:

wi,α
def= max

{(
1− q

q − 1
· ei,α
qm

)
, 0
}
. (8.3)

Note the computation of all these weights can be done by a straightforward brute-force com-
putation in O(n0(qm)2) = O(n2/n0) time. Thus all the inner decodings can be performed
efficiently in at most quadratic time.

The key combinatorial property of these weights, that follows from Proposition 8.1
above, is that ∑

α

w2
i,α ≤ 1 , (8.4)

for every i, 1 ≤ i ≤ n0. These weights will now be “passed” to the outer Reed-Solomon
decoder as the confidence information about the various symbols of the Reed-Solomon
codeword. For the outer decoder, we will use the soft decoding algorithm from Chapter 6.

167



Specifically, we will use the result of Theorem 6.21. Applied to this context, the result
implies that, for any desired tolerance parameter ε > 0, we can find in time polynomial in
n0 and 1/ε, a list of all polynomials p over GF(qm) of degree at most k0 that satisfy

n0∑
i=1

wi,p(xi) ≥
(
k0 ·

∑
1≤i≤n0

α∈GF(qm)

w2
i,α

)1/2
+ εmax

i,α
wi,α . (8.5)

Applied to the choice of weights (8.3) and using Equation (8.4), the decoding algorithm can
thus retrieve all codewords corresponding to degree k0 polynomials p for which

n0∑
i=1

(
1− q

q − 1
·
ei,p(xi)

qm

)
≥
√
k0n0 + ε . (8.6)

Note that wi,p(xi) ≥ (1− q
q−1 ·

ei,p(xi)
qm ), and hence if the above condition is satisfied then so

is Condition (8.5).
Now, recall that ei,p(xi) = ∆(yi,Had(p(xi))). Hence, (8.6) above implies that we can

find all codewords at a distance E from the received word y provided

n0 −
qE

(q − 1) · qm
≥

√
k0n0 + ε or

qE

q − 1
≤ n

(
1−

√
k0

n0
− ε√

n

)
(since n = n0q

m)

⇐= E ≤ n
(q − 1

q

)(
1−

√
1− qδ

q − 1

)
− εqm ,

where in the last step we use the value of k0 from Equation (8.2). If we pick ε ≤ 1/n, this
implies we can list decode up to

E = n
(q − 1

q

)(
1−

√
1− qδ

q − 1

)
−O(1)

errors, as desired. 2

8.4.2 AG-code concatenated with Hadamard code

The result of Theorem 8.2 decodes the concatenated code up to the Johnson radius, and
thus has very good error-correction performance for the concerned code. However, while
interesting for a variety of reasons, from a coding standpoint, the Reed-Solomon concate-
nated with Hadamard codes are not very attractive. This is because they have very low
rate, since the inner Hadamard code maps m symbols into qm symbols, and thus has very
poor, vanishing, rate for large m. In particular, the family of codes is not asymptotically
good, and has rate rapidly tending to 0 in the limit of large blocklengths. It is thus way off
our pursuit of codes list decodable to a fraction (1− 1/q − ε) of errors with rate somewhat
close to Θ(ε2).

In this section, we will adapt the result of Theorem 8.2 to concatenated codes with
outer AG-code (instead of Reed-Solomon code). The inner code will be the Hadamard code
as before. The rate of the overall code will once again not be great, since it will inherit
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the poor rate of the Hadamard code. But since AG-codes with good parameters exist
over a fixed alphabet of size independent of the blocklength, the inner Hadamard code will
now be a constant-sized code, and thus will have some fixed, albeit small, rate. Thus, we
will be able to achieve positive rate (i.e. rate which is at least r for some fixed constant
r > 0 that is independent of the blocklength) for the overall code. As a corollary, in the
next section, we will plug in the best-known AG-codes (those discussed in Section 6.3.9)
to obtain constructions of codes which are list decodable up to a fraction (1 − 1/q − ε) of
errors and have rate Ω(ε6).

The formal result concerning list decoding AG-codes concatenated with Hadamard codes
is stated below. The hypothesis about a suitable representation of the code is necessary in
the statement of the theorem, since the decoding algorithms of Chapter 6 also made this
assumption.

Theorem 8.3 Let CAG−Had be q-ary code of blocklength n and relative distance at least
δ, that is obtained by concatenation of an algebraic-geometric code over GF(qm) of rela-
tive designed distance qδ/(q − 1) with the q-ary Hadamard code of dimension m, for some
m. Then, there exists a representation of the code of size polynomial in n under which a
polynomial time list decoding algorithm exists to list decode CAG−Had up to E errors, where

E = n
(

1− 1
q

)(
1−

√
1− qδ

q − 1

)
−O(1) .

(In other words, one can decode such a code up to, essentially, the q-ary Johnson bound on
list decoding radius.)

Proof: The proof parallels that of the earlier result (Theorem 8.2) where the outer code was
a Reed-Solomon code. The inner decodings of the various Hadamard codes proceeds exactly
as before, passing weights to the outer decoder. Now, for the outer decoder we can make
use of the soft list decoding algorithm for AG-codes developed in Theorem 6.35, instead of
the Reed-Solomon soft decoder. This is really the only change necessary to the proof of
Theorem 8.2, and the claimed bound on the number of errors corrected follows as before.
We omit the details. The soft decoding algorithm for AG-codes from Theorem 6.35 works
in polynomial time only assuming a specific (non-standard) representation of the AG-code,
which necessitates the hypothesis about the representation of the code in the statement of
the theorem. 2

8.4.3 Consequence for highly list decodable codes

We now apply Theorem 6.35 with AG-codes that achieve the best known trade-off between
rate and distance (from Section 6.3.9 of Chapter 6). This gives us codes list decodable up
to a fraction (1− 1/q − ε) of errors and which have reasonably good rate.

Corollary 8.4 For every fixed prime power q, the following holds: For every ε > 0, there
exists a family of linear codes over Fq with the following properties:

(i) The family is polynomial time constructible in that the generator matrix of a code of
blocklength n in the family can be computed in time a fixed polynomial in n.

(ii) Its rate is Ω(ε6 · log(1/ε)).
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(iii) For each code in the family, there exists a polynomial amount of advice information
given which there is a polynomial time list decoding algorithm that decodes the code
up to a fraction (1− 1/q − ε) of errors.

Proof: We will employ the concatenated code construction of Theorem 8.3 applied with
the outer code being AG-codes that meet the Drinfeld-Vlădut bound (as guaranteed by
Fact 6.1). By picking m even, we know there exist AG-codes over GF(qm) of relative
designed distance δ′ and rate R ≥ 1− 1/(qm/2− 1)− δ′. The fraction of errors corrected by
the algorithm of Theorem 8.3 is (1− 1/q)(1−

√
1− δ′). Picking δ′ = 1−O(ε2), we can get

a list decoding radius of (1 − 1/q − ε). For such a value of δ′, the rate R of the AG-code
can be Ω(ε2), provided qm/2 = Ω(ε−2). This can be achieved with m = Θ(log(1/ε)) (since
q is fixed, we absorb constant terms that depend on q into the Θ-notation). The rate of the
concatenated code is the rate of the AG-code multiplied by the rate of the Hadamard code,
and is thus R · (m/qm). Since R = Ω(ε2), m = Θ(log(1/ε)) and qm = O(ε−4), the rate is
Ω(ε6 log(1/ε)). 2

8.5 Decoding a general concatenated code with outer Reed-
Solomon or AG-code

The concatenated codes in the previous section used the Hadamard code as inner code.
This permitted an elegant analysis of the decoding algorithms based on the combinatorial
identity of Proposition 8.1 and the soft decoding algorithms from Chapter 6. However, the
Hadamard code has very poor rate which makes these codes not so attractive from a coding
theory viewpoint.

In this section, we present an algorithm to decode concatenated codes with outer Reed-
Solomon or AG-codes when the inner code is an arbitrary q-ary code. The idea behind the
decoding will remain the same (recall Figure 8-2) — in the first step, the inner decoding will
pass weights which are linear functions of the distance between the received word and the
concerned inner codeword. These weights will then be used in a soft decoding of the outer
code. The key technical step in making this work when the inner code is not Hadamard but
arbitrary is to prove an analog of the combinatorial bound of Proposition 8.1 for a general
q-ary code. We do so next.

8.5.1 A relevant combinatorial result

To motivate the exact statement of the combinatorial result, we jump ahead to give a hint of
how the decoding will exactly proceed. When presented a received word r, the inner decoder
will simply search for and output all codewords which lie in a Hamming ball of a certain
radius R around r. The weight associated with a codeword c at a distance ec = ∆(r, c) ≤ R
from r will be set to be (R− ec). These weights will be used in a soft decoding of the outer
code as before. We now state and prove a combinatorial result that gives an upper bound on
the sum of squares of the weights (R−ec). Some readers may prefer to take the result below
on faith and jump right ahead to the decoding algorithm and its analysis in Section 8.5.2.

Proposition 8.5 Let C ⊆ [q]n be a q-ary code (not necessarily linear), and let d be the
minimum distance of C, and δ = d/n its relative distance. Let r ∈ [q]n be arbitrary, and let

R = n
(

1− 1
q

)(
1−

√
1− δ

(1− 1/q)

)
(8.7)
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be the q-ary Johnson radius of the code. Then we have∑
c∈C

(
max{(R−∆(r, c)), 0 }

)2
≤ δn2 (8.8)

Proof: The proof follows essentially the same approach as in the proof of the Johnson bound
(Theorems 3.1 and 3.2) from Chapter 3. Instead of bounding the number of codewords
within a distance R from r, we now require an upper bound on the sum of squares of linear
functions of the distance over all such codewords. The proof will be identical to that of
Theorem 3.1 for the most part, with a change towards the end. For purposes of readability,
we give the full proof here. The reader familiar with the proof of Theorem 3.1 can jump to
just past Equation (8.14) since the proof is identical till that stage.2

We identify elements of [q] with vectors in Rq by replacing the symbol i (1 ≤ i ≤ q)
by the unit vector of length q with a 1 in position i. We then associate elements in [q]n

with vectors in Rnq by writing down the vectors for each of the n symbols in sequence.
This allows us to embed the codewords of C as well as the received word r into Rnq. Let
c1, c2, . . . , cM be all the codewords that satisfy ∆(r, ci) ≤ R, where R is a parameter that
will be set shortly (it will end up being set to the Johnson radius as in Equation (8.7)). By
abuse of notation, let us denote by ci also the nq-dimensional real vector associated with the
codeword ci, for 1 ≤ i ≤M (using the above mentioned identification), and by r the vector
corresponding to r ∈ [q]n. Let 1 ∈ Rnq be the all 1’s vector. Now define v = αr + (1−α)

q 1
for a parameter 0 ≤ α ≤ 1 to be specified later in the proof.

The idea behind the rest of the proof is the following. We will pick α so that the nq-
dimensional vectors di = (ci − v), for 1 ≤ i ≤ M , have all pairwise dot products less than
0. Geometrically speaking, we shift the origin O to O′ where OO′ = v, and require that
relative to the new origin the vectors corresponding to the codewords have pairwise angles
which are greater than 90 degrees. We will then exploit the geometric fact that for such
vectors di, for any vector w, the sum of the squares of its projections along the di’s is at
most 〈w,w〉 (this is proved in Lemma 8.6). This will then give us the required bound (8.8).

For 1 ≤ i ≤ M , let ei = ∆(r, ci) be the Hamming distance between ci and r. Note by
the way we associate vectors with elements of [q]n, we have 〈ci, r〉 = n− ei. Now

〈ci,v〉 = α〈ci, r〉+
(1− α)

q
〈ci,1〉 = α(n− ei) + (1− α)

n

q
(8.9)

〈v,v〉 = α2n+ 2(1− α)α
n

q
+ (1− α)2n

q
=
n

q
+ α2

(
1− 1

q

)
n (8.10)

〈ci, cj〉 = n−∆(ci, cj) ≤ n− d . (8.11)

Using (8.9), (8.10) and (8.11), we get for i 6= j

〈di,dj〉 = 〈ci − v, cj − v〉 ≤ αei + αej − d+
(

1− 1
q

)
(1− α)2n

≤ 2αR − d+
(

1− 1
q

)
(1− α)2n (8.12)

Hence we have 〈di,dj〉 ≤ 0 as long as

R ≤ (1− 1/q)n−
(

(1− 1/q)
αn

2
+

(1− 1/q)n− d
2α

)
.

2We prove this result here and not in Chapter 3 due to the local nature of its context and use.
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Picking α =
√

1− d/n
(1−1/q) =

√
1− δ

(1−1/q) maximizes the “radius” R for which our bound
will apply. Hence we pick

α =
(

1− δ

(1− 1/q)

)1/2
. (8.13)

and

R = n
(

1− 1
q

)(
1−

√
1− δ

(1− 1/q)

)
= n(1− 1

q
)(1− α) . (8.14)

For this choice of α,R, we have 〈di,dj〉 ≤ 0 for every 1 ≤ i < j ≤ M . Now a simple
geometric fact, proved in Lemma 8.6 at the end of this proof, implies that for any vector
x ∈ Rnq that satisfies 〈x,di〉 ≥ 0 for i = 1, 2, . . . ,M , we have

M∑
i=1

〈x,di〉2

〈di,di〉
≤ 〈x,x〉 . (8.15)

We will apply this to the choice x = r. Straightforward computations show that

〈r, r〉 = n (8.16)

〈di,di〉 = 〈ci − v, ci − v〉 = 2αei + (1− α)2(1− 1
q

)n (8.17)

〈r,di〉 = (1− α)
(

1− 1
q

)
n− ei = R− ei . (8.18)

Since each ei ≤ R, we have 〈r,di〉 ≥ 0 for each i, 1 ≤ i ≤ M , and therefore we can apply
Equation (8.15) above. For 1 ≤ i ≤M , define

Wi =
〈r,di〉√
〈di,di〉

=
R− ei√

2αei + (1− α)R
(8.19)

(the second step follows using (8.14), (8.17) and (8.18)). Since each ei ≤ R, we have

Wi =
R− ei√

2αei + (1− α)R
≥ R− ei√

(1 + α)R
=
R− ei√
δn

, (8.20)

where the last equality follows by substituting the values of α and R from (8.13) and (8.14).
Now combining (8.16), (8.17) and (8.18), and applying Equation (8.15) to the choice x = r,
we get

M∑
i=1

W 2
i ≤ n . (8.21)

Now from (8.20) and (8.21) it follows that

M∑
i=1

(R−∆(r, ci))2 ≤ δn2 . (8.22)

This clearly implies the bound (8.8) claimed in the statement of the proposition, since
the codewords ci, 1 ≤ i ≤ M , include all codewords c that satisfy ∆(r, c) ≤ R, and the
remaining codewords contribute zeroes to the left hand side of Equation (8.8). 2

We now prove the geometric fact that was used in the above proof. Once again the reader
should feel to skip its proof and move on to the decoding algorithm in the next section,
since there is no harm taking its statement on faith.
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Lemma 8.6 Let v1,v2, . . . ,vM be distinct unit vectors in RN such that 〈vi,vj〉 ≤ 0 for
1 ≤ i < j ≤ M . Further, suppose x ∈ RN is a vector such that 〈x,vi〉 ≥ 0 for each i,
1 ≤ i ≤M . Then

m∑
i=1

〈x,vi〉2 ≤ 〈x,x〉 (8.23)

Proof: Note that if 〈vi,vj〉 = 0 for every i 6= j, then the vi’s form a linearly independent
set of pairwise orthogonal unit vectors. They may thus be extended to an orthonormal
basis. The bound (8.23) then holds since the sum of squares of projection of a vector on
vectors in an orthonormal basis equals the square of its norm, and hence the sum of squares
when restricted to the vi’s cannot be larger than 〈x,x〉. We need to show this holds even
if the vi’s are more than 90 degrees apart.

Firstly, we can assume 〈x,vi〉 > 0 for i = 1, 2, . . . ,M . This is because if 〈x,vi〉 = 0,
then it does not contribute to the left hand side of Equation (8.23) and may therefore be
discarded. In particular, this implies that we may assume (vi 6= −vj) for any 1 ≤ i, j ≤M .
Since the vi’s are distinct unit vectors, this means that |〈vi,vj〉| < 1 for all i 6= j.

We will prove the claimed bound (8.23) by induction on M . When M = 1 the result is
obvious. For M > 1, we will project the vectors v1, . . . ,vM−1, and also x, onto the space
orthogonal to vM. We will then apply the induction hypothesis to the projected vectors
and conclude our final bound using the analog of (8.23) for the set of projected vectors.
The formal details follow.

For 1 ≤ i ≤ M − 1, define v′i = vi − 〈vi,vM〉vM. Since vi is different from vM and
−vM, each v′i is a non-zero vector. Let ui be the unit vector associated with v′i. Let us
also define x′ = x− 〈x,vM〉vM. We wish to apply the induction hypothesis to the vectors
u1, . . . ,uM−1 and x′.

Now, for 1 ≤ i < j ≤M−1, we have 〈v′i,v′j〉 = 〈vi,vj〉−〈vi,vM〉〈vj,vM〉 ≤ 〈vi,vj〉 ≤ 0,
since all pairwise dot products between the vi’s are non-positive. Hence the pairwise dot
products 〈ui,uj〉, 1 ≤ i < j ≤M−1, are all non-positive. To apply the induction hypothesis
we should also verify that 〈x′,ui〉 > 0 for i = 1, 2, . . . , (M − 1). It will be enough to verify
that 〈x′,v′i〉 > 0 for each i. But this is easy to check since

〈x′,v′i〉 = 〈x,vi〉 − 〈x,vM〉 · 〈vi,vM〉
≥ 〈x,vi〉 (8.24)
> 0

where (8.24) follows since 〈x,vM〉 > 0 and 〈vi,vM〉 ≤ 0.
We can therefore apply the induction hypothesis to the (M−1) unit vectors u1,u2, . . . ,uM−1

and the vector x′. This gives

M−1∑
i=1

〈x′,ui〉
2 ≤ 〈x′,x′〉 . (8.25)

Now, ‖v′i‖2 = 〈v′i,v′i〉 = 〈vi,vi〉 − 〈vi,vM〉2 ≤ ‖vi‖2 = 1 = ‖ui‖2. This implies that
〈x′,v′i〉 ≤ 〈x′,ui〉, for 1 ≤ i ≤M − 1. Also, by (8.24) 〈x′,v′i〉 ≥ 〈x,vi〉, and therefore

〈x,vi〉 ≤ 〈x′,ui〉 , (8.26)

for i = 1, 2, . . . , (M − 1). Also, we have

〈x′,x′〉 = 〈x,x〉 − 〈x,vM〉2 . (8.27)
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The claimed result now follows by using (8.26) and (8.27) together with the inequality
(8.25). 2

8.5.2 The formal decoding algorithm and its analysis

We are now ready to state and prove our result about decoding concatenated codes with a
general inner code.

Theorem 8.7 Consider a family of linear q-ary concatenated codes where the outer codes
belong to a family of Reed-Solomon codes of relative distance ∆ over a field of size at most
polynomial in the blocklength, and the inner codes belong to any family of q-ary linear codes
of relative distance δ. There is a polynomial time decoding procedure to list decode codes
from such a family up to a fractional radius of

(
1− 1

q

)(
1−

√
1− qδ

q − 1

)
−
√
δ(1−∆) . (8.28)

Proof: (Sketch) Consider a concatenated code C with outer code a Reed-Solomon code
over GF(qm) of blocklength n0, relative distance ∆ and dimension (1 − ∆)n0 + 1. We
assume qm ≤ n

O(1)
0 , so that the field over which the Reed-Solomon code is defined is

of size polynomial in the blocklength. Let the inner code Cin be any q-ary linear code
of dimension m, blocklength n1 and relative distance δ. Messages of C correspond to
polynomials of degree at most k0 = (1−∆)n0 over GF(qm), and a polynomial p is encoded
as 〈Cin(p(x1)), . . . , Cin(p(xn0)〉 where x1, x2, . . . , xn0 are distinct elements of GF(qm) that
are used to define the Reed-Solomon encoding.

The proof parallels that of the earlier result (Theorem 8.2) where the inner code was the
Hadamard code. Let y ∈ Fnq be a received word. For 1 ≤ i ≤ n0, denote by yi the portion
of y in block i of the codeword (namely, the portion corresponding to the encoding by Cin

of the ith symbol of the outer Reed-Solomon code).
We now perform the “decoding” of each of the n0 blocks yi as follows. Let

R = n1(1− 1/q)
(

1−

√
1− qδ

q − 1

)
(8.29)

be the Johnson radius of the inner code Cin. For 1 ≤ i ≤ n0 and α ∈ GF(qm), compute the
Hamming distance ei,α between yi and the codeword Cin(α), and then compute the weight
wi,α as:

wi,α
def= max{(R− ei,α), 0} . (8.30)

Note the computation of all these weights can be done by a straightforward brute-force
computation in O(n0n1q

m) = O(n1n
O(1)
0 ) = poly(n) time. Thus all the inner decodings can

be performed efficiently in polynomial time.
By Proposition 8.5 applied to the yi’s, for 1 ≤ i ≤ n0, we know that the above weights

have the crucial combinatorial property∑
α

w2
i,α ≤ δn2

1 , (8.31)

for i = 1, 2, . . . , n0. We will then run the soft decoding algorithm for Reed-Solomon codes
from Theorem 6.21 for this choice of weights. Now, arguing exactly as in the proof of
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Theorem 8.2 that and using (8.31) above, we conclude that we can find in time polynomial
in n and 1/ε, a list of all polynomials p over GF(qm) of degree at most k0 for which the
condition

n0∑
i=1

(R− ei,p(xi)) ≥
√
k0n0δn2

1 + εn1 (8.32)

holds. Recalling the definition of R (Equation (8.29)) and using k0 = (1−∆)n0, we conclude
that we can find a list of all codewords that are at a Hamming distance of at most

n(1− 1
q

)
(

1−

√
1− qδ

q − 1

)
− n

√
δ(1−∆)− εn1 ,

from y. Picking ε < 1/n1, we get decoding up to the claimed fraction of errors. 2

Comment on the error-correction performance of above: The bound of (8.28) is
attractive only for very large values of ∆, or in other words when the rate of the outer Reed-
Solomon code is rather small. For example, for the binary case q = 2, even for ∆ = 3/4,
the bound does not even achieve the product bound (namely, ∆δ/2), for any value of δ
in the range 0 < δ < 1/2 (in fact, the bound as stated in (8.28) is negative unless ∆ is
quite large). However, the merit of the bound is that as ∆ gets very close to 1, the bound

(8.28) approaches the quantity (1 − 1/q)(1 −
√

1− qδ
q−1), and since the relative designed

distance of the concatenated code is ∆ · δ → δ, it approaches the Johnson bound on list
decoding radius. Therefore for ∆ → 1, the result of Theorem 8.7 performs very well and
decodes almost up to the Johnson bound, and hence beyond the product bound, for almost
the entire range of the inner code distances 0 < δ < 1/2. In particular, for ∆ → 1 and
δ → (1− 1/q), the bound tends to (1− 1/q), permitting us to list decode up to close to the
maximum possible fraction (1− 1/q) of errors.

Alternative decoding bound

By slightly modifying the analysis used in proving the combinatorial bound of Proposi-
tion 8.5, one can prove the following alternative bound instead of (8.8).

∑
c∈C

(
max

{(
1− ∆(r, c)

R̃
), 0

})2
≤ q

q − 1
, (8.33)

where we use the same notation as in the statement of Proposition 8.5 and R̃ is defined as

R̃
def=

(
1−

√
1− qδ

q − 1

)2 (
1− 1

q

)
n .

(The only change required in the proof is to replace the lower bound on Wi from Equation
(8.20) with the alternative lower bound Wi ≥ (1 − ei

R̃
)
√
n(q − 1)/q, which follows easily

from the definition of Wi in Equation (8.19).)
Now, replacing the choice of weights in Equation (8.30) in the proof of Theorem 8.7 by

wi,α
def= max

{(
1− ei,α

R̃

)
, 0
}
,
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and then using (8.33), we obtain a decoding algorithm to decode up to a fraction

(
1− 1

q

)(
1−

√
1− qδ

q − 1

)2(
1−

√
1−∆

(1− 1/q)

)
(8.34)

of errors. This bound is positive whenever ∆ > 1/q, and in general appears incomparable
to that of (8.28). However, note that even for ∆ very close to 1, the bound (8.34) does not
approach the Johnson bound, except for δ very close to (1 − 1/q). But as with the bound
(8.28), for ∆ → 1 and δ → (1 − 1/q), the above tends to a fraction (1 − 1/q) of errors. In
particular, it can also be used, instead of (8.28), to obtain the results outlined in the next
section for highly list decodable codes.

8.5.3 Consequence for highly list decodable codes

We now apply Theorem 8.7 with a suitable choice of parameters to obtain an alternative
construction of codes list decodable to a fraction (1−1/q− ε) of errors and which have rate
Ω(ε6). Compared to the construction of Corollary 8.4 that was based on a concatenation
of AG-codes with Hadamard codes, the rate is slightly worse – namely by a factor of
O(log(1/ε)). But the following construction offers several advantages compared to that of
Corollary 8.4. Firstly, it is based on outer Reed-Solomon codes, and hence does not suffer
from the high construction and decoding complexity of AG-codes. In particular, the claim
of polynomial time decoding is unconditional and does not depend on having access to
precomputed advice information about the outer code. Secondly, the inner code can be any
linear code of large minimum distance, and not necessarily the Hadamard code. In fact,
picking a random code as inner code will give a highly efficient probabilistic construction
of the code that has the desired list decodability properties with high probability.

In the next section (Section 8.6) we will present a construction of highly list decodable
codes of rate Ω(ε4). Even with this substantial improvement, the bound proved in this
section is not strictly subsumed. This is for two reasons. Firstly, the results of Section 8.6
apply only to binary linear codes, where as the result below applies to linear codes over
any finite field Fq. Secondly, while the deterministic construction complexity of both the
constructions in this section and the one with rate Ω(ε4) are almost similar (both of them
being fairly high), the codes of this section have very efficient probabilistic constructions,
where as we do not know a faster probabilistic construction for the codes of Section 8.6.
In conclusion, despite the improvement in rate that will be obtained in Section 8.6, the
construction presented next remains interesting.

Theorem 8.8 For every fixed prime power q, the following holds: For every ε > 0, there
exists a family of linear codes over Fq with the following properties:

(i) A description of a code of blocklength, say n, in the family can be constructed deter-
ministically in nO(1/ε4) time. For probabilistic constructions, a Las Vegas construction
can be obtained in time which with high probability will be O(n log n/ε4), or a Monte
Carlo construction that has the claimed properties with high probability can be obtained
in O(log n/ε4) time.

(ii) Its rate is Ω(ε6) and its relative minimum distance is (1− 1/q −O(ε2)).

(iii) There is a polynomial time list decoding algorithm for every code in the family to
perform list decoding up to a fraction (1− 1/q − ε) of errors.
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Proof: We will use Theorem 8.7 with the choice of parameters ∆ = 1 − O(ε2) and δ =
1 − 1/q − O(ε2). Substituting in the bound (8.28), the fraction of errors corrected by
the decoding algorithm from Section 8.5.2 will be (1 − 1/q − ε), which handles Property
(iii) claimed above. Also, the relative distance of the code is at least ∆ · δ, and is thus
(1− 1/q−O(ε2)), verifying the distance claim in (ii) above. The outer Reed-Solomon code
has rate 1−∆ = Ω(ε2). For the inner code, if we pick a random linear code, then it will meet
the Gilbert-Varshamov bound (R = 1−Hq(δ)) with high probability (cf. [vL99, Chapter 5]).
Therefore, a random inner code of rate Ω(ε4) will have relative distance δ = 1−1/q−O(ε2),
exactly as we desire. The overall rate of the concatenated code is just the product of the
rates of the Reed-Solomon code and the inner code, and is thus Ω(ε2 · ε4) = Ω(ε6), proving
Property (ii).

We now turn to Property (i) about the complexity of constructing the code. We may
pick the outer Reed-Solomon code over a field of size at most O(n). Hence, the inner code
has at most O(n) codewords and thus dimension at most O(logq n). The inner code can be
specified by its O(logq n)×O(logq n/ε4) generator matrix G. To construct an inner code that
has relative distance (1− 1/q −O(ε2)), we can pick such a generator matrix G at random,
and then check, by a brute-force search over the at most O(n) codewords, that the code has
the desired distance. Since the distance property holds with high probability, we conclude
that the generator matrix an inner code with the required rate and distance property can
be found in O(n log2 n/ε4) time with high probability. Allowing for a small probability
for error, a Monte Carlo construction can be obtained in O(log2 n/ε4) probabilistic time
by picking a random linear code as inner code (the claimed distance and list decodability
properties (ii), (iii) will then hold with high probability). As the outer Reed-Solomon code
is explicitly specified, this implies that the description of the concatenated code can be
found within the same time bound.

A naive derandomization of the above procedure will require time which is quasi-
polynomial in n. But the construction time can be made polynomial by reducing the
size of the sample space from which the inner codes is picked. For this, we note that, for
every prime power q, there is a small sample space of q-ary linear codes of any desired rate,
called a “Wozencraft ensemble” in the literature, with the properties that: (a) a random
code can be drawn from this family using a linear (in the blocklength) number of random
elements from Fq, and (b) such a code will meet the Gilbert-Varshamov bound with high
probability. We record this fact together with a proof as Proposition 8.10 at the end of this
section. Applying Proposition 8.10 for the choice of parameters b = O(ε−4), k = O(logq n),
and using the fact that for small γ, H−1

q (1−O(γ2)) is approximately (1− 1/q −O(γ)), we
obtain a sample space of linear codes of size qO(logq n/ε

4) = nO(1/ε4) which includes a code
of rate Ω(ε4) and relative distance (1− 1/q−O(ε2)). One can simply perform a brute-force
search for the desired code in such a sample space. Thus one can find an inner code of
rate Ω(ε4) and relative distance (1− 1/q−O(ε2)) deterministically in nO(1/ε4) time. More-
over, picking a random code from this sample space, which works just as well as picking
a general random linear code, takes only O(log n/ε4) time. This reduces the probabilistic
construction times claimed earlier by a factor of log n. Hence a description of the overall
concatenated code can be obtained within the claimed time bounds. This completes the
verification of Property (i) as well. 2

Obtaining an explicit construction: The high deterministic construction complexity or
the probabilistic nature of construction in Theorem 8.8 can be removed at the expense of a
slight worsening of the rate of the code. One can pick for inner code an explicitly specified
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q-ary code of relative distance (1 − 1/q − O(ε2)) and rate Ω(ε6). A fairly simple explicit
construction of such codes is known [ABN+92] (see also [She93]). This will give an explicit
construction of the overall concatenated code with rate Ω(ε8). We record this below.

Theorem 8.9 For every fixed prime power q, the following holds: For every ε > 0, there
exists a family of explicitly specified linear codes over Fq with the following properties:

(i) Its rate is Ω(ε8) and its relative minimum distance is (1− 1/q −O(ε2)).

(ii) There is a polynomial time list decoding algorithm for every code in the family to
perform list decoding up to a fraction (1− 1/q − ε) of errors.

A small space of linear codes meeting the Gilbert-Varshamov bound

We now turn to the result about a small space of linear codes meeting the Gilbert-Varshamov
bound. Such an ensemble of codes is referred to as a “Wozencraft ensemble” in the literature.
Recall that we made use of such a result in the proof of Theorem 8.8.

Proposition 8.10 (cf. [Wel73]) For every prime power q, and every integer b ≥ 1, the
following holds. For all large enough k, there exists a sample space, denoted Sq(b, n) where

n
def= (b+ 1)k, consisting of [n, k]q linear codes of rate 1/(b+ 1) such that:

(i) There are at most qbn/(b+1) codes in Sq(b, n). In particular, one can pick a code at
random from Sq(b, n) using at most O(n log q) random bits.

(ii) A random code drawn from Sq(b, n) meets the Gilbert-Varshamov bound, i.e. has
minimum distance n ·H−1

q ( b
b+1 − o(1)), with overwhelming (i.e. 1− o(1)) probability.

Proof: The fact that a code that meets the Gilbert-Varshamov bound can be picked by
investing a linear amount of randomness is by now a folklore result. The proof we present
here follows the construction due to Weldon [Wel73], which in turn was a generalization of
a construction for the rate 1/2 case that Justesen used in the first explicit construction of
a family of asymptotically good binary codes [Jus72].

Let α be a primitive element of the finite field GF(qk), so that {αi : 0 ≤ i < qk − 1}
are all the non-zero elements of GF(qk). A code in Sq(b, n) will be specified by a b-tuple
Ib = (i0, i1, . . . , ib−1) where each is, 0 ≤ s ≤ b−1, is an integer that satisfies 0 ≤ is ≤ qk−1.
Note that there are qkb = qbn/(b+1) codes in the sample space Sq(b, n), since there are exactly
so many b-tuples. A random code in Sq(b, n) can be picked by choosing a random b-tuple
Ib. Hence the sample space Sq(b, n) meets the requirement (i).

A message a ∈ Fkq , will be encoded by a code indexed by a b-tuple (i0, i1, . . . , ib−1) as
follows: view a as a field element γ ∈ GF(qk) (using some fixed representation of GF(qk)
over GF(q)), then encode it as 〈γ, γαi0 , γαi1 , . . . , γαib−1〉. This gives a (b + 1)-tuple over
GF(qk) or equivalently a word of length (b+ 1)k = n over GF(q), as desired.

The crucial observation used to prove (ii) is the following. Any non-zero vector v ∈ Fnq
can belong to at most one of the codes in Sq(b, n). Indeed, it is easily checked that the b-tuple
associated with a code containing v can be uniquely reconstructed from v. Property (ii) is
now a simple consequence of this fact. Indeed, the number of vectors v ∈ Fnq of Hamming
weight at most w is at most qHq(w/n)n (see for example [vL99, Chapter 1]). Applying this to
w = d

def= n ·H−1
q ( b

b+1 − ζ), the number of vectors of Hamming weight less than or equal to
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d is at most q( b
b+1
−ζ)n. Since a non-zero vector belongs to at most one code among those in

Sq(b, n), this implies that the fraction of codes in Sq(b, n) that have some non-zero codeword
of weight less than or equal to d is at most q−ζn. Picking ζ = o(1), say 1/

√
n, we conclude

that a random code from Sq(b, n) has minimum distance greater than n ·H−1
q ( b

b+1 − o(1))
with very high (i.e., (1− o(1)) probability. 2

8.6 Improved rate using tailor-made concatenated code

We now proceed to a construction of highly list decodable codes that improves over the
rate of ε6 that was achieved by Theorem 8.8 (and also by Corollary 8.4). The results of this
section apply only to binary linear codes. Recall that binary codes that can be list decoded
from (1/2 − ε) errors using polynomial sized lists can have rate at best Ω(ε2). We will be
able to attain a rate of Ω(ε4). The formal result is stated below.

Theorem 8.11 There exist absolute constants b, d > 0 such that for each fixed ε > 0,
there exists a polynomial time constructible binary linear code family C with the following
properties:

1. A code of blocklength N from the family C can be constructed in NO(1/ε2) time deter-
ministically.

2. The rate R(C) of C is at least ε4

b , and its relative distance δ(C) is at least (1/2− ε).
3. There is a polynomial time list decoding algorithm that can list decode codes in C

from up to a fraction (1/2− ε) of errors, using lists of size at most d/ε2. 2

The above theorem will follow from Theorem 8.14, which is stated and proved in Sec-
tion 8.6.2. The basic idea is to use a concatenated code with the outer code being a
Reed-Solomon code and the inner code being a “tailor-made” one. The inner code will
be chosen so that it possesses a rather peculiar looking combinatorial property, which is
formalized in Lemma 8.12. This property will be very useful when it is used in conjunction
with the soft decoding algorithm for Reed-Solomon codes (Theorem 6.21). We first turn to
the existence and construction of the necessary inner code.

8.6.1 The inner code construction

Existence of a “good” code

We now prove the existence of codes that will serve as excellent inner codes in our later
concatenated code construction. The proof is an adaptation of that of Theorem 5.5. We will
then show how such a code can be constructed in 2O(n) time (where n is the blocklength)
using an iterative greedy procedure.

Lemma 8.12 There exist absolute constants σ,A > 0 such that for any ε > 0 there exists
a binary linear code family C with the following properties:

1. The rate of the family satisfies R(C) = σε2

2. For every code C ∈ C and every x ∈ {0, 1}n where n is the blocklength of C, we have∑
c∈C

∆(x,c)≤(1/2−ε)n

(
1− 2∆(x, c)

n

)2
≤ A . (8.35)
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Proof: For every large enough n, we will prove the existence of a binary linear code Ck of
blocklength n and dimension k ≥ σε2n which satisfies Condition (8.35) for every x ∈ {0, 1}n.

The proof will follow very closely the proof of Theorem 5.5 and in particular we will
again build the code Ck iteratively in k steps by randomly picking the k linearly independent
basis vectors b1, b2, . . . , bk in turn. Define Ci = span(b1, . . . , bi) for 1 ≤ i ≤ k (and define
C0 = {0}). The key to our proof is the following potential function WC defined for a code C
of blocklength n (compare with the potential function (5.12) from the proof of Theorem 5.5):

WC =
1
2n

∑
x∈{0,1}n

exp2

 n

A
·

∑
c∈C:∆(x,c)≤(1/2−ε)n

(
1− 2∆(x, c)

n

)2

 , (8.36)

where, for readability, we used exp2(z) to denote 2z. (The constant A will be fixed later in
the proof, and we assume that A > ln 4.) Denote the random variable WCi by the shorthand
Wi. For x ∈ {0, 1}n, define

Rix =
∑
c∈Ci

∆(x,c)≤(1/2−ε)n

(
1− 2∆(x, c)

n

)2
, (8.37)

so that
Wi = 2−n

∑
x

exp2

( n
A
·Rix

)
.

Now, exactly as in the proof of Theorem 5.5, we have Ri+1
x = Rix + Rix+bi+1

when bi+1

is picked outside the span of {b1, b2, . . . , bi}. Now, arguing as in the proof of Theorem 5.5,
one can deduce that

E[Wi+1|Wi = Ŵi] ≤
Ŵ 2
i

1− 2i−n
. (8.38)

when the expectation is taken over a random choice of bi+1 outside span(b1, . . . , bi). Apply-
ing (8.38) repeatedly for i = 0, 1, . . . , k − 1, we conclude that there exists an [n, k]2 binary
linear code C = Ck with

WC = Wk ≤
W 2k

0

1− k2k−n
. (8.39)

If we could prove, for example, that WC = O(1), then this would imply, using (8.36), that
Rkx ≤ A for every x ∈ {0, 1}n and thus C would satisfy Condition (8.35), as desired. To
show this, we need an estimate of (upper bound on) W0, to which we turn next.

Define a = (1/2 − ε)n. Since C0 consists of only the all-zeroes codeword, we have
R0
x = (1− 2wt(x)/n)2 if wt(x) ≤ a and R0

x = 0 otherwise (here we use wt(x) = ∆(x,0) to
denote the Hamming weight of x). We now have

W0 = 2−n
∑

x∈{0,1}n
exp2 (

n

A
R0
x)

≤ 1 + 2−n
a∑
i=0

(
n

i

)
exp2

( n
A

(
1− 2i

n

)2)
≤ 1 + n2−n exp2

(
max
0≤i≤a

{
H
( i
n

)
n+

4n
A

(1
2
− i

n

)2} )
≤ 1 + n2un (8.40)
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where u
def= max0≤y≤(1/2−ε) {H(y) − 1 + 4

A(1
2 − y)2}. We now claim that for every y,

0 ≤ y ≤ 1/2, we have H(y) ≤ 1 − 2
ln 2(1

2 − y)2. One way to prove this is to consider the
Taylor expansion around 1/2 of H(y), which is valid for the range 0 ≤ y ≤ 1/2. We have
H ′(1/2) = 0 and H ′′(1/2) = −4/ ln 2. Also it is easy to check that all odd derivatives
of H(y) at y = 1/2 are non-negative while the even derivatives are non-positive. Thus
H(y) ≤ H(1/2)−H ′′(1/2) (1/2−y)2

2 = 1− 2
ln 2(1

2 − y)2. Therefore

u ≤ max
0≤y≤(1/2−ε)

( 4
A
− 2

ln 2

)(1
2
− y
)2

= −4
( 1

ln 4
− 1
A

)
ε2 , (8.41)

since A > ln 4. Combining (8.39), (8.40) and (8.41), it is now easy to argue that we will have
WC = Wk = O(1) as long as k < −un, which will be satisfied if k < 4( 1

ln 4 −
1
A)ε2n. Thus

the statement of the lemma holds, for example, with A = 2 and σ = 0.85. 2 (Lemma 8.12)

Remark: Arguing exactly as in the remark following the proof of Theorem 5.5, one can
also add the condition δ(C) ≥ (1/2−ε) to the claim of Lemma 8.12. The proof will then pick
bi+1 randomly from among all choices such that span(b1, b2, . . . , bi+1) ∩B(0, (1

2 − ε)n) = ∅.

A greedy construction of the “inner” code

We now discuss how a code guaranteed by Lemma 8.12 can be constructed in a greedy
fashion. We will refer to some notation that was used in the proof of Lemma 8.12. The
algorithm works as follows:

Algorithm Greedy-Inner:

Parameters: Dimension k; ε,A > 0 (where A is the absolute constant from Lemma 8.12)

Output: A binary linear code C = Greedy(k, ε) with dimension k, blocklength n = O(k/ε2)
and minimum distance at least (1/2− ε)n such that for every x ∈ {0, 1}n, Condition (8.35)
holds.

1. Start with b0 = 0.

2. For i = 1, 2, . . . , k:

• Let Ui = {x ∈ {0, 1}n : span(b1, b2, . . . , bi−1, x) ∩B(0, (1/2− ε)n) = ∅ }.

• Pick bi ∈ Ui that minimizes the potential function Wi = 2−n
∑

x 2
n
A
·Rix , where

Rix is as defined in Equation (8.37) (break ties arbitrarily)

3. Output C = span(b1, b2, . . . , bk).

The following result easily follows from the proof of Lemma 8.12 since each of the k iterations
of the for loop above can be implemented to run in 2O(n) time.

Lemma 8.13 Algorithm Greedy-Inner constructs a code Greedy(k, ε) with the desired
properties in k · 2O(n) time.
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8.6.2 The concatenated code and the decoding algorithm

The statement of Theorem 8.11 that we set out to prove, follows immediately from the
concatenated code construction guaranteed by the following theorem.

Theorem 8.14 There exist absolute constants b, d > 0 such that for every integer K and
every ε > 0, there exists a concatenated code CK

def= RS⊕ Greedy(m, ε/2) (for a suitable
parameter m) that has the following properties:

1. CK is a linear code of dimension K, blocklength N ≤ bK
ε4

, and minimum distance at
least (1

2 − ε)N .

2. The generator matrix of CK can be constructed in NO(ε−2) time.

3. CK is ((1
2 − ε)N, d/ε

2)-list decodable; i.e. any Hamming ball of radius (1/2− ε)N has
at most O(ε−2) codewords of CK .

4. There exists a polynomial time list decoding algorithm for CK that can correct up to
(1/2− ε)N errors.

Proof: The code CK is constructed by concatenating an outer Reed-Solomon code CRS over
GF(2m) of blocklength n0 = 2m and dimension k0 = K/m (for some integer m which will
be specified later in the proof) with an inner code Cinner = Greedy(m, ε/2) (as guaranteed
by Lemma 8.13). Since the blocklength of Cinner is n1 = O(m

ε2
), the concatenated code CK

has dimension K and blocklength

N = n0n1 = O
(n0m

ε2

)
. (8.42)

and minimum distance D at least

D ≥ N
(

1− K

mn0

)(1
2
− ε

2

)
. (8.43)

For ease of notation, we often hide constants using the big-Oh notation in what follows, but
in all these cases the hidden constants will be absolute constants that do not depend upon
ε. By Lemma 8.13, Cinner is constructible in 2O(n1) = 2O(m/ε2) time, and since m = lg n0,
the generator matrix for CK can be constructed in NO(ε−2) time. This proves Property 2
claimed in the theorem.

We will now present a polynomial time list decoding algorithm for CK to correct a
fraction (1/2 − ε) of errors using lists of size O(1/ε2). This will clearly establish both
Properties 3 and 4 claimed in the theorem.

The decoding algorithm will follow the same approach as that of Theorems 8.2 and 8.7.
Let y ∈ {0, 1}N be any received word. We wish to find a list of all codewords c ∈ CK such
that ∆(y, c) ≤ (1/2− ε)N . For 1 ≤ i ≤ n0, denote by yi the portion of y in block i of the
codeword (i.e. the portion corresponding to the encoding by Cinner of the ith Reed-Solomon
symbol).

Now, consider the following decoding algorithm for CK . First, the inner codes are
decoded by a brute force procedure that goes over all codewords. Specifically, for each
position i, 1 ≤ i ≤ n0, of the outer Reed-Solomon code, and for each α ∈ GF(2m), the inner
decoder computes a set of weights wi,α defined by:

wi,α = max
{(1

2
− ε

2
−∆(yi, Cinner(α))

)
, 0
}

(8.44)
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Once again all the n0 inner decodings can be performed in O(n0 · 2m ·m/ε2) = O(n2
0m/ε

2)
time, and thus certainly in O(N2) time.

These weights are then passed to the soft decoding algorithm for Reed-Solomon codes
from Theorem 6.21. To analyze the performance of the soft decoding algorithm, we will
make use of the crucial combinatorial property of Cinner which is guaranteed by Lemmas
8.12 and 8.13. Using this property of Cinner, we have, for each i, 1 ≤ i ≤ n0,∑

α∈GF(2m)

w2
i,α ≤ B′ , (8.45)

for some absolute constant B′.
Using the soft decoding algorithm to complete the decoding implies that one can find,

in time polynomial in n0 and 1/γ, a list of all codewords c ∈ CK that satisfy

n0∑
i=1

wi,ci ≥

√√√√(n0 −
n0 −K/m+ 1

1 + γ

)
·
∑
i,α

w2
i,α . (8.46)

In the above, γ > 0 is a parameter to be set later, and we have abused notation to denote
wi,ci = wi,αi where αi ∈ GF(2m) is such that Cinner(αi) = ci.

The soft decoding algorithm, used as stated in Theorem 6.21, can decode even with the
choice γ = 0 in the above Condition (8.46). However, with a positive value of γ, we can
appeal to the weighted Johnson bounds from Chapter 3, specifically the result stated in
Part (ii) of Corollary 3.7, to conclude that there will be at most (1 + 1/γ) codewords c that
satisfy Condition (8.46) for any choice of weights wi,α. Hence, our decoding algorithm, too,
will output only a list of at most O(1/γ) codewords.

We now analyze the number of errors corrected by the algorithm. Using (8.44) and
(8.45), we notice that Condition (8.46) will be satisfied if

n0∑
i=1

(1
2
− ε

2
− ∆(yi, ci)

n1

)
≥

√(
γn0 +

K

m

)
· n0B′

⇐= ∆(y, c) ≤ N

(
1
2
− ε

2
−
√
B′
(
γ +

K

mn0

))
⇐= ∆(y, c) ≤

(1
2
− ε
)
N ,

where the last step holds as long as we pick γ ≤ ε2

8B′ and m such that

K

mn0
=

K

m2m
≤ ε2

8B′
. (8.47)

Thus we have a decoding algorithm that outputs a list of all O(1/γ) = O(ε−2) codewords
that differ from y in at most (1/2 − ε)N positions. This establishes Properties 3 and 4
claimed in the theorem.

Also, by (8.47), we have mn0 = O(K/ε2). Plugging this into (8.42) and (8.43), we
have that the blocklength N of CK satisfies N = O(K/ε4) and the distance D satisfies
D ≥ (1/2 − ε)N . This establishes Property 1 as well, and completes the proof of the
theorem. 2
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Discussion: The time required to construct a code with the properties claimed in Theo-
rem 8.14, though polynomial for every fixed ε, grows as NO(ε−2). It is desirable to obtain
a construction time of the form O(f(ε)nc) where c is a fixed constant independent of ε,
for some arbitrary function f . A family whose codes can be constructed within such time
bounds is often referred to as being uniformly constructive (see [ABN+92] for a formal
definition).

If one uses the best known algebraic-geometric codes (namely those discussed in Sec-
tion 6.3.9) as the outer code instead of Reed-Solomon codes, one can carry out the code
construction of Theorem 8.14 in 2O(ε−2 log(1/ε))N c time for a fixed constant c (the constant
c will depend upon the time required to construct the outer algebraic-geometric code).
This is not entirely satisfying since the construction complexity of the necessary algebraic-
geometric codes is still quite high. A further drawback is that the promise of a polynomial
time decoding algorithm will hinge on assumptions about specific representations of the
AG-code.

The construction of Theorem 8.8 had a similar drawback in terms of high deterministic
construction time. Nevertheless, it had a highly efficient probabilistic construction that
had the claimed properties with high probability. A similar probabilistic construction for
the codes of Theorem 8.11 is not known. The reason for this is that the existence result
of Lemma 8.12 is not known to hold with high probability for a random code (unlike the
situation in Theorem 8.8 where it is known that a the rate vs. distance trade-off of a random
linear code meets the Gilbert-Varshamov bound with high probability). Thus the following
is an interesting open question:

Open Question 8.1 a) Is there a randomized (Monte Carlo) construction of a family
of binary linear codes of rate Ω(ε4) list decodable up to a fraction (1/2− ε) of errors,
that runs in, say, quadratic time in the blocklength?

b) Is there a uniformly constructive family of binary linear codes which can be list decoded
efficiently from a fraction (1/2− ε) errors and which have rate Ω(ε4) or better?

8.7 Open Questions

In addition to the above, there are two central open questions regarding the contents of this
chapter. These are listed below.

Open Question 8.2 Let C be a q-ary concatenated code of designed distance ∆ · δ with
the outer code being a Reed-Solomon code of relative distance ∆, and the inner code being
an arbitrary q-ary code of relative distance δ. Is there a polynomial time list decoding
algorithm for C to decode up to its Johnson radius? In other words, is there a polynomial
time algorithm to list decode up to a fraction (1− 1/q)(1−

√
1− ∆·δ

(1−1/q)) of errors?

In fact the following “easier” question is also open. As mentioned earlier, the GMD
algorithm can be used to unique decode such codes up to the product bound (i.e. a fraction
∆δ/2 of errors) in polynomial time [For66a, Jus72]. The question below simply asks if one
can always, for every concatenated code with an outer Reed-Solomon code, perform efficient
list decoding beyond the product bound.
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Open Question 8.3 Let C be a q-ary concatenated code of designed distance ∆ ·δ with the
outer code being a Reed-Solomon code of relative distance ∆, and the inner code being an
arbitrary q-ary code of relative distance δ. Is there a polynomial time list decoding algorithm
for C to decode up to a fraction f(∆, δ) of errors, where f is a real-valued function that
takes values in [0, 1− 1/q) and which satisfies f(∆, δ) > ∆δ

2 in the entire range 0 < ∆ < 1
and 0 < δ < 1 − 1/q ? In other words, is there a polynomial time algorithm to always list
decode such concatenated codes beyond the product bound ?

Finally, we state the open question concerning the best rate of a constructive family of
binary codes with very high list decodability.

Open Question 8.4 Is there a polynomial time constructible family of binary codes which
have rate Ω(εa) for some a < 4 and which have a polynomial time list decoding algorithm
to decode up to a fraction (1/2− ε) of errors ?

We know that existentially a = 2 is achievable and that this is the best possible.

We note that even if Question 8.2 is answered in the affirmative, the rate achievable
for a list decoding radius of (1 − 1/q − ε) is only O(ε6 log(1/ε)). This is because we need
to have ∆ = 1 − O(ε2) and δ = (1 − 1/q − O(ε2)) in order for the Johnson radius to be
(1− 1/q − ε). The former implies that the rate of the Reed-Solomon code is O(ε2) and the
latter, by appealing to the linear programming bounds [MRRW77], implies that the rate of
the inner code is O(ε4 log(1/ε)). The overall rate is thus at most O(ε6 log(1/ε)). An answer
in the affirmative to Question 8.4, therefore, has to either not be based on concatenation at
all, or must use a special purpose construction, akin to the one in Section 8.6, which can be
list decoded beyond its Johnson radius. In the next chapter, we will present a probabilistic
construction with Ω(ε3) rate, but the decoding time will be sub-exponential as opposed to
polynomial.

8.8 Bibliographic Notes

Concatenated codes were defined and studied extensively in the seminal Ph.D. work of
Forney [For66a], and by now have deservedly become standard textbook material. For-
ney [For66b] developed a Generalized Minimum Distance (GMD) decoding algorithm for
Reed-Solomon codes, and used it as a soft decoding algorithm to decode concatenated
schemes with outer Reed-Solomon code. He presented a detailed estimation of the proba-
bility of decoding error for such a scheme. Justesen [Jus72] used a concatenated scheme to
give the first explicit construction of an asymptotically good binary code family, thereby
refuting the popular myth existing at that time that explicitly specified codes would prob-
ably never be asymptotically good. Justesen also gave an algorithm using GMD decoding
to decode his concatenated codes up to the product bound (i.e. half the designed distance).
In fact, his result implicitly shows that any concatenated code whose outer code has an
efficient error-and-erasure decoding algorithm (which in turn implies a GMD algorithm by
results of Forney [For66b]) can be uniquely decoded up to the product bound. The GMD
based algorithm for unique decoding concatenated codes up to the product bound is also
described in detail in Appendix A of this thesis.

The inner decoding stage in all these algorithms passed to the outer Reed-Solomon de-
coder at most one field element together with an associated weight (confidence information)
for each outer codeword position. This was also the case in a recent work of Nielsen [Nie00]
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who investigated in detail decoding algorithms for concatenated codes where the inner code
is decoded uniquely but instead of the GMD algorithm, the weighted list decoding algorithm
(from Chapter 6) is used for decoding the outer Reed-Solomon code. In contrast, in the
algorithms discussed in this chapter, the inner decoders pass to the outer Reed-Solomon
decoder not one, but several field elements, each with an associated weight, as candidate
symbols for each position. We should mention that Nielsen [Nie00] also considers a decoding
algorithm where the inner codes are list decoded beyond half the minimum distance, but
does not present a quantitative analysis of such an algorithm. Indeed to perform such an
analysis one needs at least a partial knowledge of the weight distribution of cosets of the
inner code, which is a highly non-trivial task in itself. The result of Proposition 8.5 from
this chapter provides a non-trivial, and apparently new, bound on the weight distribution of
cosets given the knowledge of only the minimum distance of the code. We believe, though,
that to really reap the benefits of the soft Reed-Solomon decoder in concatenated code
constructions, one must use special purpose inner codes for which we have good bounds on
the weight distributions of cosets. In fact, our results in Section 8.6 follow this approach,
but we believe there is still lots of improvements to be made.

The decoding algorithms from Section 8.4 when the inner code is the Hadamard code
appear in [GS00]. The results of Section 8.5 have not yet been published in a confer-
ence/journal, and are stated for the first time in this thesis. The code construction and
decoding algorithm of Section 8.6 appear in [GHSZ00].
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Chapter 9

New, Expander-based List
Decodable Codes

9.1 Introduction

In the previous chapters, we have already seen constructions of asymptotically good codes
of good rate over both large alphabets (the AG-codes from Chapter 6) and the binary
alphabet (the concatenated codes from Chapter 8), that are efficiently list decodable up to
a “maximum” possible radius. By “maximum” possible radius we mean list decoding up to
a fraction (1 − 1/q − ε) of errors for q-ary codes. This translates into a fraction (1 − ε) of
errors for codes over large enough alphabets, and a fraction (1/2 − ε) of errors for binary
codes. For codes with such large list decodability, which we called “highly list decodable
codes”, the goal is to find efficient constructions that achieve good rate (typically of the
form Ω(εa) for some reasonably small a), together with efficient decoding algorithms.

The earlier results achieve fairly non-trivial trade-offs in this regard. The list decoding
algorithm for AG-codes from Chapter 6 implies highly list decodable codes over an alphabet
of size O(1/ε4) that have rate Ω(ε2). The results of the previous chapter on concatenated
codes give constructions of highly list decodable binary codes of rate Ω(ε4).

One shortcoming of the former result is that the necessary AG-codes are very compli-
cated to construct and the known decoding algorithms need a non-standard representation
of the code for the claim of polynomial runtime to hold. Families of Reed-Solomon codes
also offer similar list decodability with a rate of Ω(ε2), but their alphabet size is at least as
large as the blocklength and hence they do not achieve a alphabet size that is a constant
dependent only on ε. In fact, other than AG-codes, there were no other known families of
codes that are list decodable to a fraction (1− ε) of errors, have reasonably large rate, and
are defined over a constant-sized alphabet.

The other shortcomings of the above mentioned results are that there is potential for
improvement in the rate. The existential results (Chapter 5) show that a rate Ω(ε) is
possible for highly list decodable codes over large alphabets, and a rate Ω(ε2) is possible
for binary codes. Thus the constructive results are not optimal with respect to the rate
(though they are not off by very much).

In this chapter, we present novel constructions of list decodable codes that address the
above shortcomings. Our codes are simple to construct and decode, and share the common
thread of using expander (or expander-like) graphs as a component. The expanders are used
as a “dispersing” component which serve the purpose of redistributing symbols in order to
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ensure a near-uniform distribution of errors between the various blocks of the codeword.
They thereby enable the design of efficient decoding algorithms that correct a large number
of errors through various forms of “voting” procedures.

The basic idea behind the expander-based constructions of this chapter will also find use
later in Chapter 11, where we will present codes of good rate that are uniquely decodable up
to a “maximum” possible radius in linear time. This indicates the quite general applicability
and power of the techniques used in this chapter.

An important combinatorial tool used in our constructions are “pseudolinear codes”.
We view the construction and use of pseudolinear codes as being of independent interest,
and hope that it will find several applications in the future.1 Pseudolinear codes possess
the useful properties of efficient encoding and succinct representation which all linear codes
automatically have, but they have the additional nice property that random pseudolinear
codes (with suitable parameters) inherit the same list-of-L decoding properties as completely
general random codes.

We next present a detailed statement of the results of this chapter, followed by an
overview of the main techniques used.

9.2 Overview of Results and Techniques

9.2.1 Main results

Our constructions of highly list decodable codes give the following:

(1) Codes of rate Ω(ε2) over an alphabet of size 2O(ε−1 log(1/ε)), list decodable up to a
fraction (1− ε) of errors in near-quadratic time.

(2a) Codes of rate Ω(ε) over an alphabet of size 2O(ε−1 log(1/ε)), list decodable up to a
fraction (1− ε) of errors in sub-exponential time.

(2b) Binary codes of rate Ω(ε3) list decodable up to a fraction (1/2 − ε) of errors in sub-
exponential time.

(3) Codes of rate Ω(t−3ε2+2/t) over an alphabet of size O(1/εb), list decodable up to a
fraction (1 − ε) of errors. Here t ≥ 1 is an arbitrary integer and b > t an arbitrary
real.

The first three constructions (1, 2a, 2b) use the expander-based approach mentioned in
the introduction. The last construction does not use expanders and is based on multiple
concatenated codes combined together by juxtaposing symbols together — we call such
codes juxtaposed codes for purposes of easy reference.2 We discuss these codes also in this
chapter since their construction has much the same motivation as that of (1). Moreover,
they also use some of same machinery that construction (1) uses; specifically they too
use pseudolinear codes as inner codes in a concatenated scheme. The main advantage of
the juxtaposed code construction is that they can achieve better alphabet size than the
construction (1), at the expense of a slight worsening of the rate.

1Pseudolinear codes are also used in the next chapter on list decoding from erasures.
2Juxtaposed codes will be used again in the next chapter to obtain constructions of good codes with very

high list decodability from erasures. Codes similar to our juxtaposition based constructions are also called
multilevel concatenated codes in the literature [Dum98], but we believe the term juxtaposed codes is more
natural and we use this terminology.
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The detailed specification of all parameters of our expander-based constructions are
listed in Figure 9-1. We next present a discussion of the individual results and compare
them with previously known constructions.

No Alphabet Decoding Rate Encoding Decoding Const. time
radius time time (probabilistic)*

1 2ε
−1 log(1/ε) 1− ε ε2 n log n n2 log n log2 n/ε

2a 2ε
−1 log(1/ε) 1− ε ε n2(1−γ) log2 n 2n

γ log(1/ε) n2(1−γ)/ε

2b 2 1/2− ε ε3 n2(1−γ) log2 n 2n
γ log(1/ε) n2(1−γ)/ε

3 2log2(1/ε) 1− ε ε2 log−3(1/ε) n log2 n n1/ε log2 n/ε2

Figure 9-1: The parameters of our codes. n stands for the length of the code. For readability,
the O(·) and Ω(·) notation, and certain logO(1)(1/ε) factors have been omitted. The value
of γ is in the interval (0, 1]; its value influences the rate by a constant factor. The decoding
radius shows the fraction of errors which the decoding algorithms can correct. .
∗A detailed discussion on the construction times is presented later in this Section.

Our first code (1) enables efficient list decodability from up to a fraction (1−ε) of errors,
for an arbitrary constant ε > 0. Its distinguishing feature is the near-quadratic decoding
time and fairly high (namely Ω(ε2)) rate, while maintaining a constant alphabet size. The
only other known constructible codes with comparable parameters are certain families of
algebraic-geometric codes [TVZ82, GS95b]. As discussed in Chapter 6 (specifically in The-
orem 6.38), such AG-codes can achieve Ω(ε2) rate and O(1/ε4) alphabet size. While they
yield a much better alphabet size, AG-codes suffer from the drawback of complicated con-
struction and decoding algorithms. It is only known how to list decode them in polynomial
time using certain auxiliary advice (of polynomial size), and it not known how to compute
this information in sub-exponential (randomized or deterministic) time (the reader might
recall the discussion about this in Chapter 6, Section 6.3.9). Even regarding construction
complexity, only very recently [SAK+01] showed how to construct the generator matrix of
the necessary AG-codes in near-cubic time. In comparison, our construction time, although
probabilistic, is essentially negligible.

The second code (2a) also enables list decodability up to a fraction (1 − ε) of errors.
Its distinguishing feature is the optimal Ω(ε) rate. The only previously known codes with
such rate were purely random codes (even Reed-Solomon codes that have super-constant
alphabet size only guarantee Ω(ε2) rate). However, the best known decoding time for
random codes is 2O(n), and it is likely that no significantly better algorithm exists. Our
codes also have significant random components; however, they can be decoded substantially
faster in sub-exponential time. The binary version (2b) of the aforementioned codes, which
correct up to a fraction (1/2 − ε) of errors, also beat the Ω(ε4) rate of best constructive
codes from the previous chapter (specifically, the result of Theorem 8.11). They are only
off by a factor of O(ε) from the optimal Ω(ε2) rate implied by the existential results of
Chapter 5.

For the codes (3), the rate is not as good as the construction (1), but one can get
substantial improvements in alphabet size for a relatively small worsening of the rate. For
example, as listed in Figure 9-1, it can achieve a rate of Ω(ε2 log−3(1/ε)) for an alphabet
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size of 2O(log2(1/ε)). By worsening the rate further, it is even possible to achieve an alphabet
size better than O(1/ε4), which is the alphabet size of the best known AG-codes that are
list decodable up to a fraction (1− ε) of errors (see Theorem 9.19).

Construction times. All of our constructions use the probabilistic method to obtain
certain “gadgets” which are then used together with explicitly specified objects. The prob-
abilistic method generates such building blocks with high probability. Therefore, our prob-
abilistic construction algorithms are randomized Monte Carlo, and the claimed list decod-
ability property holds with high probability over the choice of the random components. We
note, however, that our probabilistic algorithms using R random bits can be derandomized
and converted into deterministic algorithms using O(R) space and running in 2O(R) time
in a straightforward manner. (The resulting code will be guaranteed to have the claimed
list decodability property, i.e., the derandomization includes “verification” as well.) For the
codes (1), a naive derandomization would only give a quasi-polynomial time construction.
Nevertheless, by using the method of conditional expectations for derandomization, we will
show the code can be constructed deterministically in time nO(ε−1 log(1/ε)). Similarly, for
our constructions (2a,2b), a conditional expectations based derandomization enables a de-
terministic construction in (roughly) 2O(n1−γ) time. Note that the both the probabilistic
and deterministic construction times of (2a,2b) get worse as the decoding time gets better
and better.

We stress that modulo the gadget construction, generating each symbol of a codeword
can be done in polylogarithmic time.

9.2.2 Our techniques

Expander-based constructions

At a high level, the codes (1), (2a,2b) are all constructed using a similar scheme. The basic
components of the constructions are: a “left” code (say, C) and a “dispersing” graph G,
and in the case of binary codes, a “right” binary code C ′. The left code C is typically
a concatenation of efficient list decodable codes, namely Reed-Solomon codes and certain
good list decodable “pseudolinear” codes whose existence we prove in Section 9.3. Such
pseudolinear codes can either be found by brute-force or, one can pick a code at random
and thus get a much faster probabilistic construction that works with high probability. The
graph G is a suitable expander with good vertex-expansion, i.e., a bipartite graph with
the property that the neighborhood of every reasonable sized subset of the left side (say,
consisting of a fraction 1/2 of the left nodes) misses at most a fraction ε of the nodes on
the right.

Given the above components, the codes are constructed as follows. For each codeword
x of C, we construct a new codeword y by distributing the symbols of x from left to right
according to the edges in G. The juxtaposition of symbols “sent” to each right node of G
forms a symbol of the codeword y of the final code C1. The code C1 will thus be defined
over a large alphabet. See Figure 9-2 for a sketch of the basic construction scheme. For
construction (2b), in order to get a binary code, we add a final level of concatenation with
an appropriate binary code C ′. This is similar to the construction due to Alon et al in
[ABN+92]. Our contribution is in the design of efficient decoding algorithms to correct a
large fraction of errors for such code constructions.

The role of the dispersing graph G is, roughly speaking, to convert an arbitrary dis-
tribution of errors that could exist between the various blocks of the (concatenated) left
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Figure 9-2: Basic structure of our code constructions. To get binary code constructions,
each symbol of C1 is further concatenated with a good, constant-sized binary code.

code C into a near-uniform distribution. This permits recovery of a (somewhat corrupted)
received word x for C from a heavily corrupted received word y for the code C1, using a
certain “voting” scheme. The voting scheme we use is very simple: each position of y votes
for all positions of x which are connected to it by an edge of G. This allows us to collect
a list of potential symbols for each position of x. These lists are then used by a suitable
decoding algorithm for C to finish the decoding.

The specifics of the implementation of the above ideas depend on the actual code con-
struction. For the code (1), we take the left code C to be a concatenation of a Reed-Solomon
code and a suitable pseudolinear code. Such a code can be list decoded in near-quadratic
time using the Reed-Solomon decoding algorithms discussed in Chapter 6. The codes (2a,2b)
are constructed by picking C to be a concatenation of a constant number of levels of “pseudo-
linear” codes with an outermost Reed-Solomon code (we call such codes multi-concatenated
codes). The pseudolinear codes can perform list decoding when given as input a vector
of lists, one per codeword position, such that at least half of the lists contain the correct
symbol. The important fact is that such pseudolinear codes exist with a fixed constant rate
that is independent of the length of the lists that are involved. This allows the decoding
algorithm to propagate the candidate symbols through the concatenation levels while de-
creasing the rate only by a small factor at each level. The parameters are so picked that
the decoding of each of these pseudolinear codes as well as the overall code can be done in
sub-exponential time.

Juxtaposed code constructions

The second approach behind our code constructions, which is used in Section 9.6, is aimed
at obtaining similar (or slightly worse) rates using smaller alphabet size, and is the basis of
the constructions described in Section 9.6. In this approach, multiple Reed-Solomon codes
(of varying rates) are concatenated with several different inner codes (of varying rate and
list decodability). Corresponding to each Reed-Solomon and inner code pair, we get one
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concatenated codeword, and the final encoding of a message is obtained by “juxtaposing
together” the symbols from the various individual concatenated codewords.

The purpose of using multiple concatenated codes is that depending on the distribution
of errors in the received word, the portions of it corresponding to a significant fraction of a
certain inner encoding (that depends on the level of non-uniformity in the distribution of er-
rors) will have relatively few errors. These can then be decoded to provide useful information
about a large fraction of symbols to the decoder of the corresponding outer Reed-Solomon
code. Essentially, depending on how (non)-uniformly the errors are distributed, a certain
concatenated code “kicks in” and enables recovery of the message. The use of multiple
concatenated codes reduces the rate compared to the expander based constructions, but we
gain in the alphabet size. For example, for a near-quadratic (namely, Ω(ε2 log−O(1)(1/ε)))
rate, the alphabet size can be quasi-polynomial as opposed to exponential in 1/ε.

9.2.3 A useful definition

For our results, the following (more general) notion of good list decodability proves ex-
tremely useful — for purposes of disambiguation from (e, `)-list decodability, we call this
notion “list recoverability”.

Definition 9.1 For α, 0 < α < 1, and integers L ≥ ` ≥ 2, a q-ary code C of blocklength
n is said to be (α, `, L)-list recoverable if given arbitrary “lists” Li ⊆ Fq of size at most `
for each i, 1 ≤ i ≤ n, the number of codewords c = 〈c1, . . . , cn〉 ∈ C such that ci ∈ Li for at
least αn values of i, is at most L.

We will loosely refer to the task of decoding a code under the above model as “list recovering”
the code.

Remark: A code of blocklength n is (α, 1, L)-list recoverable if and only if it is ((1−α)n,L)-
list decodable.

9.3 Pseudolinear Codes: Existence results and Properties

In this section, we prove existence results using the probabilistic method for codes which
serve as inner codes in our concatenated code constructions. The inner codes will be “pseu-
dolinear codes” with appropriate parameters. We now formally define the notion of “pseu-
dolinear” code families and prove some of the basic list decodability properties offered by
random pseudolinear codes. An informal description of pseudolinear codes was given in
Chapter 2, where we had put off a more detailed treatment to later when the machinery is
really used (which is in this chapter).

The notion of pseudolinear codes appears to be new, and it plays a critical role in
translating list decodability results for general, non-linear codes into similar results for codes,
which albeit not linear, still have a succinct description, and allow for efficient encoding.
In our applications, these pseudolinear codes, which are typically used as inner codes in
suitable concatenated schemes, are critical in getting efficient constructions for our codes.

9.3.1 Pseudolinear (Code) Families

Informally, an L-wise independent code family is a sample space of codes such that the
encodings of any L non-zero messages are completely independent for a random code drawn
from the family. The formal definition follows.
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Definition 9.2 An L-wise independent (n, k)q-code family F is a sample space of codes
that map k symbols over Fq to n symbols over Fq such that for every set of L non-zero
messages x1,x2, . . . ,xL ∈ Fkq , the random variables C(x1), C(x2), . . . , C(xL) are completely
independent, for a code C picked uniformly at random from the family F .

A random code picked from an L-wise independent family often tends to have very good
list decoding properties for decoding with list size L, owing to the mutual independence
of any set of L (non-zero) codewords. An example of an L-wise independent code family
is the space of all general, non-linear q-ary codes of blocklength n and dimension k, which
is clearly L-wise independent, for all L, 1 ≤ L < qk. While a random, non-linear code
has excellent randomness properties, it comes from a very large sample space and there is
no succinct representation of a general code from the family.3 We now define a family of
codes which we call pseudolinear that has the desired L-wise independence property and
in addition is succinct. Thus a random code drawn this family has the desired randomness
properties, can be succinctly represented, and has an efficient encoding procedure.

Definition 9.3 (Pseudolinear Codes) For a prime power q, integer L ≥ 1, and positive
integers k, n with k ≤ n, an (n, k, L, q)-pseudolinear family F(n, k, L, q) of codes is defined
as follows. Let H be the parity check matrix of any q-ary linear code of blocklength (qk−1),
minimum distance at least (L+ 1) and dimension qk−1−O(kL) (for example, one can use
parity check matrices of q-ary BCH codes of designed distance (L + 1), cf. [AS92, Chap.
15]). A random code CA in the pseudolinear family F(n, k, L, q) is specified by a random
n × O(kL) matrix A over Fq. Under the code CA, a message x ∈ Fkq \ {0} is mapped to

A ·Hx ∈ Fnq where Hx ∈ FO(kL)
q is the column of H indexed by x (viewed as an integer in

the range [1, qk)). (We also define H0 = 0 to be the all-zeroes vector.)

Given 1 ≤ x < qk, a description of the column Hx can be obtained in time polynomial in
k and log q, since there are explicit descriptions of the parity check matrices of BCH codes
of distance at least (L+1) and blocklength (qk−1), in terms of the powers of the generating
element of GF(qk) over GF(q) (see, for example, [MS81, Chap. 9]). Hence encoding as per
these codes is an efficient operation. In addition to these complexity issues, the crucial
combinatorial property about these pseudolinear codes that we exploit is that every set of
L fixed non-zero codewords of the code CA, for a random A, are completely independent.
This is formalized in Lemma 9.1 below. Note also that, unlike general non-linear codes,
codes from a pseudolinear family have a succinct representation, since they can be specified
using the n × O(kL) “generator” matrix A and poly(k, log q) sized information about the
generating element of GF(qk) over GF(q).

Lemma 9.1 For every n, k, L, q, an (n, k, L, q)-pseudolinear family is an L-wise indepen-
dent (n, k)q family of codes.

Proof: Since H defines the parity check matrix of a code, say C, that has distance at least
(L + 1), every set of L columns of H are linearly independent. Indeed, suppose this were
not the case. Then there must exist a linear dependence α1Ha1 + . . . + αLHaL = 0 for
integers 1 ≤ a1 < a2 < · · · < aL < qk and αi ∈ Fq with not all αi = 0. This implies that

3The space of random [n, k]q linear codes has the desired succinctness properties, but however is in general
not even 3-wise independent (it is 2-wise (or pairwise) independent, though). This is because for any linear
map E : [q]k → [q]n, we have E(x+ y) = E(x) + E(y) for every x, y ∈ [q]k.
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the non-zero vector y which has symbol αi at location ai for i = 1, 2, . . . , L and zeroes at
all other locations satisfies H · y = 0 and hence belongs to the code C. But the Hamming
weight of y is at most L, a contradiction to the fact that the distance of C is at least (L+1).

Now consider any L non-zero codewords corresponding to messages a1, a2, . . . , aL where
each ai ∈ [1, qk). They are encoded into the codewords ci = A·Hai . Since the variousHai are
linearly independent, for a random matrix A, the various ci’s are completely independent.
This follows from the general fact that the images of a set S = {v1, . . . ,vL} of linearly
independent vectors in F

m
q , under a linear transformation defined by a random n × m

matrix A, are completely independent. This fact is easy to prove since the vi’s, being
linearly independent, can be mapped by an invertible linear map into the standard basis
vectors e1, e2, . . . , eL, and the mutual independence of A·e1, A·e2, . . . , A·eL for a completely
random A is obvious. 2

Remark: We note here that one of the standard constructions of d-wise independent
binary random variables (say, X1, X2, . . . , Xn) uses arguments similar to the above (cf.
[AS92, Chap. 15], [Jof74]). It also proceeds by the construction of a set S ⊆ {0, 1}a,
where a = O(d log n), consisting of n vectors with the property that any subset of d vectors
in S are linearly independent. The set S is picked to be the columns of a parity check
matrix of a binary code of blocklength n, dimension (n − a), and minimum distance at
least (d+ 1). The random variable Xi is defined by picking a random vector in {0, 1}a and
taking its dot product with the i’th vector in S. The fact that any d of the vectors in S are
linearly independent translates into the d-wise independence of the Xi’s. Using parity check
matrices of appropriate BCH codes, gives d-wise independent sample spaces of O(nbd/2c)
size. This size is in fact optimal, up to a constant factor, cf. [AS92, Chap. 15].

We next define the notion of an infinite family of (L, q)-pseudolinear codes of increasing
blocklength. Since we are interested in the asymptotic performance of codes, we will be
interested in such code families of a certain rate.

Definition 9.4 An infinite family of (L, q)-pseudolinear codes CL,q is obtained by picking
codes {CAi}i≥1 of blocklengths ni (with ni → ∞ as i → ∞) where CAi belongs to the
(ni, ki, L, q)-pseudolinear family.

9.3.2 Probabilistic constructions of good, list decodable pseudolinear codes

We now analyze the list decodability properties of random pseudolinear codes and use it
to prove the existence of pseudolinear codes with a certain trade-off between rate and list
decodability. We stress that all existential results of this section are in fact “high probability
results”; in other words, a random pseudolinear code with appropriate parameters achieves
the claimed rate and list decodability properties with (1 − o(1)) probability. We will use
this fact implicitly when we use the codes guaranteed by this section in later (probabilistic)
code constructions.

Lemma 9.2 For every prime power q ≥ 2, every integer `, 1 ≤ ` ≤ q and L > `, and every
α, 0 < α < 1, there exists an infinite family of (L, q)-pseudolinear codes of rate r given by

r ≥ 1
lg q

(
α lg(q/`)−H(α)−H(`/q) · q

L

)
− o(1) , (9.1)

such that every code in the family is (α, `, L)-list recoverable. (Recall that for 0 ≤ x ≤ 1,
H(x) = −x lg x− (1− x) lg(1− x) denotes the binary entropy function of x).
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Proof: The proof follows by employing the probabilistic method. Let n be large enough
and r be as in the statement of the lemma. We will show that a code C picked at random
from an (n, rn, L, q)-pseudolinear family is (α, `, L)-list recoverable with high probability.

Let us estimate the probability that the code C is not (α, `, L)-list recoverable. Fix a
choice of Li, 1 ≤ i ≤ n, where each Li is a subset of [q] of size `. The probability that there
exist some L non-zero codewords in C each of which has some element from Li in its i’th
coordinate for at least αn values of i, is clearly at most(

qrn − 1
L

)((
n

αn

)( `
q

)αn)L
. (9.2)

Even pessimistically assuming that the zero codeword of C has an element from Li for at
least αn values of i, the above still upper bounds the probability that there exist (L + 1)
codewords in C that violate (α, `, L)-list recoverability for this choice of Li’s. By a union
bound on the number of collections of the Li’s, the overall probability that C is not (α, `, L)-
list recoverable is at most

(
q
`

)n times the above quantity, and hence is at most(
q

`

)n
· qrnL · 2H(α)nL · 2− lg(q/`)αnL (9.3)

which is easily seen to be o(1) for r as in Equation (9.1). Hence there is a (1 − o(1))
probability that the code C has the claimed list recoverability properties. 2

Corollary 9.3 Let α > 1 be an arbitrary constant. Then there exist positive constants
aα, bα such that for every ε > 0, there exist q = O(1/ε2), L = aα/ε and a family of
(L, q)-pseudolinear codes of rate bα which is (α, 1/ε, L)-list recoverable.

Proof: Follows by a straightforward substitution of ` = 1/ε and q = O(1/ε2) in the bound
of Equation (9.1). 2

We now obtain the following results for the “usual” notion of list decodability.

Lemma 9.4 For every prime power q ≥ 2, every p, 0 < p < 1, and every integer L ≥ 2,
there exists an infinite family CL,q of (L, q)-pseudolinear codes of rate r given by

r ≥ 1−Hq(p)−
1
L
− o(1) ,

such that LDRL(CL,q) ≥ p.

Proof: The proof follows by an application of the probabilistic method similar to that of
Lemma 9.2. Let us pick a code C at random from an (n, rn, L, q)-pseudolinear family where
n is large enough and r is as in the statement of the lemma. Let us estimate the probability
that C is not (pn, L)-list decodable. In this case there must be some L non-zero codewords
of C all of which lie within a Hamming ball of radius pn. Since any L non-zero codewords
of C are mutually independent, the probability of this happening for a fixed Hamming ball
Bq(x, pn) is at most (

qrn − 1
L

)
·
(qHq(p)n

qn

)L
since |Bq(x, pn)| ≤ qHq(p)n. The probability that this happens for some x ∈ [q]n is thus at
most

qnqrnLq(Hq(p)−1)Ln

195



which is o(1) for r as in the statement of the lemma. Hence a random pseudolinear code of
rate r is (pn, L)-list decodable with high probability. 2

Corollary 9.5 Let a > 1 be an arbitrary constant. Then there exist constants ba, ca > 1
such that for every ε > 0 the following holds: let q = O(1/εa) and L = ba/ε. Then there
exists a rate ε/ca family of (L, q)-pseudolinear codes PLε which satisfies LDRL(PLε) ≥ 1−ε.

List recoverability of random linear codes

We now state the version of Lemma 9.2 that applies to random linear codes. This can
be viewed as the generalization of Theorem 5.3 (from Chapter 5), which analyzed the list
decodability of random linear codes, to the list recoverability situation. The result for linear
codes will be used in the multi-concatenated code construction in Section 9.5 (specifically
in the proof of Lemma 9.15).

Lemma 9.6 For every prime power q ≥ 2, every integer `, 1 ≤ ` ≤ q and L > `, and every
α, 0 < α < 1, there exists an infinite family of linear codes of rate r given by

r ≥ 1
lg q

(
α lg(q/`)−H(α)−H(`/q) · q

logq(L+ 1)

)
− o(1) , (9.4)

such that every code in the family is (α, `, L)-list recoverable.

Proof: The proof follows along the lines of Lemma 9.2 by analyzing the performance
of a linear code defined by a random (n × rn) generator matrix over Fq. If some set of
(L+1) codewords violate the (α, `, L)-list recoverability property, then there must be at least
logq(L + 1) codewords among them that correspond to encodings of linearly independent
messages in Frnq . It therefore suffices to prove an upper bound on the probability that some
set of logq(L+1) linearly independent messages are mapped into codewords that violate the
(α, `, logq(L+1))-list recoverability property. Since, for a random linear code the codewords
associated with a set of linearly independent messages are all mutually independent (cf.
Lemma 9.1), the analysis of Lemma 9.2 goes through with logq(L + 1) taking the place of
L. The claimed bound then follows. 2

Corollary 9.7 Let α > 1 be an arbitrary constant. Then there exist positive constants
aα, cα such that for every ε > 0, there exist q = O(1/ε2), L = qcα/ε and a family of q-ary
linear codes of rate aα which is (α, 1/ε, L)-list recoverable.

9.3.3 Derandomizing constructions of pseudolinear codes

One straightforward way to “constructivize” or “derandomize” the probabilistic result of
Lemmas 9.2 and 9.4 is by a brute-force search over all codes in an (n, k, L, q)-pseudolinear
family. Note that checking whether a fixed (n, k)q pseudolinear code has the necessary
(α, `, L)-list recoverability or (pn, L)-list decodability properties can be done by a search
over all “received words” and over all codewords in qO(`n+k) and qO(n) time, respectively.
However, going over all possible (n, k)q pseudolinear codes involves going over all n×O(kL)
“generator” matrices and this requires qO(knL) time. Hence a naive derandomization of the
probabilistic constructions of (n, k)q pseudolinear codes from the previous section will take
qO(knL) time. This is prohibitive even for the blocklengths for inner codes. For example,
if we wish to use a pseudolinear code as an inner code in a concatenation scheme with
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outer code being a Reed-Solomon code over a polynomially large field, then the dimension
of the pseudolinear code will be logarithmic in the overall blocklength. The naive deran-
domization will take quasi-polynomial time in such a case, while we would clearly prefer a
polynomial time deterministic construction. We next demonstrate how one can find codes
in a (n, k, L, q)-pseudolinear family with the properties claimed in Lemmas 9.2 and 9.4 in
qO(kL+n`) time. Applied to the above-mentioned concatenated code setting, this will enable
polynomial time construction of the concatenated code, since `, L, q will be constants and
n, k will be logarithmic in the overall blocklength.

The basic idea is to derandomize the probabilistic constructions using the method of
conditional expectations. Since the method is quite standard, we only discuss informally
how to apply it to our context.4 We focus on Lemma 9.2, and the result for Lemma 9.4 is
similar. To derandomize the result of Lemma 9.2, we will successively find the n rows of a
“good” n × O(kL) matrix A such that the associated code CA in the pseudolinear family
F(n, k, L, q) is (α, `, L)-list recoverable. (Here and in what follows k = rn is the dimension
of the code.)

Assume that for some 1 ≤ s ≤ n, the first (s − 1) rows of A have been picked to be
a1, . . . ,as−1 where each ai ∈ F

O(kL)
q . We pick as so that it minimizes a certain conditional

expectation by searching among all the qO(kL) possible choices for as.
The relevant expectation that we bound is the following. For each (ordered) collection

D of n “lists” Li ⊆ Fq with |Li| = ` for each i, 1 ≤ i ≤ n, each set of L (non-zero) codewords
(given by a subset T = {x1, . . . , xL} ⊆ Fkq of size L) of the pseudolinear code, and each
(ordered) collection S of L subsets S1, . . . , SL ⊆ [n] with each |Sj | = αn, define an indicator
random variable I(S,D, T ) as follows. I(S,D, T ) equals 1 if, for each j, 1 ≤ j ≤ L, the
codeword corresponding to xj ∈ T agrees with an element of Li for each of the αn values of
i ∈ Sj . Otherwise, I(S,D, T ) = 0. In words, I(S,D, T ) = 1 iff the setting S, D, T shows a
“counterexample” to the code that we construct being (α, `, L)-list recoverable (and is thus
a “bad” event that we wish to avoid).

The random variable we consider in order to apply the method of conditional expecta-
tions is

X(α, `, L) =
∑
S,D,T

I(S,D, T ) . (9.5)

We will exploit linearity of expectation to compute the conditional expectations of
X(α, `, L). The initial expectation of each I(S,D, T ) (taken over the random choice of
all rows ri of A, where 1 ≤ i ≤ n) clearly equals ( `q )αnL since the events for the various
codewords in T are independent (by the L-wise independence property of the code). Multi-
plying this by the number of choices of S,D, T , we get (as in the proof of Lemma 9.2) that
the initial expectation of X(α, `, L) is exponentially small (and in particular there exists a
code with X(α, `, L) = 0, or in other words which is (α, `, L)-list recoverable).

Once we condition on the first s rows of A being fixed to, say, a1, . . . ,as, the expected
value of I(S,D, T ) taken over the random choices of the remaining (n−s) rows r1, . . . , rn−s

can still be exactly computed. Indeed, the first s coordinates of each of the codewords
corresponding to each xj ∈ T , for 1 ≤ j ≤ L, are now fixed, and one can compute for
each of them the number of coordinates in Sj ∩ {1, 2, . . . , s} for which the codeword agrees
with an element from the associate list Li. Thus, for each xj , we can exactly compute the
probability that the associated codeword will agree with an element from Li for each i ∈ Sj

4The reader can find a discussion of the method of conditional expectations, for example, in [AS92, Chap.
15].
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when the remaining rows are picked at random. By the L-wise independence property, we
can then simply multiply the probabilities for the various xj ’s to estimate the conditional
expectation of I(S,D, T ). We can do so for each of

(
n
αn

)L · (q`)n · (qk−1
L

)
choices of (S,D, T ),

and then add up all these expectations to exactly compute the conditional expectation of
X. This is of course sufficient to make the best choice for as, given that a1, . . . ,as−1 have
already been picked. Once we pick ai, for 1 ≤ i ≤ n, we have the required pseudolinear
code that satisfies the property of Lemma 9.2.

Applying the above to the case q = O(1/ε2), ` = 1/ε and L = O(1/ε), one can thus prove
the following lemma, which is one of the main results we need for our later constructions.
This is the “constructive” version of Corollary 9.3. The alphabet size q can actually be
made O(1/εc) for any c > 1, but since this will not be important to us, we state the result
for an alphabet size which is at least Ω(1/ε2). The claims about the representation size and
encoding follow since any member of an (n, k, L, q)-pseudolinear family can be represented
by an n×O(kL) matrix over Fq and encoding involves multiplying a vector in FO(kL)

q with
this matrix. The lower bound claimed on the rate follows from Equation (9.1) after a simple
calculation.

Lemma 9.8 For every α, 0 < α < 1, and for all large enough constants c > 1, there exists
a positive constant aα ≥ 1

3(α − 1/c) such that for all small enough ε > 0 the following
holds. For all prime powers q = Ω(1/ε2), there exist L = c/ε and a family PL(1)

ε of (L, q)-
pseudolinear codes of rate aα, such that a code of blocklength n in the family has the following
properties:

(a) it is (α, 1/ε, L)-list recoverable,

(b) it is constructible in deterministic time qO(nε−1) = 2O(nε−1 log q) or with high proba-
bility in randomized O(n2ε−1 log q) time (i.e., the constructed code will have the list
recoverability property claimed in (a) with high probability), and

(c) it can can be represented in O(n2ε−1 log q) space, and encoded using O(n2ε−2) opera-
tions over Fq.

We also get the following constructive version of Corollary 9.5 by applying the same deran-
domization procedure.

Lemma 9.9 Let a > 1 be an arbitrary constant. Then there exist constants ba, ca > 1 such
that for every ε > 0 the following holds. For all prime powers q = Ω(1/εa), there exist
L = ba/ε and a family PL(2)

ε of (L, q)-pseudolinear codes of rate at least ε/ca, such that a
code of blocklength n in the family has the following properties:

(a) it is ((1− ε)n,L)-list decodable.

(b) it is constructible in deterministic time qO(n) = 2O(n log q), or with high probability in
randomized O(n2 log q) time, and

(c) it can can be represented in O(n2ε−1 log q) space, and encoded using O(n2ε−2) field
operations over Fq.

A similar result for linear codes. We now state a result analogous to Lemma 9.8 for
the case of linear codes.
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Lemma 9.10 For every constant α, 0 < α < 1, and for all large enough constants c > 1,
there exists a positive constant aα ≥ 1

3(α − 1/c) such that for all small enough ε > 0 the
following holds. For all prime powers q = Ω(1/ε2), there exists a family of q-ary linear
codes of rate aα, such that a code of blocklength n in the family has the following properties:

(a) it is (α, 1/ε, qc/ε)-list recoverable,

(b) it is constructible in deterministic time qO(nε−1), or with high probability in randomized
O(n2 log q) time, and

(c) it can can be represented in O(n2 log q) space, and encoded using in O(n2) operations
over Fq.

Proof: The claimed parameters follow by substituting ` = 1/ε, q = Ω(1/ε2), and L =
qc/ε in Lemma 9.6. Note that since the code is linear, it can be represented using its
generator matrix, which takes O(n2) entries in Fq. The only non-trivial thing to check is
the claimed deterministic construction time. A naive derandomization will involve trying
out all (n×aαn) generator matrices, and this will take qO(n2) time (the verification of the list
recoverability property can be done in qO(nε−1) time). However, as in the case of pseudolinear
codes, one can use the method of conditional expectations to get a faster derandomization
of the probabilistic construction of Lemma 9.6. This will involve picking the n rows of the
generator matrix in sequence, each time searching for the best row from F

aαn
q that minimizes

a certain conditional expectation. The relevant conditional expectations can be computed
in qO(nε−1) time. Hence, the total time required to find a generator matrix that defines a
code with the required properties is qO(nε−1). We omit the details which are very similar to
the derandomization of the pseudolinear case. 2

Remark concerning alphabet size. Even though the above results are stated for code
families over a fixed constant-sized alphabet, a variant of it holds equally well also for
alphabet size that grows with the length of the code (in some sense the large alphabet
only “helps” these results; note also that the statements of Lemmas 9.8, 9.9, and 9.10
only pose lower bounds on q). This fact is later exploited in our multi-concatenated code
constructions from Section 9.5, where we shall make use of such codes for q which is of the
form 2n

p
for some integer p (n being the blocklength of the code). It is also used in the next

section where we show how pseudolinear codes over such large alphabets can be decoded
in time significantly better than a brute-force search over all codewords. It is in fact this
construction that is used in Section 9.5.

Remark concerning “density” of the codes in the families. Since the existence
results claimed in the previous several lemmas are proved by a straightforward application
of the probabilistic method, it follows that there exist such codes with any (large enough)
dimension one seeks (and the properties such as rate and list decodability stay as claimed
in the lemmas). We do not explicitly state this fact in the results, but the result of the
next section is conveniently stated by fixing the dimension, and hence we explicitly state
that it achieves any desired dimension for the codes it constructs. In its proof, as well as in
other proofs, we will implicitly use that this fact also holds for the codes from the several
previous lemmas.
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9.3.4 Faster decoding of pseudolinear codes over large alphabets

The naive algorithm to (α, 1/ε,O(1/ε))-list recover the pseudolinear codes from Lemma 9.8
is to simply run over all the qO(n) codewords and output only those which satisfy the list
recoverability requirement. This takes qΩ(n) time. In Section 9.5, we will use pseudolinear
codes over large alphabets (exponential in the blocklength) in a multi-concatenated scheme,
in a hope of getting sub-exponential decoding algorithms for the final code that we construct.
But the qΩ(n) runtime for the decoding is prohibitive for such an application due to the huge
value of q.

We now present a code construction that combines pseudolinear codes along with a
“parallel” encoding by a linear code to improve the decoding time for codes over very
large alphabets. For want of a better term, we refer to these codes as “large alphabet
pseudolinear codes”. Each symbol of the final encoding will be the “juxtaposition” of the
symbols corresponding to the linear and pseudolinear encodings. The linear component of
the encoding will be list recoverable in much faster time than the pseudolinear code. The
exact details appear in Lemma 9.11 below. The codes constructed below will be the ones
that are used in Section 9.5. The technique of symbol juxtaposition used here will be again
used in Section 9.6 of this chapter, and in the next chapter on list decodable erasure codes.
We believe that just like pseudolinear codes, it is also an important code design tool to take
home from this chapter.

Lemma 9.11 For every constant α, 0 < α < 1, and all sufficiently large constants c > 1,
there exists a constant bα ≤ 6(α − 1/c)−1 such that ∀ ε > 0 there exists q = O(1/ε2) for
which the following holds. For all integers m, s, there exists a code of dimension m and
blocklength at most bαm over GF(q2s) with the following properties:

(i) It is (α, 1/ε, c/ε)-list recoverable in O(s3(1/ε)O(m)) time.

(ii) It is constructible deterministically in qO(smε−1) = 2O(smε−1 log q) time. A probabilistic
construction that has the claimed list recoverability property with high probability can
be found in O(m2(sε−1 + s2) log q) time. The code can be encoded in O(m2s2 log2 q)
time.

Proof: Let ε > 0 be given, and let q = O(1/ε2) be a power of two. By Lemma 9.8, we
know that for every α and all large enough c, there exists a pseudolinear code over GF(qs),
say C1, of dimension 2m, blocklength bαm such that C1 is (α, 1/ε, c/ε)-list recoverable and
is constructible in 2O(msε−1 log q) deterministic time or in O(m2sε−1 log q) probabilistic time.
Note that we may assume that bα ≤ 6(α− 1/c)−1 since the rate of the codes guaranteed by
Lemma 9.8 is at least 1

3(α− 1/c).
The only known list recovering algorithm for such a pseudolinear code is to perform

a brute-force search over all (qs)2m possible codewords, which takes (1/ε)O(ms) time. In
order to speed up the algorithm, we perform an encoding with a suitable random linear
code in parallel — each symbol of the final encoding will be the “juxtaposition” of the
symbols corresponding to the linear and pseudolinear encodings. The linear code, say Clin,
will be a q-ary code of dimension 2ms and blocklength bαms which is (α, 1/ε, qc/ε)-list
recoverable. By the result of Lemma 9.10, such a linear code exists and can be constructed
deterministically in qO(msε−1) time, or probabilistically in O(m2s2 log q) time.

By “aggregating” each set of successive s symbols in both the message and its encoding
by Clin, we can view Clin as a code over GF(qs). Viewed this way, Clin will map 2m symbols
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over GF(qs) into bαm symbols over GF(qs). To avoid confusion, let us denote the code Clin

viewed as a code over GF(qs) by C̃lin.5

We now claim that the resulting code C̃lin is (α, 1/ε, qc/ε)-list recoverable in

O((1/ε)O(m)m3s3 logO(1) q) = O(s3(1/ε)O(m))

time. The combinatorial list recoverability property itself follows since Clin is (α, 1/ε, qc/ε)-
list recoverable as a code over GF(q), and the property therefore definitely holds for the
code C̃lin obtained by viewing Clin as a code over GF(qs). To prove the claim about the
time complexity for list recovering C̃lin, we present the following algorithm. The algorithm
is simply to try out all possible subsets S of αbαm positions and for each such choice go
over all possible sets T of (1/ε)O(m) symbols from the input lists. For each such choice of
S and T , we find if any codeword of Clin is consistent with these symbols (this is simply
an erasure decoding of the linear code). This can be done by solving a linear system over
GF(q) and takes at most O((2ms)3 logO(1) q) time since the blocklength of Clin equals 2ms.
Since Clin is (α, 1/ε, qc/ε)-list recoverable, it is definitely true that the number of codewords
of Clin consistent with a certain choice of symbols in a fraction α of the positions is at most
qc/ε. Finally, we will have to check which of the codewords of Clin actually yield codewords
of C̃lin that meet the required list recoverability condition. Since each erasure decoding
yields at most qc/ε solutions to check, the total runtime will be the number of choices of
S, T multiplied by the time for each erasure decoding of Clin, plus an additional time of
roughly O(qc/ε) to prune the list returned by the erasure decoding of Clin . This gives the
claimed O((1/ε)O(m)s3) runtime.

We now define our final code C∗ to be the juxtaposition of C1 and C̃lin; i.e. to encode a
message according to C∗, we encode it using C1 and C̃lin independently to get two strings,
say, 〈a1, a2, . . . , at〉 and 〈b1, b2, . . . , bt〉, where t = bαm and each ai, bi ∈ GF(qs). The
encoding of that message as per C∗ will then be 〈c1, . . . , ct〉, where each ci = (ai, bi) is
viewed as an element of GF(q2s). Note that C∗ defined this way encodes 2m symbols
over GF(qs) into bαm symbols over GF(q2s). We may equivalently view C∗ as mapping m
symbols over GF(q2s) into bαm symbols over GF(q2s). In other words C∗ has dimension m
and blocklength bαm as a q2s-ary code.

Since C1 is (α, 1/ε, c/ε)-list recoverable, so is C∗ (as would any juxtaposed code that
involves C1). This gives the combinatorial list recoverability property of C∗. To obtain the
claim about the algorithmic list recoverability, we will use the “linear” component C̃lin of C∗.
By the above argument, C̃lin can be (α, 1/ε, qc/ε)-list recovered within the claimed runtime.
One can then run through the at most qO(1/ε) messages output by this algorithm and “cross-
check” if its encoding by the pseudolinear code C1 agrees with the respective component
of the symbols in the input lists on a fraction α of the positions. By the combinatorial list
recoverability property of C1, at most c/ε of the messages will pass this check. These will
be the messages output by the algorithm. The running time of this procedure is dominated
by that of the list recovering algorithm for C̃lin, and is thus O((1/ε)O(m)s3).

The encoding time for C∗ is dominated by the time to encode the “linear” component.
Since the code Clin has both dimension and blocklength at most O(ms), the encoding of
Clin takes at most O((ms)2 log2 q) time. This completes the proof of the lemma. 2

5The code C̃lin will not in general be linear over GF(qs), but we will only use linearity of Clin over GF(q).
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9.4 The basic expander-based construction of list decodable
codes

For the construction in this section, we will use families of graphs with a small bounded
degree which nevertheless have strong connectivity properties. Specifically, they will have
the property that the neighborhood of any large enough subset of vertices misses a very
small fraction of vertices. Such graphs are called expanders, due to their strong “vertex-
expansion” properties. We mention here that code constructions in Chapter 11 are obtained
using similar techniques and also use expander-like graphs, but there we will make use of
stronger properties than just vertex-expansion — namely we will use certain isoperimetric
properties offered by expanders. We next discuss the necessary facts about expanders.

9.4.1 Preliminaries on Expanders

We need the following basic definition about expanders.

Definition 9.5 For integers N, d ≥ 1 and 0 < ε, α < 1, an (N, d, α, ε)-expander is a d-
regular N ×N bipartite graph H = (A,B,E) (where A,B with |A| = |B| = N are the two
sets in the bipartition and E is the edge set), with the property that given any subset X ⊆ B
with |X| ≥ ε|B|, the number of vertices in A with some neighbor in X is at least α|A|.

The following result on the existence of expander graphs is well known, see for instance
[ABN+92, Sec. II] (or [AS92, Chap. 9]) where an explicit construction using the Ramanujan
graphs of [LPS88] is discussed.

Fact 9.1 There is a constant c such that for every ε > 0 and for infinitely many n, there
exists an explicitly constructible (n, c/ε, 1/2, ε)-expander.

Of course the 1/2 in the above claim can be changed to any fixed constant α < 1. In
such a case, the constant c in the degree will depend on α.

9.4.2 Reduction of list decoding to list recoverability using expanders

We now present an elegant and simple reduction of the problem of constructing codes which
are efficiently ((1−ε)n,L)-list decodable to the problem of constructing codes with efficient
(α,O(1/ε), L)-list recoverability, for some fixed constant α, say α = 1/2. This idea is at
the heart of all our expander-based code constructions that we present in this chapter. It
is instructive to point out that the use of the expanders in our constructions is confined
to this reduction, and the construction of good list recoverable codes itself is accomplished
using other techniques.

The reduction is accomplished by redistributing the symbols of the codewords of a list
recoverable code, say C1, using a expander H, and thus define the codewords of a new
code C2 over a larger alphabet. The list recoverability property of C1, together with the
expansion property of H, will imply the good list decodability of C2. Given a corrupted
received word r of C2, one can push the symbols of r along the edges the expander H to
obtain a list of possible symbols for each position of C1. The expansion property of H will
imply that at least a fraction 1/2 of these lists contain the correct symbol of the codeword
of C1. Now, the list recoverability property of C1 can be used to complete the decoding.
The formal statement of the reduction and the proof follow.
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Figure 9-3: Illustration of the decoding algorithm. Each position on the left collects a list
of symbols from all its neighbors on the right. These lists are then used as input to the list
recovering algorithm for the left code C1. The expansion property implies that even if the
received word for C2 had several errors, a good fraction of the lists obtained for C1 contain
the correct symbol.

Proposition 9.12 There exists an absolute constant c such that for every ε > 0 the fol-
lowing holds. Suppose there exists a q-ary code C1 of blocklength n and rate r that is
(1/2, c/ε, L)-list recoverable by an algorithm running in time O(T (n)). Further assume that
n is such that there exists an (n, c/ε, 1/2, ε)-expander. Then there exists a code C2, which
is explicitly specified given C1, and which has the following properties:

(i) It has blocklength n and rate εr/c.

(ii) It is defined over an alphabet of size qc/ε.

(iii) It is ((1− ε)n,L)-list decodable, and moreover there is an algorithm to list decode C2

up to a fraction (1− ε) of errors in time O(T (n) + n log q/ε).

Proof: The code C2 is obtained by distributing the symbols of codewords in C1 using the
edges of an (n,∆, 1/2, ε)-expander where ∆ = c/ε. This is in a manner similar to Alon et
al [ABN+92], who used such a symbol redistribution for the purpose of getting codes with
a large (viz., (1 − ε)) relative distance. Formally, let H = ([n], [n], E) be an (n,∆, 1/2, ε)-
expander. For 1 ≤ j ≤ ∆ and 1 ≤ i ≤ n, denote by Γj(i) the j’th neighbor (on the left side)
of the i’th vertex on the right side of H (we assume some fixed ordering of the neighbors of
each node). A codeword (c1, c2, . . . , cn) of C1 is mapped into a codeword (c̃1, . . . , c̃n) of C2,
where each c̃i ∈ [q]∆ is given by c̃i = 〈cΓ1(i), . . . , cΓ∆(i)〉. The claim about the blocklength,
rate and alphabet size of C2 follow immediately.

The algorithm for list decoding C2 up to a radius of (1 − ε)n proceeds in two steps.
Assume r is a received word and the goal is to find all codewords of C2 that are within a
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Hamming distance of (1 − ε)n from r. In other words, the goal is to find every message
x that satisfies ∆(C2(x), r) ≤ (1 − ε)n. In the first step of the decoding, each position of
the received word r “votes” on those positions of the corresponding codeword in C1 which
are adjacent to it in the expander H. This gives for each i, 1 ≤ i ≤ n, a list Li of at
most ∆ = c/ε elements from [q] for each position of the code C1. See the illustration in
Figure 9-3. In the second step, the (1/2, c/ε, L)-list recovering algorithm for C1 is run with
these lists Li, 1 ≤ i ≤ n, as input. Finally, for each message output by the list decoder for
C1, we check if its encoding under C2 agrees with r in at least εn positions, and if so, we
output it.

The time required for the above algorithm is the time for the first “voting” stage, which
takes O(n log q/ε) time, followed by the time for list recovering C1, which takes O(T (n))
time by hypothesis.

It remains to prove the correctness of the algorithm. Let x be any message such that
∆(C2(x), r) ≤ (1 − ε)n. Let X ⊆ [n] be the set of positions where C2(x) and r agree. By
hypothesis |X| ≥ εn. Define Y ⊆ [n] to be the set of vertices on the left side of H which
have a neighbor in X on the right. By the expansion property of H, |Y | ≥ n/2. Now,
clearly for each i ∈ Y , the i’th symbol of C1(x) is included in the list Li (since all votes
coming from the positions in X are correct, and the symbols in Y are precisely those which
receive at least one vote from the positions in X). Therefore, the message x will be included
in the list output by the (1/2, c/ε, L)-list recovering algorithm for C1, when it is run with
the lists Li as input. Hence, the above algorithm will successfully include x in the final list
it outputs. 2

The following states a more general form of the above proposition which states a stronger
list recoverability property for C2 using that of C1. The proof is identical to the above —
at the voting stage of decoding, instead of each position of C2 passing one vote to each of
its neighbors, it passes ` votes where ` is the number of possible symbols listed for that
position. Proposition 9.12 follows with the setting ` = 1.

Lemma 9.13 There exists an absolute constant c such that for every ε > 0 the following
holds. Suppose there exists a q-ary code C1 of blocklength n and rate r that is (1/2, c`/ε, L)-
list recoverable by an algorithm running in time O(T (n)). Further assume that n is such
that there exists an (n, c/ε, 1/2, ε)-expander. Then there is a code C2, which is explicitly
specified given C1, with the following properties:

(i) It has blocklength n and rate εr/c.

(ii) It is defined over an alphabet of size qc/ε.

(iii) It is (ε, `, L)-list recoverable, and moreover there is an algorithm to (ε, `, L)-list recover
C2 in time O(T (n) + n` log q/ε).

9.4.3 Codes of rate Ω(ε2) list decodable to a fraction (1− ε) of errors

We now present our code construction (number 1) which has rate ε2 and is list decodable
in near-quadratic time from up to a fraction (1 − ε) of errors. The formal result is stated
in Theorem 9.14.

Before we state and prove this result, we would like to point out one technical point
concerning the constructions. Recall the overall structure of all our constructions (Figure 9-
2): they use a certain “left code” C and then redistribute symbols of a codeword of C
using an expander. There is an implicit assumption here that each side of the bipartite
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expander has the same number of vertices, say n, as the blocklength of C. The known
constructions of Ramanujan graphs (eg. [LPS88, Mar88]) work for infinitely many values
of n, but not for all sufficiently large n (as would be ideal for our application). However,
as discussed in [Spi95, Section 2.4.1], these constructions give a dense sequence of graphs,
i.e., the sequence of number of vertices {nl}l≥1 for which the constructions work satisfies
ni+1 − ni = o(ni) for sufficiently large i. As a consequence, Spielman [Spi95] proves that it
is possible to get expander graphs of every size with only a moderate loss in expansion, and
uses this fact in his constructions of expander codes. The same argument will also work
for us. Alternatively, since the sequence of graphs is dense, we can pad each codeword of
the left code with a small number of additional 0’s so that its blocklength exactly matches
the number of vertices in an explicit Ramanujan graph construction, and then apply our
construction. This “padding” will affect the relative distance, rate and list decoding radius
of the left code only by a negligible amount, and will essentially have no impact on any of
the bounds we claim for the overall code construction. Therefore, in order to keep things
simple, in our constructions of this chapter, as well as those in Chapter 11, we will ignore
the above issue and simply assume that the blocklength of our “left code” and the number
of vertices in the “expander” graph match exactly.

Theorem 9.14 For all ε > 0, there exists a code family with the following properties:

(i) (Rate and alphabet size) It has rate Ω(ε2) and is defined over an alphabet of size
2O(ε−1 log(1/ε)).

(ii) (Constructibility) A description of a code of blocklength N in the family can be con-
structed in deterministic NO(ε−1) time. A randomized Monte Carlo construction that
has the list decodability claimed in (iii) with high probability can be obtained in prob-
abilistic O(log2Nε−1 log(1/ε)) time.

(iii) (List decodability) A code of blocklength N in the family can be list decoded from up
to (1− ε)N errors in O(N2ε−O(1) logN) time using lists of size O(1/ε).

Proof: The basic idea is to first construct a code C with good list recoverability properties
by concatenating a Reed-Solomon code CRS of rate Ω(ε) with a constant rate inner code
Cin as guaranteed in Lemma 9.8. We will then apply the construction of Proposition 9.12
to obtain a code list decodable up to a fraction (1 − ε) of errors. Since the rate of the
concatenated code is Θ(ε), and applying Proposition 9.12 incurs a further ε factor loss in
the rate, we will get an overall rate of Ω(ε2). The formal details follow. The basic structure
of the construction is depicted in Figure 9-4.

Let m be any sufficiently large integer. Let q0 = O(1/ε2) be a power of 2, and let F be
a field of cardinality qm0 . Let n0 be in the range qm−1

0 ≤ n0 ≤ qm0 , k0 = Θ(εn0), and CRS be
the Reed-Solomon code over F of blocklength n0 and dimension k0 (so CRS has rate Θ(ε)).
Let Cin be a pseudolinear code over Fq0 that maps m symbols over Fq0 (or, alternatively,
a symbol of F ) into n1 = O(m) symbols over Fq0 , and further is (1/4, O(1/ε), O(1/ε))-list
recoverable. Such a code Cin exists by Lemma 9.8.

Define CRS−in to be the code obtained by concatenating CRS as outer code with Cin as
inner code. CRS−in is a code of blocklength N = n0 · n1 = O(mqm0 ) and rate Ω(ε) over Fq0 .
The codewords in CRS−in can be divided into n0 blocks of n1 symbols each, corresponding
to the encodings of the n0 outer Reed-Solomon codeword symbols.

The final code C∗ will be obtained from CRS−in using the construction of Proposition 9.12
(i.e., by redistributing the symbols of a codeword of CRS−in using an (N,O(1/ε), 1/2, ε)-
expander). It is readily checked that C∗, thus defined, is a code of blocklength N and rate
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Figure 9-4: Basic structure of code construction that achieves rate Ω(ε2) and list decoding
radius (1 − ε). The list recoverability of the concatenated code CRS−in, together with the
expander, implies list decodability of the final code from a fraction (1− ε) of errors.

Ω(ε2) over an alphabet of size qO(1/ε)
0 = 2O(ε−1 log(1/ε)), proving Part (i) of the claim of the

theorem.
The significant component in constructing C∗ is finding the inner code Cin with the

properties guaranteed in Lemma 9.8. Thus C∗ can be constructed deterministically in
O(qO(mε−1)

0 ) = NO(ε−1) time, or probabilistically inO(m2ε−1 log q0) = O(log2Nε−1 log(1/ε))
time, as claimed in Part (ii) of the theorem statement.

It remains to prove the claim about the list decodability of C∗. For this, it suffices to
prove that CRS−in is (1/2, O(1/ε), O(1/ε))-list recoverable in O(N2) time, since then the
claim about list decoding C∗ from a fraction (1− ε) of errors will follow from the properties
of C∗ guaranteed by Proposition 9.12.

Suppose we are given lists Li each consisting of at most O(1/ε) elements of Fq0 , for
1 ≤ i ≤ N . We will present an O(N2ε−O(1) logN) time algorithm to find all codewords
〈d1, d2, . . . , dN 〉 of CRS−in which satisfy di ∈ Li for at least N/2 values of i, 1 ≤ i ≤ N .
Recalling that a codeword in CRS−in comprises of n0 blocks of n1 symbols each, the lists Li
can be viewed as lists L′j,s for the possible symbols in position s of the codeword of Cin that
encodes the j’th symbol of the Reed-Solomon codeword, for 1 ≤ s ≤ n1 and 1 ≤ j ≤ n0.
Now consider the following list recovering procedure for CRS−in. In the first step, the n0

inner codes are decoded by brute-force by going over all codewords — namely, for each j,
1 ≤ j ≤ n0, one produces a list L̂j of all elements of F whose encoding as per Cin contains
an element from L′j,s for at least a fraction 1/4 of the values of s. By the list recoverability
property of Cin we have |L̂j | = O(1/ε) for each j, 1 ≤ j ≤ n0. Note that all the inner
decodings can be performed in O(n2

0/ε) time.
In the second step of the decoding, we run the list recovering algorithm for Reed-Solomon
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codes implied by the result of Theorem 6.17, to find a list L consisting of all messages x
whose Reed-Solomon encoding contains an element of L̂j for at least n0/4 values of j,
1 ≤ j ≤ n0. Specifically, we apply the result of Theorem 6.17 with the choice n = n0,
k = k0 = O(εn0), ` ≤ maxj |L̂j | = O(1/ε), and α = 1/4 (one can check that the condition
α >

√
2k`/n can be met for these values, with suitable constants in the big-Oh notation).

The decoding returns lists of size O(
√

n0
εk0

) = O(1/ε), and can certainly be performed in

O(n2
0ε
−O(1) log3(qm0 )) = O(n2

0ε
−O(1) log3 n0) time. Since n0 = O(N/ logq0 N), the time for

list recovering the Reed-Solomon code is O(N2ε−O(1) logN).
The final step prunes the list output by the Reed-Solomon decoder to include only those

messages whose encodings as per CRS−in contain an element of Li for at least N/2 values
of i, and then outputs this pruned list. The overall decoding time is dominated by the
Reed-Solomon decoding time and is O(N2ε−O(1) logN).

We now argue the correctness of the list recovering procedure. Let x be a message
whose encoding C∗(x) = 〈d1, d2, . . . , dN 〉, where di ∈ Li for at least N/2 values of i. The
codeword 〈d1, d2, . . . , dN 〉 can also be viewed as consisting of symbols bj,s for 1 ≤ j ≤ n0

and 1 ≤ s ≤ n1, where 〈bj,1, bj,2, . . . , bj,s〉 is the block of the codeword corresponding to the
inner encoding of the j’th symbol of CRS(x). Let J ⊆ [n0] be the set of all j, 1 ≤ j ≤ n0,
for which bj,s belongs to the corresponding list L′j,s for at least a fraction 1/4 of values of s
in the range 1 ≤ s ≤ n1. If di ∈ Li for at least n0n1/2 values of i, by a simple averaging
argument we get that |J | ≥ n0/4. Now, by the (1/4, O(1/ε), O(1/ε))-list recoverability
property of Cin, for each j ∈ J , the list L̂j contains the correct symbol of the Reed-Solomon
encoding of the concerned message x. Since |J | ≥ n0/4, the condition under which the
Reed-Solomon list decoder outputs a message is satisfied by x, and therefore it will output
x. Hence the message x will be included in the list output by the algorithm, as we desired
to show. 2

9.4.4 Better rate with sub-exponential decoding

In the proof of Theorem 9.14, we used an outer Reed-Solomon code over a field of size linear
in the blocklength. This implied that the dimension of the inner pseudolinear code was
at most logN , enabling a deterministic polynomial time algorithm to find the necessary
pseudolinear code. We now indicate how at the cost of sub-exponential (about 2O(

√
N))

construction and decoding time, we can improve the rate of the construction of Theorem 9.14
from Ω(ε2) to Ω(ε), which is optimal up to constant factors. We will keep the discussion
informal since in the next section we will generalize this result and state formal theorems
anyway.

The idea is to perform the same construction as in Theorem 9.14, except we use Reed-
Solomon codes of constant (independent of ε) rate, blocklength

√
n, over an alphabet of size

q
√
n

0 where q0 = O(1/ε2). For the inner code, we use a constant rate (1/4, O(1/ε), O(1/ε))-
list recoverable pseudolinear code of dimension

√
n (i.e., same as in Theorem 9.14, except

with larger dimension). Note that the concatenated code also has constant rate, and the
dominant component in its construction is once again the pseudolinear code construction,
which takes 2Oε(

√
n) time to perform deterministically, and Oε(n) time to perform prob-

abilistically (here by the Oε notation we are hiding also constant factors that depend on
ε). We claim that the concatenated code can be (1/2, O(1/ε), L)-list recovered in 2Oε(

√
n)

time (for L = 2Oε(
√
n)). At the first step, all the inner codes are (1/4, O(1/ε), O(1/ε))-list

recovered by a brute-force search over all codewords in q
O(
√
n)

0 time. This passes lists of
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size O(1/ε) for the possible symbol at each position of the Reed-Solomon codeword. The
decoding is completed by going over every set of a fraction 1/4 of these lists and every
choice of symbols from each of these lists, and for each of them checking if there is a Reed-
Solomon codeword consistent with those symbols. This brute-force procedure takes about
(1/ε)O(

√
n) time and succeeds in (1/4, O(1/ε), L)-list recovering the Reed-Solomon code.

The correctness of this procedure follows using arguments similar to those of Theorem 9.14.
We thus have a constant rate code which is (1/2, O(1/ε), L)-list recoverable in 2Oε(

√
n)

time. Using this in the construction of Proposition 9.12, we can get a rate Ω(ε) code C∗

list decodable in 2Oε(
√
n) time from up to a fraction (1− ε) of errors, as we desired to show.

To get binary codes, we can concatenate C∗ with a binary code of rate Ω(ε2) which has
list decoding radius (1/2−O(ε)) for a list size of O(1/ε2). Such codes exist by the result of
Theorem 5.5 (from Chapter 5). This gives binary codes of rate Ω(ε3) that are list decodable
in 2Oε(

√
n) time from up to a fraction (1/2− ε) of errors. Note that the rate is better than

the result of Theorem 8.11 that achieved a rate of Ω(ε4). However, the construction and
decoding time are no longer polynomial in the blocklength.

In the next section, we present a more complicated scheme to improve the decoding
time to 2O(Nγ) for any desired γ > 0. The spirit of the construction is the same as in this
section; the details are however more complicated.

9.5 Constructions with better rate using multi-concatenated
codes

We now introduce a code construction where an outer Reed-Solomon code is concatenated
with multiple levels of inner codes (as guaranteed by Lemma 9.2, albeit over large, growing
sized alphabets which decrease in size from the outermost to innermost levels). We call
such codes multi-concatenated codes, which are discussed in Section 9.5.1. We will then, in
Section 9.5.2, use these codes to prove Theorem 9.16 which allows us improve the rate (from
Theorem 9.14) by an ε factor at the expense of the decoding time becoming sub-exponential
in the blocklength. This gives our construction (2a), and yields codes of the optimal Ω(ε)
rate that have list decoding algorithms of “reasonable” complexity for correcting a fraction
(1 − ε) of errors. Following this, in Section 9.5.3, we will concatenate these codes with
appropriate binary codes to get our construction (2b), i.e., binary codes of rate Ω(ε3) list
decodable in sub-exponential time from up to a fraction (1/2− ε) of errors.

9.5.1 The basic multi-concatenated code

We now describe the construction of multi-concatenated codes and their properties. This
is stated formally in the lemma below. The result is similar to Lemma 9.8 in terms of the
parameters of the codes it guarantees. In fact, for the case p = 1, the result is in fact
just that of Lemma 9.8 (with the claimed decoding time being that of the naive decoding
algorithm that does a brute-force search over all possible codewords).

For larger values of p, the construction is somewhat messy. The result for larger values of
p is necessary only to improve the decoding time from the 2O(

√
N) bound that was presented

in Section 9.4.4 to 2O(Nγ). The reader might want to take the result of the lemma below
as a black-box in the first reading and come back to its proof if interested after seeing its
applications in Sections 9.5.2 and 9.5.3 (the case p = 1 for those applications gives precisely
the constructions outlined in Section 9.4.4).
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Lemma 9.15 For every p ≥ 1 and all sufficiently small ε > 0, there exist a code family
with the following properties:

(i) (Rate and alphabet size) The family has rate 2−O(p2) and is defined over an alphabet
of size O(1/ε2).

(ii) (List decodability property) Each member of the code family is (1
2 ,

1
ε ,

2O(p2)

ε )-list recov-
erable. Furthermore such list decoding can be accomplished in 2O(N1/p log(1/ε)) time,
where N is the blocklength of the concerned code.

(iii) (Constructibility) A code of blocklength N in the family can be constructed in prob-
abilistic O(N2 log(1/ε)) time (the code will have the list decodability claimed in (ii)
with high probability). A deterministic construction can be obtained in 2O(Nε−1 log(1/ε))

time. Also, encoding can be performed in O(N2 logO(1)(1/ε)) time.

Proof Idea. The basic idea is to use p levels of large alphabet pseudolinear codes as guar-
anteed by Lemma 9.11 in a suitable concatenation scheme. These codes will be defined over
progressively decreasing alphabet size. The outermost code will be a constant-rate code of
blocklength O(N1/p) defined over an alphabet of size q2·N(p−1)/p

(where q = O(1/ε2)). Each
symbol of this codeword will then be encoded by another code guaranteed by Lemma 9.11,
this time over a smaller alphabet GF(q2·N(p−2)/p

), but again of blocklength O(N1/p) and
constant rate. Each symbol of this encoding will be further encoded by a similar constant
rate code of blocklength O(N1/p), but over an even smaller alphabet GF(q2·N(p−3)/p

), and so
on. This will continue for several more levels till the alphabet size is down to GF(q2·N1/p

).
Finally each of the field symbols is encoded by one final constant rate pseudolinear code
over GF(q) of dimension 2N1/p.

The big plus of using p levels is that the code at each level has dimension and blocklength
O(N1/p). Since the decoding time guaranteed by Lemma 9.11 was about (1/ε)O(m) where
m was the dimension, we can exploit the “fast” decoding of the codes at each level to give
a decoding algorithm for the overall multi-concatenated code with runtime exponential in
N1/p, or sub-exponential in N .

All in all, given a list Li of O(1/ε) symbols of GF(q) for each of the N positions of the
final codeword, the successive decodings pass up a list of O(1/ε) symbols (with larger and
larger constants in the big-Oh notation) for each position of each pseudolinear codeword.
Finally, after p levels of decoding, we will recover a list of at most O(1/ε) codewords which
includes all codewords that agree with an element of Li for at least N/2 values of i.

The formal proof given below just follows the above idea, though it necessarily involves
a somewhat careful choice of parameters to ensure that the decodings all work together to
give the claimed list recoverability property. The reader satisfied with the above proof idea
should feel free to skip it.

Proof: Let q be a power of 2 with q = O(1/ε2) – we will define a code over Fq. We will

describe the code family by describing a code Cp that encodes x ∈ Fnq into Cp(x) ∈ Fn·2O(p2)

q ,
for any large enough n which is of the form n = 2 ·mp for some integer m. The code Cp is
described below inductively for increasing values of p.

Code Description. For p = 1, the code C1 will be a q-ary (α1, 1/ε, c/ε)-list recoverable
code that encodes a string of length 2m over Fq into a codeword of length a1m (for suitable
constants a1, c > 1 and α1 < 1). Such a code is guaranteed to exist by Lemma 9.8.
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For p > 1, the code Cp will be a q-ary code of dimension 2mp. We defined the code Cp
inductively using Cp−1 and a p’th level code Gp defined as follows. Gp will be a code defined
over an alphabet Σp of size q2mp−1

as guaranteed by Lemma 9.11 (using the choice s = mp−1

in that lemma). Specifically, Gp has dimension m and blocklength apm, where ap is a
constant that depends only on p but is independent of ε. Moreover, Gp is (αp, cp−1/ε, cp/ε)-
list recoverable, for a suitable constant αp > 1 (the details on how to pick the constants
will be clarified shortly).

We now give an inductive definition of Cp in terms of Cp−1 and the above code Gp. To
encode x ∈ Fnq using the code Cp, where n = 2mp, we view x as a string of length m over
GF(q2mp−1

) , and first encode it using Gp. This gives us a string x1 of apm symbols over
GF(q2mp−1

). We now view each of these apm symbols as a string of length 2mp−1 over Fq
and independently encode them using Cp−1. This completes the inductive specification of
the code Cp.

The list recoverability requirement on Cp will let us fix the constants αj ’s above. This
will in turn fix the rates of the codes (or in other words the constant aj ’s). We sketch
this next, followed by an analysis of the construction complexity (both probabilistic and
deterministic) of the code Cp.

Rate of the Construction. For every p ≥ 1, and each fixed α < 1, for a large enough
constant c = cp,α, we now wish to pick parameters (specifically αj ’s) that allow us to show
that the code Cp constructed above is (α, 1/ε, cp/ε)-list recoverable in 2O(N1/p log(1/ε)) time
where N is the blocklength of Cp. This can be achieved for p = 1 by a choice of C1

with α1 = α and the rate of the code is an absolute constant (that depends on α). For
p > 1, let us by induction pick Cp−1 so that it is (α/2, 1/ε, cp−1/ε)-list recoverable. We will
pick the “outermost” code Gp in the construction of Cp so that it is (α/2, cp−1/ε, cp/ε)-list
recoverable. By Lemma 9.11 we have such a Gp with rate

R(Gp) ≥
1
6

(α/2− 1/c) . (9.6)

Now, applying a standard averaging argument one can combine the facts that Cp−1 is
(α/2, 1/ε, cp−1/ε)-list recoverable and Gp is (α/2, cp−1/ε, cp/ε)-list recoverable to conclude
that Cp is (α, 1/ε, cp/ε)-list recoverable. It remains to estimate the rate R(Cp) of the code
Cp (as a function f of α, p). By the above construction, we have

f(α, p) = R(Gp)f(α/2, p− 1) ≥ 1
6

(α
2
− 1
c

)
f(α/2, p− 1) (using (9.6)) .

Unwinding the recurrence, for α a fixed constant, like α = 1/2 say, we can get Cp that is
(1/2, 1/ε, cp/ε)-list recoverable with c ' O(2p) and rate R(Cp) = 2−O(p2). We have thus
verified Property (i) for our code construction.

Decoding Complexity. The decoding of the code Cp proceeds inductively from the
lowermost levels of the concatenation upwards. This is also best described inductively. For
p = 1, as mentioned earlier, the decoding of C1 proceeds by running over all qO(m) = qO(N)

codewords. For p > 1, given lists of size 1/ε at each position of the code, each of O(m) codes
Cp−1 used to encode the symbols of Gp can be list recovered by induction in 2O(m log(1/ε))

time. This passes a list of cp−1/ε possible symbols for each of the apm positions of the code
Gp. The code Gp is then list recovered to produce a final set of cp/ε messages as the answers.
Since Gp is picked as guaranteed by Lemma 9.11, the list recovering of Gp can be performed
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in (cp−1/ε)O(m) = 2O(m log(1/ε)) time as well (absorbing factors which depend on cp−1 into
the big-Oh notation, since we treat c, p as fixed constants). The overall decoding time is
the sum of the decoding times for Cp−1 and Gp, and is thus 2O(m log(1/ε)). Since n = 2mp

is the length of the message and the rate of Cp is 2−O(p2), we have the overall blocklength
N = 2O(p2)n = O(mp). Therefore, the overall decoding complexity equals 2O(N1/p log(1/ε)),
as claimed in Part (ii) of the lemma.

Construction Complexity. We finally verify the claimed construction complexity bounds
for the code Cp. For p = 1, we appeal to Lemma 9.8 to conclude that C1 can be constructed
in O(N2ε−1 log(1/ε)) probabilistic time, or 2O(Nε−1 log(1/ε)) deterministic time. For p > 1,
the dominant component is the time to construct the outermost code Gp. Lemma 9.11
implies that Gp can be constructed in Ep can be constructed in O(m2p log(1/ε)) time
probabilistically, and in 2O(mpε−1 log(1/ε)) time deterministically. Since m = O(N1/p), the
construction time is O(N2 log(1/ε)) probabilistically, and 2O(Nε−1 log(1/ε)) deterministically.
The encoding time is again dominated by the time to perform the outermost encoding ac-
cording to Gp, and is therefore O(m2p log2 q) = O(N2 log2(1/ε)). This completes the proof
of Property (iii) in the statement of the lemma. 2

9.5.2 Codes of rate Ω(ε) with sub-exponential list decoding for a fraction
(1− ε) of errors

We now use the multi-concatenated codes from the previous section to attain rate Ω(ε) for
codes list decodable up to a fraction (1 − ε) of errors in sub-exponential time. Note that
such a result was also discussed in Section 9.4.4, but we will now improve the decoding time
from 2O(

√
N) to 2O(Nγ) for each fixed γ > 0. Setting γ = 1/2 in the below theorem gives

the result claimed in Section 9.4.4.

Theorem 9.16 For every constant γ > 0 the following holds: for all sufficiently small
ε > 0, there exists a code family with the following properties:

(i) (Rate and alphabet size) The code has rate Ω(ε2−O(γ−2)) and is defined over an alpha-
bet of size 2O(ε−1 log(1/ε)).

(ii) (Construction complexity) A description of a code of blocklength N in the family can
be constructed in probabilistic O(N2−2γ log(1/ε)) time, or deterministically in time
2O(N1−γε−1 log(1/ε)). Moreover the code can be encoded in O(N2(1−γ) log2N logO(1)(1/ε))
time.

(iii) (List decodability) The code can be list decoded in 2O(Nγ log(1/ε)) time from up to a
fraction (1− ε) of errors.

Proof: We use a construction quite similar to that of Theorem 9.14. Let p′ = d1/γe and
q0 = O(1/ε2) be a prime power. At the outermost level, we use a Reed-Solomon code CRS of

blocklength n0 over a field of size qn
p′−1
0

0 (instead of a field of size n0 that we used in earlier
constructions). Furthermore, the rate of the Reed-Solomon code will now be an absolute
constant, say 1/4 (as opposed to O(ε) earlier). Each of the n0 field elements (viewed as a
string of length np

′−1
0 over GF(q0)) is encoded using a multi-concatenated inner code C ′in that

encodes np
′−1

0 symbols into 2O(p2)np
′−1

0 symbols (over GF(q0)) and which has the properties
guaranteed by Lemma 9.15 for p = p′ − 1. Denote by CRS−in the resulting concatenated
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Figure 9-5: Basic structure of code construction that achieves rate Ω(ε) and list decoding
radius (1− ε). The list recoverability property of C ′ enables list decoding of the final code
from a fraction (1− ε) of errors.

code. The rest of the construction (i.e. obtaining the final code C∗ from CRS−in using a
expander) is the same as Theorem 9.14, and the claims about the rate and alphabet size
follow similarly to Theorem 9.14. See Figure 9-5 for a sketch of the basic components in
the construction.

About construction complexity, the significant component is finding the inner code

C ′in, which can be done in 2O(np
′−1

0 ε−1 log(1/ε)) time by Lemma 9.15, or in probabilistic
O((np

′−1
0 )2 log(1/ε)) time. Since the overall blocklength of the code equalsN = n02O(p2)np

′−1
0 =

2O(p2)np
′

0 , we have n0 = O(N1/p′) and hence the claimed bounds on the construction time
follow.

About list decoding complexity, we claim that CRS−in is (1/2, O(1/ε), L)-list recoverable
in 2O(N1/p′ log(1/ε)) time, for L = 2O(N1/p′ log(1/ε)). Now, appealing to Proposition 9.12 implies
that our final code C∗ will then be ((1−ε)N,L)-list decodable in 2O(N1/p′ log(1/ε)) time, which
is what we would like to show.

To (1/2, O(1/ε), L)-list recover the concatenated code CRS−in, we first use the decoding
strategy guaranteed by Lemma 9.15 to (1/4, O(1/ε), O(1/ε))-list recover each of the n0

inner codes. This takes a total of n02O((np
′−1

0 )1/p log(1/ε)) = 2O(n0 log(1/ε)) time (since p =
p′ − 1), and passes lists of size O(2O(p2)/ε) corresponding to each position of the Reed-
Solomon code. Since we are thinking of p as a constant and ε sufficiently small, we can
assume that lists of size O(1/ε) are passed for each position of the Reed-Solomon code.
For any message x that is a solution to the list recovering instance, at least a fraction 1/4
of these lists contain the “correct” symbol of CRS(x). We now finish the decoding by a
brute-force decoding of the outermost Reed-Solomon code as follows. Given lists of size
O(1/ε) for each of the n0 codeword positions (these lists are the ones obtained after the
independent decoding of the n0 inner codes), for each subset of n0/4 codeword positions
and each possible choice of field element from the respective list (this involves considering
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(
n0

n0/4

)
· (O(1/ε))n0/4 = 2O(n0 log(1/ε)) possibilities), we do the following. Determine if there

is a Reed-Solomon codeword consistent with the n0/4 field elements at the chosen positions
(this can be performed using a straightforward polynomial interpolation since the rate of the
Reed-Solomon code is 1/4), and, if so, include that codeword in the list. Recalling that n0 =
O(N1/p′), it is clear that the Reed-Solomon decoding can be performed in 2O(N1/p′ log(1/ε))

time. Since 1/p′ ≤ γ, this is consistent with our claimed runtime. 2

Improvement to List Size

Note that the size of the list returned in decoding the above codes up to a fraction (1− ε)
of errors is 2O(Nγ log(1/ε)). It might be of interest to keep this list size small, ideally a
constant, even if the decoding algorithm itself runs in sub-exponential time. This can be
achieved by skipping the use of the outermost Reed-Solomon code in the above construction
and just using the (1/2, O(1/ε), O(1/ε))-list recoverable multi-concatenated code C ′in in the
construction of Proposition 9.12. This will also give a code that is ((1 − ε)N,O(1/ε))-list
decodable in time 2O(Nγ log(1/ε)), at the expense of the construction times being slightly
worse than those claimed in Theorem 9.16. Specifically, the probabilistic construction time
will now be O(N2 log(1/ε)) and the deterministic construction time will be 2O(Nε−1 log(1/ε)).

A version of Theorem 9.16 for list recoverability

We now state a variant of Theorem 9.16 that will be useful in getting binary codes in the
next section.

Lemma 9.17 For every constant γ > 0 the following holds: for all ε > 0, there exists a
code family with the following properties:

(i) (Rate and alphabet size) The code has rate Ω(ε2−O(γ−2)) and is defined over an alpha-
bet of size 2O(ε−1 log(1/ε)).

(ii) (Construction complexity) A description of a code of blocklength N in the family can
be constructed in probabilistic O(N2−2γ log(1/ε)) time, or deterministically in time
2O(N1−γε−3 log(1/ε)).

(iii) (List decodability) The code can be (ε/2, O(1/ε2), L)-list recovered in 2O(Nγ log(1/ε))

time (for L = 2O(Nγ log(1/ε))).

Proof (Sketch): The above result really follows using the same proof as that of Theo-
rem 9.16. The point is that we we assume the code CRS−in to be (1/2, O(1/ε3), L)-list recov-
erable (instead of (1/2, O(1/ε), L)-list recoverable). Accordingly we will have to change its
parameters and replace each ε by ε3. But this will still keep its alphabet size q0 = 1/εO(1)

and its rate will be 2−O(γ−2) which is a constant independent of ε. We will get our final
code C∗ from the code CRS−in by applying Lemma 9.13 (instead of Proposition 9.12), with
the choice ` = O(1/ε2). Thus we can get a code C∗ of rate Ω(ε) over an alphabet of size
q
O(1/ε)
0 = 2O(ε−1 log(1/ε)) which is (ε/2, O(1/ε2), L)-list recoverable. 2

9.5.3 Binary codes of rate Ω(ε3) with sub-exponential list decoding up to
a fraction (1/2− ε) of errors

We now use the code construction from Lemma 9.17 as outer codes in a concatenated scheme
with a suitable binary inner code and obtain constructions of good list decodable binary
codes. Our result is stated formally below.
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Theorem 9.18 For every constant γ > 0 the following holds: for all sufficiently small
ε > 0, there exists a binary code family with the following properties:

(i) (Rate) It has rate Ω(ε32−O(γ−2)).

(ii) (Construction Complexity) A description of a code of blocklength N from the family
can be constructed with high probability in randomized O((N2(1−γ) + ε−6) log(1/ε))
time or deterministically in time 2O(N1−γε−3 log(1/ε)). The code can be encoded in
O(N2(1−γ) log2N logO(1)(1/ε)) time.

(iii) (List decodability) A code of blocklength N from the family can be list decoded from
up to (1/2− ε)N errors in 2O(Nγ log(1/ε)) time.

Proof: The code will be obtained by concatenation of an outer code Cout over a large
alphabet with a binary code Cinner. The code Cout will be picked as guaranteed by
Lemma 9.17 and will be over an alphabet Σout of size 2O(ε−1 log(1/ε)). Let m denote the
blocklength of Cout. The code Cinner will be a binary code of rate Ω(ε2), dimension
lg |Σout| = O(ε−1 log(1/ε)), blocklength t = O(ε−3 log(1/ε)) which is ((1

2−
ε
2)t, O(1/ε2))-list

decodable. Such codes Cinner (in fact, linear codes) exist and can be found deterministically
in 2O(t) time (cf. Section 5.3.2 and Section 8.6.1). Alternatively, one can also pick a random
rate Ω(ε2) pseudolinear code by investing O(ε−6 log2(1/ε)) randomness. The fact that this
such a code will be ((1/2 − ε)t, O(1/ε2))-list decodable with high probability can be seen
using Lemma 9.4 with the choice q = 2, p = (1− ε)/2 and L = O(1/ε2).

Let us call the entire concatenated binary code Cbin and let its blocklength be N = m ·t.
A codeword in Cbin is comprised of m blocks (of t bits each) corresponding to the m
codeword positions of the outer code Cout. Note that Cbin clearly has the claimed rate since
Cout has rate Ω(ε · 2−O(γ−2)) and Cinner has rate Ω(ε2). The construction complexity of
Cbin is the time required to construct Cout plus that required to construct the binary code
Cinner. Therefore, using Lemma 9.17 and the above discussion concerning the construction
of Cinner, the claimed bound on the construction complexity of Cbin follows. This proves
Properties (i) and (ii) claimed in the theorem.

It remains to prove Property (iii) concerning the list decodability of Cbin. By the list
decodability property of Cout guaranteed by Lemma 9.17, we may assume that there is an
efficient algorithm Aout with runtime exponential in mγ that, given as input lists Li of size
O(1/ε2) for 1 ≤ i ≤ m, can find a list of all codewords of 〈c1, . . . , cm〉 ∈ Cout such that
ci ∈ Li for at least a fraction ε/2 of the i’s.

The list decoding algorithm for Cbin works as follows. Given a received word r ∈ {0, 1}N ,
the algorithm finds, for each i, 1 ≤ i ≤ m, a list Li of all symbols β of Σout such that
Cinner(β) differs from the i’th block ri of r in at most t(1−ε)

2 positions. Since Cinner is
((1 − ε)t/2, O(1/ε2))-list decodable, each Li has at most O(1/ε2) elements. Now we run
the decoding algorithm Aout with input these m lists Li. The runtime of the algorithm is
dominated by that of Aout, which is 2O(mγ log(1/ε)), and is thus within the claimed bound.

To prove correctness of the algorithm, let c ∈ Cbin be any codeword which differs from
r in at most (1/2− ε)N positions (the list decoding algorithm must output every such c).
Let βi, 1 ≤ i ≤ m, be the i’th symbol of the codeword of Cout which upon concatenation
with Cinner gives c. By a simple averaging argument, one can show that for at least an
εm/2 values of i, 1 ≤ i ≤ m, βi ∈ Li. By its claimed property, the decoding algorithm Aout

will hence place c on the list it outputs. This completes the proof of Property (iii) claimed
in the theorem as well. 2
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9.6 Improving the alphabet size: Juxtaposed Codes

One drawback of the result of Theorem 9.14 (as well as that of Theorem 9.16) is that these
give codes over an alphabet which is exponentially large in 1/ε. In this section, we indicate
how one can improve the alphabet size significantly at the expense of a moderate worsening
of the rate, by using an entirely different technique (the technique is also somewhat simpler,
as it avoids the use of expanders). The basic idea is use to several concatenated codes, each
one of which is “good” for some error distribution, and then “juxtapose” symbols from these
codes together to obtain a new code over a larger alphabet which has nice list decodability
properties. The idea of juxtaposed codes is already used in this chapter in the proof of
Lemma 9.15, where we juxtaposed a pseudolinear code with a linear code. But the use of
juxtaposition there was for a largely “technical” reason. On the other hand, juxtaposition
is fairly natural for the codes we construct in this section. The discussion in Section 9.2.2
already presented a high level discussion of the rationale behind juxtaposed codes; we further
elaborate on this aspect below.

9.6.1 Intuition

The basic intuition for considering juxtaposed codes can be understood by considering the
following very natural way of constructing a code list decodable up to a fraction (1 − ε)
of errors. Namely, concatenate an outer Reed-Solomon code (call its blocklength n0) with
an inner code over an alphabet of size O(1/ε2) as guaranteed by Corollary 9.5. Each inner
encoding by itself can tolerate a fraction (1−O(ε)) of errors via list decoding with lists of
size O(1/ε). Now consider a received word r and a codeword c of the concatenated code
which agree on a fraction ε of symbols. If this agreement is evenly distributed among the
n0 blocks that correspond to the various inner encodings, then each of the n0 inner codes
can be decoded (by a simple brute-force search over all inner codewords) and return a list of
O(1/ε) Reed-Solomon symbols that includes the “correct” symbol. If the rate of the Reed-
Solomon code is O(ε), list recovering the Reed-Solomon using these lists is guaranteed to
include the codeword c (cf. Chapter 6). The overall rate of the concatenated code can thus
be Ω(ε2), since both the Reed-Solomon and inner codes can have rate Ω(ε).

This seems to give us the desired construction with rate Ω(ε2). There is a (big) problem,
however. There is no guarantee that errors will be evenly distributed among the n0 blocks.
In fact, on the other extreme, it is possible that c and r agree completely on a fraction
ε of the blocks, and differ completely on the remaining fraction (1 − ε) of the blocks. To
tackle this case, the natural inner decoding to perform is to, for each block, simply return
the symbol whose inner encoding is closest to that block of r. Now the “correct” symbol
(corresponding to c) will be thus passed to the outer Reed-Solomon decoder for a fraction
ε of the positions. To finish the decoding, we would need to be able to list decode the
Reed-Solomon code for a (1− ε) errors, and it is only known how to do so efficiently if the
rate is O(ε2) (cf. Chapter 6, Theorem 6.13).

Thus the two widely differing (i.e. completely uniform and highly non-uniform) distri-
butions of errors between the various inner codeword blocks require the rate of the Reed-
Solomon code to be O(ε) and O(ε2) respectively. Thus one has to conservatively pick the
rate of the Reed-Solomon code to be O(ε2) to handle the highly non-uniform distribution
of errors. The rate of the inner code has to be O(ε) to handle the uniform distribution of
errors. Therefore the overall rate has to be at most O(ε3).

A closer inspection of the question reveals that this limitation is due to our using a single
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outer code and single inner code, which can only be optimized for one error distribution, and
suffers for a different error distribution. This suggests the use of several concatenated codes
in parallel, each with its own outer and inner code rates that are optimized for a certain
distribution of errors between the various inner codeword blocks. These concatenated codes
can then be “put together” by juxtaposing their symbols together. Now, depending on how
uniformly the errors are distributed, a certain concatenated code “kicks in” and enables
recovery of the message. The use of multiple concatenated codes reduces the rate compared
to the expander based constructions, and also increases the alphabet size compared to
a single concatenated code. It turns out, however, that we can still do much better on
alphabet size than the bound of 2O(ε−1 log(1/ε)) that was achieved by the construction of
Theorem 9.14.

9.6.2 The actual construction

We first discuss the basic code construction scheme, and then formally state the theorems
we obtain for appropriate setting of parameters. Let ε > 0 be given; the goal being to
construct a code family of good rate (as close to Ω(ε2) as possible) that can be efficiently
decoded from up to a fraction (1 − ε) of errors. Let t ≥ 1 be an integer parameter (t will
be the number of codes that will be juxtaposed together).

Let δ0, δ1, . . . , δt be a sequence in geometric progression with δ0 = ε/2, δt = 1, and
δi/δi−1 = ∆ for 1 ≤ i ≤ t. Note that these parameters must satisfy ∆t = 2/ε.

Fix c > 1 and let q0 = O(1/εc) be a prime power. Let m be a large enough integer.
The juxtaposed code construction, say C∗, that we now give, will be parameterized by
(q0,m, ε, t,∆).

For each i, 1 ≤ i ≤ t, we will have one q0-ary concatenated code Ci with outer code a
Reed-Solomon code CRS

i and inner code an appropriate q0-ary pseudolinear code C in
i . The

parameters of these codes will be as follows.

The Reed-Solomon Codes. The blocklength of each of the Reed-Solomon codes will
be the same, n0 = qm0 . The code CRS

i will be defined over the alphabet GF(qmi) where
mi = mδi/δ0. The rate of CRS

i will be Ri = Θ(ε2/(t2δi∆)) and its dimension will be
ki = Rin0 (the reason for this choice of rate will be become clear once we specify the decoding
algorithm in the proof of Theorem 9.19 below). Note that each message that is encoded
by CRS

i consists of ki symbols over GF(qmi0 ), or equivalently, kimi = Rin0mi = Θ( εmn0
t2∆

)
symbols over GF(q0). This quantity is independent of i, and hence the number of q0-ary
symbols in the message of each CRS

i can made equal. This is very useful for juxtaposing
the codes together, as it makes sure that the dimension of each of the concatenated codes
Ci will be the same.

The Inner Codes. The blocklength of each inner code C in
i will be the same, say n1.

Note that this ensures that each one of the concatenated codes Ci has identical blocklength
N

def= n0n1. The dimension of C in
i will be mi, so that it can be concatenated with the Reed-

Solomon code CRS
i (that was defined over GF(qmi0 )). The code C in

i will have the properties
guaranteed by Corollary 9.5 – specifically, it will have rate ri = mi/n1 = Ω(δi−1) and will
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Figure 9-6: Illustration of juxtaposition of three codes C1, C2, C3.

be ((1− δi−1)n1, O(1/δi−1))-list decodable.6 This implies that the blocklength n1 equals

n1 = O
( mi

δi−1

)
= O

( mδi
δ0δi−1

)
= O

(m∆
ε

)
,

which is independent of i and can thus be made identical for each of the inner codes C in
i .

The construction time of Ci is dominated by the construction time for the inner code C in
i .

Now, using Lemma 9.9, we know that a C in
i with the required properties can be constructed

in deterministic qO(n1)
0 = q

O(m∆
ε

)

0 time. Alternatively, a construction that works with high
probability can be obtained in O(n2

1 log q0) = O(m2∆2ε−2 log(1/ε)) time.

The Juxtaposed Code. The final code, call it C∗, will be the juxtaposition of the codes
C1,C2, . . . ,Ct. Formally, by this we mean that to encode a message according to C∗, we
will encode it according to each Ci to give a codeword, say 〈ci1, . . . , ciN 〉 ∈ GF(q0)N . The
associated codeword of C∗ will then be 〈d1, . . . , dN 〉 ∈ GF(qt0)N where dj = 〈c1j , c2j , . . . , ctj〉
is interpreted as an element of GF(qt0). Figure 9-6 illustrates the juxtaposition operator
applied to three codes.

We now pick parameters δi’s appropriately in the above scheme and obtain the following
theorem. (We use the notation developed above freely in the proof of the theorem.)

Theorem 9.19 For every ε > 0, every integer t ≥ 1 and each b > t, there exists a code
family with the following properties:

(i) It has rate Ω(t−3ε2+2/t) and is defined over an alphabet of size O(1/εb).
6The result of Corollary 9.5 will give such codes over an alphabet of size O(1/δai−1) for any a > 1, but it

can be checked that it will equally work over the larger alphabet GF(q0) — essentially the larger alphabet
only helps that result.
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(ii) A code of blocklength N in the family can be constructed in NO(1/ε1+1/t) time deter-
ministically, and a construction that has the list decodability property (iii) below with
high probability can be obtained in probabilistic O(ε−(2+2/t) log2N) time.

(iii) A code of blocklength N belonging to the family can be list decoded from up to a fraction
(1− ε) of errors in NO(1/ε) time using lists of size O(t2/ε1+1/t).

Proof: Let ε > 0 be given. Pick q0 = O(1/εc) to be a power of 2 where c = b/t > 1. Let us
pick the δi’s in geometric progression with δ0 = ε/2, δt = 1, and δi/δi−1 = ∆ for 1 ≤ i ≤ t.
Note that this implies ∆ = (2/ε)1/t.

For every large enough integer m, we now apply the construction C∗ discussed above
with parameters (q0,m, ε, t,∆).

The code C∗ is then clearly defined over an alphabet of size qt0 = O((1/ε)ct) = O(1/εb)
Recall that C∗ is the juxtaposition of t codes Ci, 1 ≤ i ≤ t, each of which is obtained by
the concatenation of a rate Ri Reed-Solomon code CRS

i with a rate ri inner code C in
i , where

Ri = Θ( ε2

t2δi∆
) and ri = Θ(δi−1). Therefore the rate of each Ci equals

Riri = Ω
( ε2

t2δi∆
· δi−1

)
= Ω

( ε2

t2∆2

)
. (9.7)

Let K,N be the common dimension and blocklength respectively of the Ci’s. The rate
of the juxtaposed code C∗ is 1/t times the rate of each Ci because of the juxtaposition
operator and hence

R(C∗) = Ω
( ε2

t3∆2

)
= Ω(t−3ε2+2/t) ,

as claimed in Part (i) of the theorem.

The dominant component in the construction of C∗ is once again the construction of
the inner codes C in

i used in the concatenated codes Ci. By the argument from the dis-
cussion preceding this theorem, we have that each C in

i can be constructed in q
O(m∆/ε)
0

time deterministically, and O(m2∆2ε−2 log(1/ε)) time probabilistically. Since the overall
blocklength N = n0n1 = qm0 n1, we have m ≤ logN/ log q0. Therefore the constructions
times are NO(∆/ε) = NO(1/ε1+1/t) for a deterministic construction, and O(∆2ε−2 log2N) =
O(ε−(2+2/t) log2N) for a probabilistic construction (that works with high probability). This
proves Property (ii) claimed in the theorem.

It remains to prove the list decodability property of C∗. Specifically, we wish to prove
that given a received word r ∈ GF(qt0)N , we can output a list of all codewords of C∗ that
differ from r in at most (1 − ε)N positions, in NO(1/ε) time. Indeed let c = C∗(x) be a
codeword of C∗ that differs from r in at most a fraction (1 − ε) of places. Note that both
r and c can be broken up into n0 blocks of n1 symbols each, corresponding to the n0 inner
encodings at the n0 positions of the outer Reed-Solomon codes. (Here we are using the fact
that all the Reed-Solomon codes CRS

i and the inner codes C in
i have the same blocklength,

namely n0 and n1, respectively.)
Now comes the crucial part. Since the overall agreement between c and r is at least

a fraction ε of symbols, a standard averaging argument implies that there exists a set B
consisting of at least εn0/2 inner blocks, such that c and r agree on more than a fraction
ε/2 = δ0 of symbols within each block in B. Now imagine partitioning the blocks in B into
t parts Pi, 1 ≤ i ≤ t, in the following way. The part Pi consists of all blocks in B for which
the fractional agreement between the portions of c and r corresponding to that block lies
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in the interval (δi−1, δi]. One of these parts must have at least |B|/t blocks. Let this part
be Pi∗ . Hence we conclude that there exists some i∗, 1 ≤ i∗ ≤ t, such that for at least a
fraction ε

2tδi∗
of the n0 blocks, c and r agree on at least a fraction δi∗−1 of positions within

that block.
Now consider decoding the n0 inner codes C in

i∗ corresponding to this i∗ up to a radius
of (1 − δi∗−1) errors (here we focus attention on and use only the i∗’th symbol from each
of the N “juxtaposed” symbols from the received word r). This can be accomplished by
brute-force in a total of n0q

mδi∗/δ0
0 = q

O(m/ε)
0 = n

O(1/ε)
0 time. By the property of C in

i∗ , this
decoding only outputs a list L(i∗)

j of O(1/δi∗−1) codewords (or in other words Reed-Solomon
symbols for the code CRS

i∗ ) for each of the blocks j, 1 ≤ j ≤ n0. By our choice of i∗, at least
εn0

2tδi∗
of these lists have the “correct” symbol of CRS

i∗ (x).

To finish the decoding, it suffices to be able to list decode CRS
i∗ with these lists L(i∗)

j ,

1 ≤ j ≤ n0, as input, and find all messages x such that L(i∗)
j contains the j’th symbol

of CRS
i∗ (x) for at least εn0

2tδi∗
values of j. We can now apply the list recovering algorithm

for Reed-Solomon codes from Chapter 6 (specifically Theorem 6.17) to accomplish this
decoding task in near-quadratic time. Specifically, this follows by applying Theorem 6.17
with the choice n = n0, k = ki∗ − 1 = O(n0

ε2

t2∆δi∗
) = O(n0

ε2δi∗−1

t2δ2
i∗

), ` = O(1/δi∗−1) and

α = ε
2tδi∗

. It can be verified that the condition α >
√

2k`/n can be satisfied with these
setting of parameters. Moreover, by Theorem 6.17, the number of codewords output by the
decoding algorithm will be O(

√
n`/k), which is O(t∆/ε) for our choice of parameters.

Of course, the algorithm cannot know the value of i∗ in the above description, but
running the above decoding procedure for each Ci, 1 ≤ i ≤ t, will output a list of size at
most O(t2∆/ε) = O(t2ε−(1+1/t)) that includes all codewords that differ from the received
word r in at most a fraction (1−ε) of the positions. The decoding time is dominated by the
time to decode the inner codes, which, as discussed earlier, takes nO(1/ε)

0 = NO(1/ε) time.
This completes the proof of Property (iii) of the theorem as well. 2

Comparison with Algebraic-geometric codes: Note that for t ≤ 3, the result of
Theorem 9.19 is incomparable to AG-codes, since it gets a better alphabet size than AG-
codes (which work over alphabet size of O(1/ε4)), but the rate is worse than ε2. Thus
the above codes give some new, interesting trade-offs for codes that can be list decoded in
polynomial time from a fraction (1− ε) of errors.

By picking a fine “bucketing” with ∆ = 2 and t = dlg(2/ε)e in the above theorem, we
can achieve a rate very close to ε2 though the alphabet size becomes quasi-polynomial in
1/ε. This gives us the following result.

Corollary 9.20 For every ε > 0, there is a code family with the following properties:

(i) (Rate and alphabet size) It has rate Ω(ε2 log−3(1/ε)) and is defined over an alphabet
of size 2O(log2(1/ε)).

(ii) (Construction complexity) A code of blocklength N in the family can be constructed
in NO(1/ε) time deterministically, and a construction that has the list decodability
property (iii) below with high probability can be obtained in probabilistic O(log2N/ε2)
time.

(iii) (List decodability) A code of blocklength N in the family can be list decoded from up
to a fraction (1− ε) of errors in NO(1/ε) time using lists of size O(ε−1 log2(1/ε)).
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9.7 Notes

The concept of good list recoverable codes, which was crucial to most of our results in this
chapter, also appears in the work on extractor codes by Ta-Shma and Zuckerman [TZ01].
The terminology “list recoverable codes” itself was introduced for the first time by the
author and Indyk in [GI01b]. Ta-Shma and Zuckerman also analyze the list recoverability
of random codes. However, their results are for general random codes and their proof
makes use of the complete independence of all the codewords. The result of Lemma 9.2,
which appears in [GI01b], works for random pseudolinear codes and also gives bounds for
list recovering with constant-sized lists. The result from [TZ01], as stated there, works for
list size that depends on the blocklength of the code, since their target is a more general
decoding situation when the input lists at each position could be of widely varying and
potentially very large sizes. We, on the other hand, place a uniform upper bound on the
size of each input list, and moreover are mainly interested in situations where this upper
bound is a small fraction of the alphabet size of the code.

In recent years, there have been several papers which construct codes using expanders.
These use expanders in one of two ways: either to construct the parity check matrix [SS96,
Spi96, Z0́1] or the generator matrix [ABN+92]. Our codes constructions follow the spirit of
the second approach, in the sense that we also use expander-like graphs to distribute the
symbols of the message. However, our constructions are more involved than the construction
of [ABN+92], since we want to make the codes efficiently decodable. In particular there is
a lot more algorithmic focus in our work than in [ABN+92].

There has also been work on sub-exponential time unique decoding algorithms. In
particular, the algorithm of [ZP82] can unique decode certain large distance binary codes in
2O(
√
n) time. In fact it was this algorithm that motivated our discussion in Section 9.4.4. The

quest for an improved decoding time led us to the constructions using multi-concatenated
codes that were discussed in Section 9.5. The use of a sequence of inner codes in order
to decrease the decoding time by paying only a constant factor in the rate at each level
appears to be novel to the constructions in Section 9.5.

Except for the results of Section 9.6, the rest of the material discussed in this chapter
appears in [GI01b]. The results of Section 9.6 will appear in an upcoming paper [GI01a].
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Chapter 10

List Decoding from Erasures

We know accurately only when we know little,
with knowledge doubt increases.

Johann W. von Goethe

10.1 Introduction

The last two chapters presented a thorough investigation of the question of constructions
of good codes, i.e. codes of high rate, which are list decodable from a very large, and
essentially the “maximum” possible, fraction of errors. Utilizing the Reed-Solomon de-
coding algorithms from Chapter 6 at the core, we presented several novel constructions of
efficiently constructible, encodable, and decodable codes that approach the (best possible)
performance of random codes (for which we do not know of any efficient construction or de-
coding procedures). The focus was on the noise model where a certain adversarially chosen
fraction of the symbols are in error (the actual errors can also be adversarially picked).

In this chapter, we consider the noise model of erasures. Under this model the symbols
at an adversarially chosen set of positions are simply erased and the rest of the symbols
are transmitted with no error. The receiver is assumed to know the positions where era-
sures have occurred. This is in fact a simpler situation to deal with, since any symbol
received unerased is guaranteed to be correct, and reconstructing the codeword is more of
an “interpolation-type” problem than an error-recovery problem. We already dealt with
erasures in Chapter 6 where we discussed a decoding algorithm for Reed-Solomon codes
in the presence of both errors and erasures. Also, under soft decoding, which was also
discussed in Chapter 6, an erasure can be modeled by the weight (confidence rating) for the
erased symbol being set to 0. Erasures are a popularly used method to model packet losses
in the Internet, and indeed good erasure codes are useful tools to deal with packet losses in
communication over the Internet.

Having already dealt with the more challenging model of errors, the reader might wonder
why we are now moving to a “simpler” model. The reasons are two-fold. First, the fact that
erasures are easier to deal with implies that it becomes possible to achieve better parameters
(eg. rate) compared to the errors case, and approaching the optimal performance becomes
a challenging question that is interesting by itself and is not subsumed by any of the results
for the errors case. Second, many of the techniques developed in the previous two chapters
apply to this chapter as well, and having already developed them for the errors case, the
application to erasures becomes a lot easier to present now.
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Following the spirit of the last two chapters, we will be interested in codes with non-
trivial list decoding performance for erasures — specifically, codes of “large” rate that are list
decodable using “small” lists from a “large” number of erasures. We consider combinatorial
questions concerning list decoding from erasures and establish lower and upper bounds on
the rate of a code that can be list decoded with list size L when up to a fraction p of its
symbols are adversarially erased. Our results show that in the limit of large L, the rate of
such a code approaches the capacity (1− p) of the erasure channel. This is in the spirit of
the results in Chapter 5. We then present results on efficiently constructible codes which
approach the performance indicated possible by the combinatorial results. This is in the
spirit of Chapters 8 and 9 where similar results were obtained for the errors case.1

One of the results of this chapter shows a provable separation between the asymptotic
performance of linear and non-linear codes for erasure list decodability for certain settings
of parameters. This result is quite surprising, at least to us, since such a situation is quite
rare in coding theory.

10.2 Overview

We focus on binary codes for most of the chapter, except notably Section 10.7 where the
larger alphabet size is critically used. The emphasis on binary codes is only to keep the
presentation simple and all claims go through for codes over Fq for any fixed q.

We first present the basic definitions relating to list decodability from erasures in Sec-
tion 10.3. The relation between erasure list-decodability and distance is studied in Sec-
tion 10.4. In Section 10.5, we study the trade-off between erasure list decodability and the
rate of a code, and obtain upper and lower bounds on the best possible rate of a code with
certain erasure list decodability. We then move on to constructive results in Section 10.6,
and present concatenated codes which get reasonably close to the combinatorial bounds.
Finally, in Section 10.7 we present constructions of juxtaposed codes which almost achieve
the best possible rate for a given erasure list-decodability, albeit over much larger alphabets
than binary.

10.3 Definitions

We now present the basic definitions relating to list decoding from erasures. For y ∈ [q]n

and T ⊆ {1, 2, . . . , n}, define [y]T ∈ [q]|T | to be the projection of y onto the coordinates in
T .

Definition 10.1 ((s, L)-erasure list-decodability) A q-ary code C of blocklength n is
said to be (s, L)-erasure list-decodable if for every r ∈ [q]n−s and every set T ⊆ {1, 2, . . . , n}
of size (n − s), we have |{c ∈ C : [c]T = r}| ≤ L. In other words, given any received word
with at most s erasures, the number of codewords consistent with the received word is at
most L.

1The choice to discuss the combinatorial results relating to list decoding from erasures in this chapter as
opposed to in Chapter 5 or in a separate chapter in Part I of the thesis was deliberate. The combinatorial
results of this chapter have a “local” presence and are only used for the constructions in this chapter. Hence
we felt there was no need to burden the reader with this material earlier on in the thesis. As a side benefit,
this makes the current chapter quite self-contained and cohesive.
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Note that a code of minimum distance d is (d − 1, 1)-erasure list-decodable, but is
not (d, 1)-erasure list-decodable.

Definition 10.2 (Erasure List Decoding Radius) For an integer L ≥ 1 and a code
C, the list-of-L erasure decoding radius of C, denoted ErasureRadL(C), is defined to be
the maximum value of s for which C is (s, L)-erasure list-decodable. We also define the
normalized list-of-L erasure decoding radius, denoted ErasureLDRL(C), as

ErasureLDRL(C) =
ErasureRad(C,L)

n
,

where n is the blocklength of C.

As before we would like to extend this definition for families of codes, since our aim is
to study the asymptotic performance of codes.

Definition 10.3 (Erasure LDR for Code Families) For an infinite family C = {Ci}i≥1

of codes and an integer L ≥ 1, the list-of-L erasure decoding radius of C, denoted
ErasureLDRL(C), is defined to be

ErasureLDRL(C) def= lim inf
i
{ErasureLDRL(Ci)} . (10.1)

One can also allow a list size that is a growing function of the blocklength of the codes in
the above definition (as we did in Definition 2.4 for the case of list decoding from errors). But
all our results in this chapter will apply with a fixed list size independent of the blocklength.
Hence, to keep things simple, we stick to a constant list size in the above definition.

We now define the function which measures the trade-off achievable between rate and
erasure list decoding radius.

Definition 10.4 For an integer L and 0 ≤ p ≤ 1, the maximum rate of a q-ary code family
with list-of-L erasure decoding radius at least p, denoted R̃L,q(p), is defined as

R̃L,q(p)
def= sup
C: ErasureLDRL(C)≥p

R(C) . (10.2)

where the supremum is taken over all q-ary code families C with ErasureLDRL(C) ≥ p.
If the supremum is taken over all linear q-ary code families with ErasureLDRL(C) ≥ p, then
we denote the above rate function by R̃lin

L,q(p).
For the binary case q = 2, we will denote R̃L,2(p) and R̃lin

L,2(p) as simply R̃L(p) and R̃lin
L (p),

respectively.

Note: Recall that we used RL(p) for the similar quantity for the case of errors. To avoid
conflict with that notation, we have now used R̃L(p) to represent the corresponding function
for erasures.
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10.3.1 Comment on combinatorial vs. algorithmic erasure list-decodability

For linear codes, list decoding from erasures is algorithmically easy as it just amounts to
finding the space of solutions to a linear system. Thus, if a linear code is (s, L)-erasure
list-decodable for some small L, then a list of size at most L can also be efficiently output
given any received word with at most s erasures.2 Thus for linear codes, it suffices to
find codes with good combinatorial erasure list-decodability, and this automatically implies
a polynomial time list decoding algorithm from a large number of erasures. However, it
might still be possible to give a faster algorithm than the one that solves a linear system and
outputs all its solutions. Such a reduction from algorithmic to combinatorial erasure list-
decodability does not hold for general, non-linear codes. Therefore, in Section 10.7 where
we give non-linear codes, there is a need to explicitly argue that a fast erasure recovery
algorithm exists, in addition to the fact that the list size will be small for the concerned
number of erasures.

10.4 Erasure list-decodability and minimum distance

We now study the erasure list-decodability of a code purely as a function of its minimum
distance. This can be viewed as the analog of Chapters 3 and 4 for the case of erasures.
The situation for erasures is generally much easier to analyze, though.

The two results below together show that, purely as a function of the relative distance,
the best bound on the erasure list decoding radius of a q-ary code of relative distance δ is
qδ/(q − 1). This is the analog of the “Johnson radius” for the case of erasures.

Proposition 10.1 Let C be a q-ary code of blocklength n and relative distance δ. Then,
for any ε > 0, C is (( q

q−1 − ε)δn,
q

(q−1)ε)-erasure list-decodable.

Proof: Define s = ( q
q−1−ε)δn, t = n−s, and let r ∈ [q]t be a received word with s erasures.

Without loss of generality, assume that the first s symbols of r have been erased. Let ci,
1 ≤ i ≤M , be all the codewords of C that agree with r in the last (n− s) positions. Hence
they all agree with each other in the last t positions. For each i, 1 ≤ i ≤M , define c̃i to be
the truncation of ci to the first s positions. We have ∆(c̃i, c̃j) ≥ δn = ( q

q−1 − ε)
−1s.

Thus we have M strings of length s with fractional distance between any pair strictly
larger than (1 − 1/q). It is a folklore fact there can be at most a constant (independent
of s) number of such strings. One way to prove this is as follows. As in the proof of
Proposition 8.1 from Chapter 8, we can associate sq-dimensional real unit vectors vi with
each c̃i such that

〈vi, vj〉 =
(

1− q

q − 1
∆(c̃i, c̃j)

s

)
.

Since ∆(c̃i, c̃j) ≥ ( q
q−1 − ε)

−1s for i 6= j, we have

〈vi, vj〉 ≤ −ε/(
q

q − 1
− ε) .

2This is not true for the case when there are errors, where algorithmic list decodability is potentially a
lot more difficult to achieve than combinatorial list decodability. In fact, though we presented several list
decoding algorithms in this thesis that decode up to the combinatorial (Johnson) bounds, there remain con-
structions of codes with good combinatorial list decodability, but for which efficient list decoding algorithms
are not known.
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By Lemma 3.5, the number of such vectors is at most

1 +
q/(q − 1)− ε

ε
=

q

(q − 1)ε
.

Hence M ≤ q
(q−1)ε , and therefore C is (s, q

(q−1)ε)-erasure list-decodable. 2

Proposition 10.2 For every q, and every δ, 0 < δ < (1−1/q), and all small enough ε > 0,
the following holds. For all large enough n, there exists a q-ary code C of relative distance
at least δ which is not (( q

q−1 + ε)δn, 2Ω(ε2δn))-erasure list-decodable.

Proof: Define n′ = ( q
q−1 + ε)δn. Pick a q-ary code C ′ of blocklength n′ that meets the

Gilbert-Varshamov bound and has minimum distance at least δn = ( q
q−1 + ε)−1n′. The

relative distance δ′ of this code is at most (1− 1/q−O(ε)), and therefore the code has rate
r ≥ 1−Hq(δ′) = Ω(ε2). Now form a code C of blocklength n from C ′ by just padding each
codeword with (n−n′) zeroes. The minimum distance of C is still at least δn, and hence its
relative distance is at least δ. Moreover, consider the received word r for C whose first n′

positions are erased and the last (n− n′) positions contain zeroes. Clearly all codewords in
C agree with r in the unerased positions. Thus, C is not (n′, |C|−1)-erasure list-decodable.
Recalling that n′ = ( q

q−1 + ε)δn and |C| = |C ′| ≥ 2rn
′

= 2Ω(ε2δn), we get the claimed result.
2

The above two results indicate that in order to construct, say binary, codes which are
erasure list-decodable up to a fraction (1 − ε) of erasures, it suffices to construct codes
which have relative distance (1/2−O(ε)). Moreover, if one only uses the distance to bound
the erasure list decoding radius, then a relative distance of (1/2 − O(ε)) is also necessary.
Since there is an upper bound of O(ε2 log(1/ε)) on the rate of such large distance binary
codes [MRRW77], this indicates that the best rate for codes erasure list-decodable from
a fraction (1 − ε) of erasures that one can obtain by this method is also O(ε2 log(1/ε)).
However, it turns out that a much better rate of Ω(ε) is achievable for such codes by
directly studying the trade-off between erasure list-decodability and rate. The detailed
investigation of such a trade-off is the subject of the next section.

10.5 Combinatorial Bounds for erasure list-decodability

10.5.1 Discussion

We now proceed to establish lower and upper bounds on this function R̃L(p). Since the
list-of-1 ELDR of a code family equals its relative distance δ, R̃1(p) = R(δ) is the central
function in coding theory that studies the trade-off between the rate and relative distance
of a code. One of the consequences of results of this chapter (specifically Theorems 10.3
and 10.8) is that in the limit of large L, the function R̃L(p) (as well as R̃lin

L (p)) tends to
1− p, thus matching the singleton bound. This result has the following nice interpretation.
It is a classical result in coding theory that the capacity of the erasure channel where
each codeword symbol is randomly and independently erased with probability p, equals
(1 − p) [Eli55]. Thus our results show that using list decoding with large enough (but
constant-sized) lists, one can approach capacity even if the symbols that are erased are
adversarially (and not randomly) chosen.

Our upper bound on R̃L(p) also shows that R̃L(p) < 1−p for every p and every fixed list
size L (we stress that this result holds even for general, non-linear codes). Thus one needs
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unbounded list size in order to approach the capacity of the adversarial erasure channel
using list decoding. We point out that similar statements also held for the errors case —
the results of Chapter 5 imply that, in the limit of large L, there exists binary linear codes
with rate approaching (1 − H(p)) and list decodable using lists of size L up to a fraction
p of errors, and also that one requires unbounded L in order to get arbitrarily close to the
“capacity” 1−H(p).

10.5.2 Lower bound on R̃L(p)

Theorem 10.3 For every integer L ≥ 1 and every p, 0 ≤ p ≤ 1, we have

R̃L(p) ≥ L

L+ 1
(1− p)− H(p)

L+ 1
. (10.3)

Proof: The proof follows by a straightforward application of the probabilistic method. Pick
a random binary code C of blocklength n and with 2rn codewords, where the rate r will be
specified shortly. The number of received words with s = pn erasures is exactly

(
n
pn

)
2(1−p)n,

and thus at most 2(H(p)+1−p)n. For each such received word, the probability that there exist
some L+ 1 codewords all of which agree with it in every unerased position is at most(

2rn

L+ 1

)
(2−(1−p)n)L+1 .

The probability that C is not (pn, L)-erasure list-decodable is thus at most

2(H(p)+1−p)n · 2rn(L+1)2−(1−p)n(L+1)

which is o(1) for

r =
L

L+ 1
(1− p)− H(p)

L+ 1
− o(1) .

Therefore, the lower bound on R̃L(p) claimed in (10.3) holds. 2

Erasure list-decodability of pseudolinear codes

The above analyzes the performance of general, random codes. It is desirable to achieve
similar lower bounds using much less randomness, say by using random pseudolinear or
random linear codes. We defer the latter to the next section and now state a result for
random pseudolinear codes. The proof follows along the same lines as the above proof – we
use the fact any L non-zero codewords of a random (L, 2)-pseudolinear code are mutually
independent, and hence the probability that they all agree with some received word with s
erasures, is easy to compute. Thus, one can conclude that or every p, 0 < p < 1, and every
integer L ≥ 2, there exists an infinite family CL of binary (L, 2)-pseudolinear codes of rate
r given by

r = (1− p)L− 1
L
− H(p)

L
,

with the property that the list-of-L erasure decoding radius of CL is at least p. Applying
this to the case p = 1−σ and using the upper bound H(p) = H(1−σ) ≤ σ lg(e/σ) gives the
result below. The claimed construction times follows since a random (L, 2)-pseudolinear
code of dimension k and blocklength n can be picked using a random n × O(kL) Boolean
matrix, and the construction can be derandomized (by using techniques similar to those
from Section 9.3.3, but now applied to the erasure setting) in 2O(kL) time. We omit the by
now standard details.
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Lemma 10.4 For every σ, 0 < σ < 1/2, there exist L = O(log(1/σ)) and a family of
(L, 2)-pseudolinear codes with the following properties:

(i) It has rate Θ(σ).

(ii) A code of blocklength n in the family is ((1− σ)n,L)-erasure list-decodable.

(iii) A code of blocklength n in the family can be constructed in O(n2σ log(1/σ)) time
probabilistically and in 2O(σ log(1/σ)n) time deterministically.

We will use the codes guaranteed by the above lemma in Section 10.7 as inner codes in
a suitable concatenation scheme. We next turn to linear codes.

10.5.3 Lower bound on R̃lin
L (p)

A lower bound using Theorem 10.3

For every integer L ≥ 1 and every p, 0 ≤ p ≤ 1, it is easy to deduce the lower bound

R̃lin
L (p) ≥ J − 1

J
(1− p)− H(p)

J
, (10.4)

where J = dlg(L+ 1)e, using a proof similar to that the result of Theorem 10.3. Indeed, we
can pick a random linear code and analyze the probability that there are (L+ 1) codewords
all agreeing with some received word that has a fraction p of symbols erased. Now, any
set of (L+ 1) codewords must have at least J = dlg(L+ 1)e codewords that correspond to
encodings of linearly independent messages. Therefore we can simply consider each set of J
linearly independent messages and analyze the probability that they are mapped to a set of
J codewords all of which agree with a received word that has a fraction p of erasures. Owing
to the mutual independence of these J codewords, an analysis similar to Theorem 10.3 can
be carried out with every occurrence of (L + 1) being replaced by J . This argument has
already been used in a couple of places in the thesis, namely in the proofs of Theorem 5.3
and Lemma 9.6.

While this lower bound will suffice for our applications to concatenated schemes (in
Section 10.6), we now present a more direct analysis that gives a better lower bound, which
shaves off the (1 − 1/J) factor multiplying (1 − p) in the bound (10.4). The difference
between the new bound and (10.4) above becomes negligible for large L.

A better lower bound on R̃lin
L (p)

The following folklore combinatorial lemma gives a useful linear-algebraic characterization
of when a linear code is (s, L)-erasure list-decodable.

Lemma 10.5 An [n, k]2 linear code C is (s, L)-erasure list-decodable if and only if its n×k
generator matrix G has the property that every (n− s)× k submatrix of G has rank at least
(k − blgLc).

Proof: Let T ⊆ {1, 2, . . . , n} with |T | = n− s and r ∈ {0, 1}n−s, the number of codewords
c ∈ C with [c]T = r is precisely the number of solutions x ∈ {0, 1}k to the system GTx = r
where GT is the submatrix of G consisting of all rows indexed by elements in T . By standard
linear algebra, the number of solutions x to the linear system GTx = 0 is precisely 2` where
` = k − rank(GT ), and for any r ∈ {0, 1}n−s, the number of solutions x to GTx = r is at
most 2` (in fact, it is always either 0 or 2`). Hence C is (s, L)-erasure list-decodable if and
only if for every T ⊆ {1, . . . , n} with |T | = n− s, GT has rank at least k − blgLc. 2
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Theorem 10.6 For every integer L ≥ 1 and every p, 0 ≤ p ≤ 1, we have

R̃lin
L (p) ≥ 1− p− H(p)

dlg(L+ 1)e
. (10.5)

The above theorem follows from Part (i) of the stronger claim of the lemma below. The sec-
ond part of the lemma will be used in the application to concatenated codes in Section 10.6.
It asserts the existence of codes that exhibit a “gradual” increase in list size as more and
more codeword symbols are erased, up to a total of (1− ε)n erasures.

Lemma 10.7 For all large enough n, the following hold:

(i) For every integer L ≥ 1 and every p, 0 ≤ p ≤ 1, there exists an [n, k]2 linear code C
with k = b(1− p− H(p)

dlg(L+1)e)n−
√
nc that is (pn, L)-erasure list-decodable.

(ii) There exists absolute constants A,B > 0 such that for every ε, 0 ≤ ε ≤ 1, there exists
an [n, k]2 linear code C with k = b εn

lg(A/ε)c that is (s, Bnn−s)-erasure list-decodable for
every s ≤ (1− ε)n.

Proof: We first prove Part (i) of the lemma. The proof is based on the probabilistic
method. We will pick a code C generated by a random n × k generator matrix G where
k is as specified in the statement of the lemma.3 We will prove that such a random code
is (pn, L)-erasure list-decodable with high probability. By Lemma 10.5, this amounts to
estimating the probability that a random n× k matrix over F2 has the property that every
t× k submatrix has rank at least (k − blgLc), where t = (1− p)n. For any J ′, 0 ≤ J ′ ≤ k,
the probability that a random matrix M of order t×k has rank (k−J ′) is at most 2kJ

′
2−tJ

′
.

This follows since for a fixed subspace S of Fk2 of dimension (k − J ′), the probability that
all t rows of M lie in S is at most 2−J

′t, and furthermore the number of subspaces of Fk2 of
dimension (k− J ′) is at most 2kJ

′
as one can specify such a subspace as the null-space of a

J ′ × k matrix over F2. Let J def= dlg(L+ 1)e = 1 + blgLc. Then, for t ≥ k, the probability
that a random matrix M of order t× k has rank (k − J) or less is at most

k∑
J ′=J

2(k−t)J ′ ≤ k2(k−t)J .

Now, by a union bound, the probability that some t× k submatrix of G has rank at most
(k − J) is at most(

n

t

)
· k2(k−t)J =

(
n

(1− p)n

)
· k2(k−t)J

≤ k · 2H(p)n · 2kJ−(1−p)nJ

≤ k · 2H(p)n · 2((1−p)J−H(p))n · 2−J
√
n · 2−(1−p)nJ

= k · 2−J
√
n

= o(1) ,
3We will assume for simplicity that C has dimension k, i.e. G has full column rank, since this happens

with very high probability.
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where in the second step we have used the fact that
(

n
(1−p)n

)
=
(
n
pn

)
≤ 2H(p)n (cf. [vL99,

Chap. 1, Theorem 1.4.5]), and in the third step we substituted the value of k from the
statement of Part (i) of the lemma.

Hence an n× k matrix G every t× k submatrix of which has rank at least k − J + 1 =
k−blgLc exists, and by Lemma 10.5, therefore, there exists a (pn, L)-erasure list-decodable
code of blocklength n and dimension k. This proves Part (i) of the lemma.

To prove Part (ii), we apply the above proof for p = (1 − ε), and k = b ε
lg(8/ε)nc. Let

us estimate the probability that for a fixed s, where n/2 ≤ s ≤ (1− ε)n, C is not (s, 8n
n−s)-

erasure list-decodable. By Lemma 10.5, this happens only if some (n − s) × k submatrix
of G has rank less than k − lg( 8n

n−s). Let σ = (n − s)/n; we have ε ≤ σ ≤ 1/2. As in the
proof of Part (i), the probability that some (n− s)× n submatrix of G has rank less than
k − lg(8/σ) is at most(

n

n− s

)
· k · 2(k−n+s) lg(8/σ) ≤ k ·

( e
σ

)σn
· 2((ε/ lg(8/ε))−σ) lg(8/σ)n

= k · 2−n(σ lg(8/e)− ε lg(8/σ)
lg(8/ε)

)

= 2−Θ(n)

where the last step follows since σ ≥ ε, and in the first step we used the inequality
(
n
σn

)
≤

(e/σ)σn for σ ≤ 1/2.
Now, by a union bound, the probability that for some s, n/2 ≤ s ≤ (1 − ε)n, C is

not (s, 8n
n−s)-erasure list-decodable is also exponentially small. Hence there exists a linear

code C of blocklength n and rate ε/ lg(8/ε) that is (s, 8n
n−s)-erasure list-decodable for every

s that satisfies n/2 ≤ s ≤ (1 − ε)n. Since the list size for s < n/2 erasures is at most
the list size for n/2 erasures, such a code is also (s, 16n

n−s)-erasure list-decodable for every s,
0 ≤ s ≤ (1− ε)n. This proves Part (ii) of the claim (with the choice A = 8 and B = 16 for
the absolute constants). 2

Remark: Note that the above lemma not only guarantees the existence of codes with the
required properties, but also proves that a random code has these properties with very high
probability.

10.5.4 Upper bound on R̃L(p)

We now turn to upper bounds on R̃L(p). It is easy to prove that for any fixed L (in
fact even for a list size L that is allowed to grow polynomially in the blocklength), we
must have R̃L(p) ≤ 1 − p. Indeed, let C be a code of blocklength n and rate r, and
let T = {1, 2, . . . , (1 − p)n}. Pick a random y ∈ {0, 1}(1−p)n and consider the set Sy of
codewords c ∈ C that satisfy [c]T = y. The expected number of such codewords equals
2rn2−(1−p)n, and hence there must exist a y ∈ {0, 1}n for which |Sy| ≥ 2(r−(1−p))n. Since we
want |Sy| ≤ L ≤ poly(n), we must have r ≤ (1 − p). Hence R̃L(p) ≤ 1 − p. Below, we are
interested in a better upper bound on R̃L(p), which in particular bounds it strictly away
from (1− p) for every fixed L (and thereby shows that one requires unbounded list size in
order to approach the “capacity” (1− p) of the erasure channel).

Theorem 10.8 For every integer L ≥ 1 and every p, 0 ≤ p ≤ 1− 2−L, we have

R̃L(p) ≤ min
{

1−H(λ), 1− p

1− 2−L
}
, (10.6)
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where λ is the unique root of the equation λL+1+(1−λ)L+1 = 1−p in the range 0 ≤ λ ≤ 1/2.
For p ≥ 1− 2−L, we have R̃L(p) = 0.

Proof: We will first prove that R̃L(p) ≤ 1 − H(α) for any 0 ≤ α ≤ 1/2 that satisfies
αL+1 + (1− α)L+1 ≥ 1− p. We will later deduce the claimed upper bounds on R̃L(p) from
this fact.

Let α such that αL+1 + (1 − α)L+1 ≥ 1 − p; we wish to prove that R̃L(p) ≤ 1 −H(α).
Let C be a (pn, L)-erasure list-decodable code of blocklength n with M0 codewords. Our
goal is to prove an upper bound on M0.

The proof follows along the lines of the Elias-Bassalygo upper bound on the rate of a
code in terms of its minimum distance (cf. [vL99, Section 5.2]). Pick a random v ∈ {0, 1}n
and consider the subset C ′ of all codewords of C that are at a Hamming distance αn from
v. The expected size of C ′ equals |C|

(
n
αn

)
2−n ≥M02(H(α)−1)n−o(n). Hence there exists such

a code C ′ with
|C ′| = M ≥M02(H(α)−1)n−o(n) . (10.7)

By shifting the origin to v, we can assume that all codewords of C ′ have Hamming weight
exactly αn. We will prove an upper bound on M , and by Equation (10.7) this will imply
an upper bound on M0 as well.

We will prove an upper bound on M by counting the total number N of pairs (S, i)
such that S is an (L+ 1)-element subset of C ′ and 1 ≤ i ≤ n, and all codewords in S agree
in position i. Since C is (pn, L)-erasure list-decodable and C ′ is a subset of C, C ′ is also
(pn, L)-erasure list-decodable. Hence for any such subset S of (L+ 1) codewords from C ′,
the number of codeword positions where all codewords in S agree is at most ((1− p)n− 1).
We therefore have

N ≤
(

M

L+ 1

)
((1− p)n− 1) . (10.8)

We next establish a lower bound on N . Arrange the codewords in C ′ in the form of a M×n
matrix in the obvious way with the rows being the various codewords. Let ai be the fraction
of 1’s in the i’th column of this matrix. Since each codeword of C ′ has weight exactly αn,
we have

∑n
i=1 ai = αn. Also, by definition we have

N =
n∑
i=1

[(
aiM

L+ 1

)
+
(

(1− ai)M
L+ 1

)]
≥ n

[(
αM

L+ 1

)
+
(

(1− α)M
L+ 1

)]
(10.9)

where we have used the fact that
∑

i ai = αn, and hence the minimum value of

n∑
i=1

[(
aiM

L+ 1

)
+
(

(1− ai)M
L+ 1

)]

is achieved when each ai = α. We now claim that any 0 ≤ β ≤ 1 and large enough M ,(
βM

L+ 1

)
≥
(
βL+1 − 2L2βL

M

)( M

L+ 1

)
. (10.10)
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The above is clearly true if β = 0, 1, so assume 0 < β < 1. Also assume M ≥ 2L/β (as
otherwise we will already have a good upper bound on M). Now,(
βM

L+ 1

)(
M

L+ 1

)−1

=
βM(βM − 1) · · · (βM − L)
M(M − 1) · · · (M − L)

≥ β
(
β − L

M − L

)L
≥ βL+1

(
1− 2L

βM

)L
(since M ≥ 2L/β ≥ 2L)

≥ βL+1
(

1− 2L2

βM

)
(using (1− x)L ≥ 1− xL for x ≤ 1 and L ≥ 1),

giving Equation (10.10).
Now, combining (10.8), (10.9) and (10.10), we get, assuming M ≥ 2L/α, that

M(αL+1 + (1− α)L+1 − (1− p) + 1/n) ≤ 2L2(αL + (1− α)L) .

Thus as long as αL+1 + (1 − α)L+1 ≥ 1 − p, we have M ≤ max{2L/α, 2L2n}. Recalling
Equation (10.7), the size M0 of the original code C satisfied M0 ≤M2(1−H(α))n+o(n). Hence
we get M0 ≤ 2(1−H(α))n+o(n), and R(C) = lgM0

n ≤ 1−H(α)+o(1). Since C was an arbitrary
(pn, L)-erasure list-decodable code, this proves that R̃L(p) ≤ 1 − H(α), as we set out to
prove.

Recall that α was any real number in the range [0, 1/2] that satisfied αL+1+(1−α)L+1 ≥
1 − p. Now, if p ≥ 1 − 2−L, we can pick α = 1/2 and this will imply R̃L(p) = 0. For the
case when p < 1− 2−L, we note that the function f(α) = αL+1 + (1− α)L+1 is decreasing
in the range 0 ≤ α ≤ 1/2 with f(0) = 1 ≥ 1 − p and f(1/2) = 2−L < 1 − p, and thus the
equation f(α) = 1− p has a unique solution, say λ, in the range 0 ≤ λ < 1/2. We can then
use α = λ and conclude R̃L(p) ≤ 1 −H(λ), which gives the first upper bound claimed in
Equation (10.6).

It now remains to prove the second upper bound R̃L(p) ≤ 1− p/(1− 2−L) in the range
0 ≤ p ≤ 1 − 2−L. We know that R̃L(0) = 1 and R̃L(1 − 2−L) = 0, and this upper bound
simply amounts to proving that R̃L(p) always lies on or below the straight line joining the
points (0, 1) and (1− 2−L, 0). We prove this by a standard “puncturing” argument. Let C
be a (pn, L)-erasure list-decodable code. Let γ = 1− p

1−2−L
. For each a ∈ {0, 1}γn, define Ca

to be the subcode of C consisting of all codewords whose first γn positions agree with a, and
let C ′a be the code obtained from Ca by puncturing the first γn positions. The blocklength of
C ′a equals n′ = (1− γ)n. Since C is (pn, L)-erasure list-decodable, for each a ∈ {0, 1}γn, C ′a
must also be (pn, L)-erasure list-decodable. Now pn = pn′/(1− γ) = (1− 2−L)n′, and since
R̃L(1− 2−L) = 0, we have |Ca| = |C ′a| = 2o(n) for each a ∈ {0, 1}γn. Hence |C| ≤ 2γn+o(n).
Recalling that γ = 1− p

1−2−L
, we have R̃L(p) ≤ 1− p

1−2−L
, as claimed. 2

Corollary 10.9 For every integer L ≥ 1 and every p, 0 < p < 1, we have R̃L(p) < 1− p.

Comment on the bound (10.6)
For L = 1, the two bounds proven in Theorem 10.8 are precisely the Elias-Bassalygo
and Plotkin bounds on the rate of a code in terms of its minimum distance, which state
that R(δ) ≤ 1 − H(1−

√
1−2δ
2 ) and R(δ) ≤ 1 − 2δ, respectively. For large L, the bound

R̃L(p) ≤ 1− p/(1− 2−L) is better than the other bound R̃L(p) ≤ 1−H(λ) except for very
small p (less than about L/2L).
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10.5.5 Improved upper bound for R̃lin
L (p)

The previous upper bound applied to general binary codes. We next ask the question
whether a better upper bound is possible if one restricts attention to binary linear codes,
i.e. whether an upper bound better than (10.6) exists for R̃lin

L (p). In this section, we
obtain a different upper bound that implies that, for at least some settings of parameters,
the answer to this question is yes. As a consequence, we will in fact be able to exhibit a
provable separation between the power of linear and non-linear codes with respect to erasure
list-decodability.

Lemma 10.10 For every integer L and every p, 0 ≤ p ≤ (1− 1/2L),

R̃lin
L (p) ≤ L(lgL+ 2)

2L− 1

(
1− p− 1

2L

)
.

Proof: Let C1 be a linear code of blocklength n and dimension k = rn that is (pn, L)-
erasure list-decodable. We will use C1 to construct a non-linear (in fact, pseudolinear) code
C2 of smaller, but related, dimension but which has much better erasure list-decodability.
We will then appeal to the bound of Theorem 10.8 to conclude an upper bound on the rate
of C2, which in turn will imply an upper bound on the rate r of C1.

We will take C2 to be an (n, k′)2 pseudolinear code that encodes x ∈ Fk′2 into C1(Hx),
where H is a k × (2k

′ − 1) parity check matrix of a BCH code of designed distance d =
blgLc+ 3, and Hx denotes the column number x of H (here we view x as an integer in the
range [0, 2k

′ − 1] and use the convention H0 = 0). Thus any d− 1 = blgLc+ 2 columns of
H are linearly independent. Define L̃ = blgLc+ 1 = dlg(L+ 1)e. Then any L̃+ 1 columns
of H are linearly independent. Such a matrix H exists with k ≤ k′ L̃+1

2 (cf. [MS81], [AS92,
Chap. 15]).

We will now prove that if C1 is (pn, L)-erasure list-decodable, then C2 is (pn, L̃)-erasure
list-decodable. Suppose this is not the case. This means that there exists T ⊂ [n] with
|T | = (1 − p)n and r ∈ F(1−p)n

2 , such that at least m def= L̃ + 1 codewords of C2 agree
with r on the positions in T . Let these codewords be C2(x1), C2(x2), . . . , C2(xm). By the
definition of C2 from C1, this implies that the messages Hxj

for 1 ≤ j ≤ m are all solutions
to C1(y)|T = r (i.e. their encodings by C1 agree with r in every position in T ).

We now consider two cases: r = 0 and r 6= 0. In the first case, we can assume that
xm (and hence Hxm) is the zero vector. The set of solutions y ∈ Fk2 to C1(y)|T = 0 form
a linear subspace W that includes the vectors Hxj

for 1 ≤ j ≤ m − 1. By the property of
the matrix H, any L̃+ 1 columns of it are linearly independent, and hence the vectors Hxj

,
1 ≤ j ≤ m− 1 form a set of linearly independent vectors. Hence the dimension of W as a
vector space over F2, dim(W ), is at least m−1 = L̃, and hence |W | ≥ 2L̃ ≥ L+ 1 (recalling
that L̃ = dlg(L+ 1)e). This contradicts the (pn, L)-erasure list decodability of C1.

Let us now consider the case r 6= 0. In this case the set of solutions to C1(y)|T = r form
an affine space (i.e. is of the form w + W for some subspace W ). By the list decodability
property of C1 we know that |W | ≤ L, and hence dim(W ) ≤ blgLc = L̃−1. The maximum
number of linearly independent vectors in w + W can be at most dim(W ) + 1 ≤ L̃. This
contradicts the fact that Hxj

, 1 ≤ j ≤ L̃+ 1, all lie in w +W , since, by the property of the
matrix H, these form a set of L̃+ 1 mutually linearly independent vectors.

Thus we get a contradiction in either case, and hence C2 is (pn, L̃)-erasure list-decodable.
Appealing to Theorem 10.8, the rate of C2, R(C2), satisfies

R(C2) ≤ 1− p

1− 2−L̃
.
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Now, since the dimension of C1 is at most L̃+1
2 times that of C2, we have

R(C1) ≤ L̃+ 1
2

(
1− p

1− 2−L̃

)
≤ L̃+ 1

2

(
1− p

1− 1/2L

)
(using L̃ = 1 + blgLc)

=
L(lgL+ 2)

2L− 1

(
1− p− 1

2L

)
,

where the last step follows since L̃ = 1 + blgLc ≤ lgL+ 1. 2

10.5.6 Provable separation between erasure list-decodable linear and non-
linear codes

The following result shows that list decoding up to a fraction (1 − ε) of erasures can be
accomplished using non-linear codes with an exponentially smaller list size compared to
that achievable using linear codes.

Theorem 10.11 Let ε > 0 and Clin be a binary linear code family of positive rate with
ErasureLDRL(Clin) ≥ 1 − ε. Then L = Ω(1/ε). On the other hand, there exists a binary
code family C of positive rate (in fact, rate Ω(ε)) with ErasureLDRL′(C) ≥ 1 − ε for L′ =
O(log(1/ε)).

Proof: The lower bound on list size for linear codes follows from Lemma 10.10 with the
setting p = 1 − ε. The claim about general, non-linear codes follows from Theorem 10.3
with the setting p = 1 − ε (and using H(ε) ≤ O(ε log(1/ε))). In fact by Lemma 10.4, we
can achieve a similar performance with a family of (L′, 2)-pseudolinear codes as well. 2

10.6 A good erasure list-decodable binary code construction

10.6.1 Context

We have so far investigated the best rate possible for codes with a certain erasure list-
decodability. These results were all probabilistic and demonstrated that good codes exist
in abundance. However, they did not give an efficient procedure to construct them deter-
ministically. We now move on to the question of efficient constructions of such codes and
efficient algorithms to decode them from erasures. We will focus on binary codes for this
section.

As for the errors case, we will again focus on the high-noise regime to state and prove
our results. For the erasures case, this means list decoding when up to a fraction (1− ε) of
symbols could be adversarially erased. We loosely give such codes the label “highly erasure
list-decodable codes”.

The existential results state that the best rate one can hope for such codes is Ω(ε) (with
a list size of O(log(1/ε)) for non-linear codes and 1/εO(1) for linear codes). The relation
between the erasure list decoding radius and minimum distance established in Section 10.4,
implies that we can construct highly erasure list-decodable codes by using binary linear
codes of relative distance 1/2−O(ε). The best explicit constructions of such large distance
binary codes achieves a rate of Ω(ε3) [ABN+92, She93]. Thus, we can also construct explicit
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codes of rate Ω(ε3) which are efficiently list decodable from a fraction (1 − ε) of erasures.
(Since the code is linear, the fact that the list size is small up to a fraction (1−ε) of erasures
immediately gives an at most cubic time algorithm to find and output the list.)

We now present a concatenated code construction that improves this bound and achieves
a rate of Ω(ε2/ log(1/ε)). We stress that our result is not obtained by appealing to the
above mentioned distance to erasure list decoding radius relation. Indeed no polynomial
time constructions of binary code families of relative distance (1/2−O(ε)) and rate about
ε2 are known. In fact such a construction, which will asymptotically match the Gilbert-
Varshamov bound at low rates, will be a major breakthrough in coding theory.4

10.6.2 The formal result

Theorem 10.12 For every ε > 0, there exists a family of binary linear codes of rate
Ω(ε2/ log(1/ε)) such that a code of blocklength in the family can be constructed in 2ε

−O(1)
+

poly(N, 1/ε) time, and can be list decoded in polynomial time using lists of size O(1/ε) when
up to a fraction (1− ε) of its symbols are erased.

The above result is the main result of this section. It follows immediately from the
following lemma.

Lemma 10.13 There exist absolute constants b, d such that for all large enough integers
K and all small enough ε > 0, there exists a binary linear code CK that has the following
properties:

(i) CK has dimension K and blocklength N ≤ bK log(1/ε)
ε2

.

(ii) The generator matrix of CK can be constructed in 2ε
−O(1)

+ poly(N, 1/ε) time.

(iii) CK is ((1 − ε)N, dε )-erasure list-decodable (and since CK is linear there is an O(N3)
time list decoding algorithm to decode up to (1 − ε)N erasures using lists of size
O(1/ε)).

Proof: The code CK is constructed by concatenating an outer code Cout over GF(2m) of
blocklength n0, dimension k0 = K/m and minimum distance d0, with an inner code Cin

as guaranteed by Part (ii) of Lemma 10.7. By using a construction in [ABN+92], we can
pick parameters so that k0 = K/m = Ω(εn0), m = O(1/ε) and d0 = (1 − O(ε))n0 (for
convenience, we hide constants using big-Oh notation, but we stress that these are absolute
constants that do not depend on ε).5 We note that this choice of Cout is not linear over
GF(2m) (though it is additive), but a (succinct) description of Cout can be constructed
in time poly(n, 1/ε). Moreover, after concatenation with an inner binary linear code, the
overall concatenated code will be a binary linear code.

The inner code Cin will be a code as guaranteed by Lemma 10.7 of dimension m and
blocklength n1 = O(m lg(1/ε)

ε ) that is ((1− σ)n1, B/σ)-erasure list-decodable for every σ ≥
ε/2. We can construct such a code by a brute-force search in 2O(mn1) = 2ε

−O(1)
time.

4The reader might recall that the same applied to our construction in Chapter 8 of binary codes of rate
Ω(ε4) list decodable up to a fraction (1/2− ε) of errors.

5Actually, we can use algebraic-geometric codes (specifically those discussed in Section 6.3.9) and even
have m = O(log(1/ε)). But we prefer to use the codes from [ABN+92] as they are easier to construct and
have lower construction complexity, and we do not want to give the impression that we need complicated AG-
codes for our construction. We will return to the performance attainable using AG-codes in Section 10.6.3.
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Once we have descriptions of Cout and Cin, one can construct the generator matrix of the
concatenated code CK in poly(N, 1/ε) time where N = n0n1 is the blocklength of CK . Now
N = n0 · n1 = O( Kmε) · O(m lg(1/ε)

ε ) = O(K lg(1/ε)
ε2

). This proves Parts (i) and (ii) of the
statement of the lemma.

We now prove that CK is ((1− ε)N,O(1/ε))-erasure list-decodable. Let y be a received
word with (1 − ε)N erasures, and let c′1, c

′
2, . . . , c

′
M be the codewords in CK “consistent”

with y, and let cj be the codeword of Cout corresponding to c′j , for 1 ≤ j ≤M . We wish to
prove that M = O(1/ε). Let yi be the portion of y corresponding to the i’th outer codeword
position, for 1 ≤ i ≤ n0. Let the number of symbols in yi be σin1. We have

∑
i σi = εn0.

Define Q = {i : σi ≥ ε/2}. Clearly we have∑
i∈Q

σi ≥
εn0

2
. (10.11)

Now define “weights” wi,β for 1 ≤ i ≤ n0 and β ∈ GF(2m) as follows. If i /∈ Q, set
wi,β = 0 for all β ∈ GF(2m). If i ∈ Q, then σi ≥ ε/2 and hence by construction Cin is ((1−
σi)n1, B/σi)-erasure list-decodable. In other words, if Ji = {β : Cin(β) is consistent with yi },
then |Ji| ≤ B/σi. We set (for i ∈ Q):

wi,β =
{
σi if β ∈ Ji
0 if β /∈ Ji

Since |Ji| ≤ B/σi, our choice of weights clearly satisfy∑
i,β

w2
i,β ≤ B

∑
i∈Q

σi . (10.12)

We now use the combinatorial result of Corollary 3.7 from Chapter 3 to obtain an
upper bound on the number of codewords of Cout that satisfy a certain weighted condition
depending on the distance d0 of Cout. Recalling the result of Corollary 3.7, for any ε′ > 0,
we have that the the number of codewords (α1, α2, . . . , αn0) ∈ Cout that satisfy

n0∑
i=1

wi,αi ≥
(

(n0 − d0(1− ε′))
∑
i,β

w2
i,β

)1/2
(10.13)

is at most 1/ε′.
Now for each cj , 1 ≤ j ≤ M , and each i ∈ Q, we have cj,i ∈ Ji, where cj,i ∈ GF(2m)

denotes the i’th symbol of cj . Now, wi,cj,i = σi for every i ∈ Q and wi,cj,i = 0 for i /∈ Q.
Thus, we have

n0∑
i=1

wi,cj,i =
∑
i∈Q

σi . (10.14)

Combining Equations (10.11), (10.12) and (10.14), we have that the codeword cj satisfies
Condition (10.13) as long as

εn0

2
≥ (n0 − d0(1− ε′))B ,

which can be satisfied provided d0 ≥ n0(1 − ε
2B )(1 − ε′)−1. Picking ε′ = ε

4B , we only need
d0 = n0(1−O(ε)) which is satisfied for our choice of Cout. Hence the number of codewords
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consistent with the received word y is at most 1/ε′ = O(1/ε), thus proving Part (iii) of the
lemma as well. 2 (Lemma 10.13)

Remark: The best previous results deducible by using codes of large (1/2−O(ε)) relative
minimum distance and appealing to the erasure list decoding radius to minimum distance
relation from Section 10.4 can achieve a blocklength of N = min{O(K

2

ε2
), O(K

ε3
)}. Thus, our

result achieves the best features of both these bounds and obtains a blocklength N that has
a linear dependence on K and a near-quadratic dependence on ε.

10.6.3 Some improvements

Obtaining near-linear encoding and near-quadratic decoding times

The codes constructed in Lemma 10.13 being linear can be encoded in O(N2) time and
can be list decoded from a fraction (1 − ε) of erasures in O(N3) time by solving a linear
system. By using Reed-Solomon codes as outer code, the encoding can be accomplished in
O(N logO(1)N) time. This is because the outer encoding can be performed usingO(N logN)
field operations by employing FFT based methods, and then the inner encoding just takes
O(log2N) time for each of the N outer codeword symbols. For decoding, the inner codes can
be decoded in O(log3N) time by solving a linear system, and then the Reed-Solomon code
can be decoded from a set of weights that satisfy Condition (10.13) in near-quadratic time
(cf. Chapter 6). There is, however, a potential problem in using Reed-Solomon codes as
outer codes. In such a case, the inner code needs to be a linear code of dimension Ω(logN),
and hence a brute force search for the inner code will take time which has a quasi-polynomial
dependence on N . Therefore, if we seek a deterministic construction, then the construction
time appears to be no longer polynomial in N .

Nevertheless there is a way to obtain a polynomial time construction of the necessary in-
ner code. A random linear code will have the erasure list-decodability property required by
the inner code with high probability (cf. Lemma 10.7 and the remark following it). This ran-
domized construction can be derandomized using the method of conditional expectations.
The approach is similar to that taken to derandomize the construction of pseudolinear codes
from Section 9.3.3, though the specific implementation details are now different.

To pick an [n, k]2 linear code, we pick the n rows of the n × k generator matrix G in
sequence, each time going through all possible choices in Fk2 and picking the one which
minimizes a certain conditional expectation. The relevant conditional expectation in ques-
tion concerns the expected number of t × k submatrices of G which have rank at most
k− log(n/t)− c, summed over all t, εn ≤ t ≤ n (here c is a large enough absolute constant).
Lemma 10.5 implies that finding a generator matrix where there are no such submatrices
is equivalent to the construction of an [n, k]2 linear code that satisfies the requirement of
Lemma 10.7, Part (ii). To be able to compute the relevant conditional expectations eas-
ily, we will introduce indicator random variables whose expectation provides a pessimistic
estimation of the true expectation, and compute their expectations instead.

We will introduce an indicator random variable I(T, S) for each T ⊆ [n] with |T | =
t ≥ εn and each S ⊆ F

k
2 of linearly independent vectors with |S| = log(n/t) + c. We

will define I(T, S) = 1 if the span of the rows of the generator matrix G that are indexed
by T is contained in the nullspace of the span of S, and I(T, S) = 0 otherwise. Thus if
I(T, S) = 1, then the |T | × k submatrix of G corresponding to rows in T has rank at most
k−|S|, and provides a “counterexample” to the code constructed having the desired erasure
list-decodability property. The event “I(T, S) = 1” is therefore one that we would like to
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avoid, for every choice of T, S. It is easy to see that for each fixed T, S, the conditional
expectation of I(T, S) after the first few rows of G have been fixed (taken over the random
choice of the remaining rows) can be computed exactly, since it is simply the probability
that each of the rows in T that have not been fixed yet lie in the nullspace of S.

Now, define the random variable X =
∑

T,S I(T, S). By linearity of expectation, the con-
ditional expectation of X can be computed exactly for each choice of a subset of rows of G.
The initial expectation of X, say E, is exponentially small in n provided k = Θ(εn/ log(1/ε))
(this follows from the proof of Part (ii) of Lemma 10.7).

Hence the above derandomization procedure will find a matrix G whose X value is at
most E, and since for each fixed G, the random variable X takes on an integer value, we
must have X(G) = 0. This implies in turn that G has the required rank property for its
submatrices, as desired.

The runtime of this derandomization procedure is dominated by the time to consider
all possible candidates for the sets T and S above. Therefore, it takes

2O(H(ε)n) · 2O(k log(1/ε)) = 2O(ε log(1/ε)n) = 2O(k log2(1/ε))

time (since k = Θ(εn/ log(1/ε)).)
Applying this to the context of concatenation with an outer Reed-Solomon code where

the dimension k = O(logN), we conclude that the generator matrix of a linear inner code
that has the required properties can be computed in NO(log2(1/ε)) time. This is dominant
component in the construction of the concatenated code, and therefore the overall code can
be constructed in NO(log2(1/ε)) time.

To summarize, we can prove the result of Lemma 10.13 with codes that have a near-
linear time encoder, a quadratic time list decoder, and an NO(log2(1/ε)) time deterministic
construction.

Improving construction time using AG-codes

Despite the impressive encoding and decoding times, the drawback of the above construc-
tion with Reed-Solomon codes as the outer code is the rather high exponent of N in the
construction time. In particular, the code family ceases to be uniformly constructive, since
the construction time is no longer of the form O(f(ε)Na) where a is an absolute constant
independent of ε.

Instead of Reed-Solomon codes, we can use AG-codes of distance (1−O(ε)) as the outer
code. Such codes of rate Ω(ε) exist over an alphabet size of O(1/ε2) (cf. Section 6.3.9).
Now, the dimension k of the inner binary code is only O(log(1/ε)). Applying the same
derandomization procedure discussed above, we can now deterministically find a binary
linear inner code which has the required erasure list-decodability properties in 2O(log3(1/ε))

time.
Since the overall code is linear, the claims of quadratic encoding time and cubic decoding

time still holds. Thus, we can obtain the same properties as the codes from Lemma 10.13
with an improved construction time of 2O(log3(1/ε)) + poly(N, 1/ε). We formally record this
improvement below.

Proposition 10.14 There exist absolute constants b, d such that for all large enough inte-
gers K and all sufficiently small ε > 0, there exists a binary linear code CK that has the
following properties:
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(i) CK has dimension K and blocklength N ≤ bK lg(1/ε)
ε2

.

(ii) The generator matrix of CK can be constructed in 2O(log3(1/ε)) + poly(N, 1/ε) time.

(iii) CK is ((1 − ε)N, dε )-erasure list-decodable. In other words, the N × K generator
matrix G of CK has the property that every (εN × K) submatrix has rank at least
(k − blg(d/ε)c). Also, since since CK is linear, there is an O(N3) time decoding
algorithm to list decode it from up to (1− ε)N erasures.

10.6.4 The ε2 “rate barrier” for binary linear codes

We now present a connection between good erasure list-decodable binary linear codes and
certain bipartite Ramsey graphs. This indicates that improving the rate in Proposition 10.14
to, say εa for some a < 2, without worsening the other parameters significantly, is likely to
be very difficult. This connection was pointed out to us by Noga Alon [Alo99].

For a Boolean matrix, a submatrix is said to be monochromatic if either all its entries
equal 0 or all of them equal 1. The bipartite Ramsey problem asks for a construction of
n×n Boolean matrices which have no p×p monochromatic submatrices (where p is a certain
function of n), for infinitely many values of n. Such a matrix has an obvious connection to
n×n bipartite graphs which have no complete bipartite subgraph Kp,p or its complement as
an induced subgraph. Hence the terminology “bipartite Ramsey problem” is used to refer
to this problem. A straightforward application of the probabilistic method shows that, for
all large enough n, there exist such matrices which achieve p = O(log n). However, an
explicit or polynomial time construction of such a matrix is a much harder task. The best
known polynomial time constructions of n× n 0-1 matrices only rule out the existence of
p× p monochromatic submatrices for p about

√
n. A polynomial time construction with p

much smaller than
√
n is a folklore open problem. The following result shows a connection

between certain erasure list-decodable codes and bipartite Ramsey graphs. It shows that
achieving a rate of Ω(εa) for some a < 2 for our linear code construction from the previous
sections, will, under some conditions, imply an improvement to the “

√
n bound” for the

bipartite Ramsey problem.

Proposition 10.15 (Alon) Assume that for every large enough integer k and every ε > 0,
there exists an [n, k]2 linear code C of rate k/n = εa, a > 1, such that (a) the generator
matrix of C can be constructed in O(ncf(ε)) time where c is an absolute constant and f is an
arbitrary real-valued function, and (b) C is ((1− ε)n, 1/εO(1))-erasure list-decodable. Then,
for any γ > 0, for infinitely many n, there exists an O(ncf(n−(1/a−γ))) time construction
of an n × n matrix over F2 which has no monochromatic p × p submatrix, i.e., no p × p
submatrix that consists of all 0’s or all 1’s, for p = n1−1/a+γ.

Proof: For a large enough integer n and small enough γ > 0, pick ε = n−(1/a−γ). Then
by the hypothesis, there exists an [n, k]2 linear code C with the claimed properties for
k = εan = naγ . Let A be the n× k generator matrix of C. Define p = εn = n1+γ−1/a. By
Lemma 10.5, the assumed erasure list-decodability property of C implies that the rank of
each p × k submatrix of A is at least (k − O(log 1/ε)) = k − O(log n). Define j to be the
smallest integer for which the number of subsets of {1, 2, . . . , k} of size exactly j is at least
n. Since k = naγ , we have j ≤ 2

aγ (for large enough n). .
Construct an n×n matrix B by having its columns be all the linear combinations (over

F2) of exactly j distinct columns of A. (This might create more than n columns since the
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number of such combinations could exceed n; in this case we just pick a subset of n linear
combinations arbitrarily.)

We will prove that B has no p× p monochromatic submatrix consisting of all 0’s or all
1’s. Suppose not, and let B have a p× p submatrix consisting of only 0’s (the case of all 1’s
can be dealt with similarly). Let I be the set of rows involved in this submatrix, and let
v1,v2, . . . ,vk be the restrictions of the columns of A to the rows in I. Let M be the p× k
submatrix of A indexed by the rows in I.

By assumption about the p× p all 0s submatrix, we have at least p linear combinations,
each of exactly j of the vectors vi, all giving the all 0’s vector. This implies that the
nullspace of M (i.e. the space {x ∈ Fk2 : Mx = 0}) has at least p non-zero vectors of
Hamming weight exactly j. It is an easy exercise to show that the dimension of such a
space must be at least p1/j . Hence we have

rank(M) ≤ k − p1/j = k − n(1+γ−1/a)/j ≤ k − n(aγ(1+γ)−γ)/2 , (10.15)

since j ≤ 2/(aγ). On the other hand, by hypothesis we have that every p× k submatrix of
A has rank at least (k −O(log n)) and hence we must have rank(M) ≥ k −O(log n). This
contradicts Equation (10.15) for large enough n.

Hence the matrix B has no p × p monochromatic submatrix as claimed. The claimed
construction time for B follows easily from the choice of parameters, and the proof is
complete. 2

Corollary 10.16 Suppose we could prove the result of Proposition 10.14 with a rate of
Ω(εa) for some 1 ≤ a < 2. Then there exists a quasi-polynomial time construction of n× n
matrices over {0, 1} which have no monochromatic nb × nb submatrix for some b < 1/2.

Proof: Pick b so that 1 − 1/a < b < 1/2 (this is possible since a < 2), and let γ =
b − (1 − 1/a). For ε = n−(1/a−γ) = nb−1, the construction time of the code guaranteed
by Proposition 10.14 is 2O(log3 n), and hence by Proposition 10.15, we have a 2O(log3 n)

time construction of an n × n 0-1 matrix with no monochromatic p × p submatrix where
p = n1−1/a+γ = nb. 2

As remarked earlier, a polynomial time construction of bipartite Ramsey graphs with
p much smaller than

√
n is a folklore open problem. It is not known how to achieve p

significantly smaller than
√
n even if one allows quasi-polynomial time to construct the

matrix. Therefore, Corollary 10.16 indicates that improving the rate in our construction
from Proposition 10.14 to sub-quadratic in ε is likely to be quite difficult.6

There is, however, some hope to beat the “ε2 barrier” without having to confront some
major open problem in constructive Ramsey theory. For our coding applications we have
always been thinking of ε as a small positive constant (independent of n), and hence we allow
for a construction that runs in time exponential in 1/ε and/or a list size that is exponential
in 1/ε. It is an interesting open question whether this can be exploited to improve the rate
beyond ε2. Also, the results of the next section get a rate better than ε2 by using a slightly
larger alphabet size. They also critically exploit non-linearity. It will also be interesting
to get a better than ε2 rate for binary codes using some non-linear construction. Such a
construction would escape the confines of the relation to bipartite Ramsey graphs, and thus
may not be very hard to obtain (and our results of the next section provides some cause for
optimism that this is indeed the case).

6On the other hand, optimistically speaking this provides further motivation to try and improve the ε2

rate in Proposition 10.14.

239



10.7 Better results for larger alphabets using juxtaposed codes

We now proceed to highly erasure list-decodable codes over alphabets which are slightly
larger than binary. We will use the larger alphabet size to get rates better than the ε2

barrier we highlighted for binary linear codes in the previous section.
There are two main tools used in our construction. The first one is the use of pseudolinear

codes (as guaranteed by Lemma 10.4) as inner codes instead of linear codes as in the previous
section. The provably better bound on list size for pseudolinear codes compared to linear
codes translates into some quantitative advantage for the erasure list-decodability of the
concatenated code. The second tool is the use of symbol juxtaposition to combine together
several binary codes into a single code over a larger alphabet. This uses a similar approach
to and is based on the same intuition as the code constructions in Section 9.6, where we
presented juxtaposed codes with good list decodability from errors.

10.7.1 Main theorem

Theorem 10.17 For every ε > 0 and every integer t ≥ 1, there exists a code family with
the following properties:

(i) (Rate and alphabet size) It has rate Ω(ε1+1/t/(t2 log(1/ε))) and is defined over an
alphabet of size 2t.

(ii) (Construction complexity) A code of blocklength N can be constructed in NO(ε−1 log(1/ε))

time deterministically and O(log2N log(1/ε)/ε2+1/t) time probabilistically.

(iii) (Erasure list-decodability) A code of blocklength N in the family can be list decoded
from up to a fraction (1 − ε) of erasures using lists of size O(t log(1/ε)) in NO(1/ε)

time.

Proof (Sketch): The construction and proof are very similar to those in Section 9.6.2
(specifically Theorem 9.19) from the previous chapter where we proved a similar result
for the the errors case. Familiarity with the contents of Section 9.6.2 will be helpful to
understand what follows.

Let δ0, δ1, . . . , δt be a sequence in geometric progression with δ0 = ε/2, δt = 1, and
δi/δi−1 = ∆ for 1 ≤ i ≤ t. Note that this implies ∆ = (2/ε)1/t.

Let m be a large enough integer and let n0 = 2m. Our code C∗ will be the juxtaposition
of t codes Ci, each of which is the concatenation of an [n0, ki]2mi Reed-Solomon code CRS

i

with an (n1,mi)2 pseudolinear code CPL
i , where mi = mδi/δ0 and

ki = Θ
( ε · n0

tδi log(1/ε)

)
.

The pseudolinear code CPL
i will have the properties guaranteed by Lemma 10.4 with the

setting σ = δi−1. Hence it will have rate ri = mi/n1 = Ω(δi−1). Note that each Ci is a
binary code of blocklength N

def= n0n1 and dimension

kimi = Ω
( εn0

tδi log(1/ε)
· δi−1n1

)
= Ω

( εN

t∆ log(1/ε)

)
.

This is independent of i making it possible for the codes Ci to be juxtaposed together to
give C∗. The rate of C∗ is 1/t times the rate of each individual Ci, and thus

R(C∗) = Ω
( ε

t2∆ log(1/ε)

)
= Ω

( ε1+1/t

t2 log(1/ε)

)
.
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Being the juxtaposition of t binary codes, C∗ is a code over an alphabet of size 2t. This
verifies Property (i) claimed in the theorem.

The dominant component in the construction of C∗ is the construction of the inner
codes CPL

i used in the concatenated codes Ci. By Lemma 10.4, each CPL
i can be con-

structed in 2O(mi log(1/δi−1)) = 2O(mε−1 log(1/ε)) time deterministically (since mi = mδi/ε =
O(mε−1). It can also be constructed in O(m2

i log(1/ε)/δi−1) = O(m2ε−2∆ log(1/ε)) time
probabilistically. Since the overall blocklength N = n0n1 = 2mn1, we have m ≤ lgN .
Therefore the constructions times are NO(ε−1 log(1/ε)) for a deterministic construction, and
O(log2N log(1/ε)/ε(2+1/t)) for a probabilistic construction (that works with high probabil-
ity). This proves Property (ii) claimed in the theorem.

It remains to prove the erasure list-decodability property of C∗. Given a received word
r with symbols at a (1 − ε)N positions erased, we wish to find all codewords c ∈ C∗ that
agree with r in the unerased positions. Suppose that c = C∗(x) is any such codeword. Both
r and c can be broken up into n0 blocks of n1 symbols each, corresponding to the n0 inner
encodings at the n0 positions of the outer Reed-Solomon codes. By the same “bucketing”
argument that we used in the proof of Theorem 9.19, we know that there exists some i∗,
1 ≤ i∗ ≤ t for which the following holds: there exists a subset B of the n0 blocks, with
|B| ≥ n′ def= εn0

2tδi∗
, such that for every block in B at least a fraction δi∗−1 of positions within

that block are not erased in r.

Pick an arbitrary subset B′ of B with |B′| = n′ and consider the list decoding of each of
the n′ inner codes corresponding to the blocks in B′ from the at most (1 − δi∗−1) fraction
of erasures. (Here we focus attention on and use only the i∗’th symbol from each of the N
“juxtaposed” symbols from the received word r.) Each inner decoding can be accomplished
by a brute-force search over all codewords in 2mi ≤ 2m/ε = O(n1/ε

0 ) time, and in fact this
is the dominant component of the decoding time. By the property of CPL

i∗ , each of the n′

inner decodings only outputs a list L(i∗)
j of O(log(1/δi∗−1)) = O(log(1/ε)) codewords (or in

other words Reed-Solomon symbols for the code CRS
i∗ ), for each of the blocks j ∈ B′. By

our choice of i∗, each of these lists must have the “correct” symbol of CRS
i∗ (x).

To finish the decoding, it suffices to be able to list decode CRS
i∗ with these lists L(i∗)

j ,

j ∈ B′, as input and find all messages x such that L(i∗)
j contains the j’th symbol of CRS

i∗ (x)
for every j ∈ B′. This is exactly the setup of the list decoding from uncertain receptions
we considered in Chapter 6 (specifically, Theorems 6.15 and 6.17). Since the rate of CRS

i∗ is
picked to be O(ε/(tδi∗ log(1/ε))), it follows that one can find all such x in near-quadratic
time by running the algorithm of Theorem 6.17 (with k = ki∗ − 1, n = n′, ` = O(log(1/ε)),
and α = 1). Also the number of solutions output will be at most O(

√
n`/k), which is

O(log(1/ε)) for our choice of parameters. The O(n1/ε
0 ) time required to decode the inner

codes thus dominates the runtime of the algorithm.

Of course, the algorithm cannot know the value of i∗ in the above description. But, one
can run the above decoding procedure for each Ci, 1 ≤ i ≤ t, and then output the union of
the lists output by each of the decodings. This will give us a list of size at most O(t log(1/ε))
that includes all codewords that agree with the received word r in every unerased position.
This completes the proof of Property (iii) claimed in the theorem as well. 2
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10.7.2 Discussion of some consequences

Theorem 10.17 with the choice t = 1 gives binary codes with the same rate as Theorem 10.12,
except that the construction is no longer linear, and the list size is much better (namely,
O(log(1/ε)) instead of O(1/ε)). Applying Theorem 10.17 with t = dlg(1/ε)e, we get the
following corollary:

Corollary 10.18 For every ε > 0, there exists a polynomial time constructible code family
of of rate Ω(ε log−3(1/ε)) over an alphabet of size O(1/ε) such that each code in the family
can be list decoded from up to a fraction (1 − ε) of erasures in polynomial time using lists
of size O(log2(1/ε)).

Note that the rate is off only by a logO(1)(1/ε) factor from the optimal Ω(ε) rate (which
is achieved by random codes, cf. Lemma 10.4 and Theorem 10.11). However, while the
random construction works even over the binary case, we need larger and larger alphabet
sizes in order to approach the optimal Ω(ε) rate.

AG-codes which achieve the best known trade-offs between rate and minimum distance
provide constructions of highly erasure list decodable codes of the optimal rate Ω(ε), but
they require an alphabet size of O(1/ε2). The constructions implied by Theorem 10.17 are
incomparable to AG-codes since they achieve a better alphabet size at the expense of a
moderate worsening of the rate. Also, the list size achieved by them is O(log(1/ε)) when
t is a constant independent of ε, where as AG-codes being linear necessarily require a list
size of Ω(1/ε) in order to list decode a fraction (1− ε) of erasures.

Thus, the results of this section give polynomial time constructions of codes that achieve
some new, interesting trade-offs between rate and erasure list-decodability.

10.7.3 Improving the decoding time in Theorem 10.17

One of the drawbacks of the result of Theorem 10.17 is that the decoding time is quite
high (namely, NO(1/ε)). Incidentally, this was also the case for the result for errors from
Theorem 9.19, though we did not point it out explicitly then! The high decoding time
resulted from the brute-force decoding of the inner codes. For example, the inner code CPL

t

had a dimension of mδt/δ0 = Ω(m/ε), and decoding it by searching over all codewords
requires 2O(m/ε) = NO(1/ε) time. To reduce the decoding time for each inner code CPL

i ,
we further juxtapose it with a linear code of C lin

i of the same dimension and blocklength.
This is similar to the approach taken in Lemma 9.11 of Chapter 9. We now briefly review
that technique when applied to the setting of erasure codes. C lin

i will be a binary linear
code of rate Ω(δi−1) which is ((1 − δi−1)n1, O(1/δ2

i−1))-list decodable, as guaranteed by
Lemma 10.7, Part (i). The necessary linear codes C lin

i can be constructed within the
time bounds required to construct the codes CPL

i (for both probabilistic and deterministic
constructions — for deterministic constructions we can use the derandomization procedure
discussed in Section 10.6.3). Hence the asymptotic construction time of the codes is not
altered by the addition of the linear component to the inner codes.

The inner decoding now uses the linear component of the received word to first perform
erasure decoding of the codes C lin

i . Owing to the linearity, this can be accomplished by
solving a linear system in O(n3

1) time. By the erasure list-decodability property of C lin
i , this

step will return Li ≤ O(1/δ2
i−1) messages. It now suffices to check which subset of these

Li messages are consistent under encoding by CPL
i with the pseudolinear component of the

received word. This task can of course be done in time polynomial in n1.
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Thus, using this trick all the inner decodings can be performed in O(n0poly(n1)) =
O(N logO(1)N) time. Since the outer Reed-Solomon decoding, as per the bounds stated
in Theorem 6.17, takes at most O(n2

0 log3 n0ε
−O(1)) time, the overall decoding time is now

O(N2ε−O(1) logN) (since n0 ≤ N/ logN). The juxtaposition with the linear code reduces
the rate by a factor of 2 and also squares the alphabet size. We omit further details, and
below we simply state the final result that can be obtained after applying this modification.

Theorem 10.19 For every ε > 0 and every integer t ≥ 1, there exists a code family with
the following properties:

(i) (Rate and alphabet size) It has rate Ω(ε1+1/t/(t2 log(1/ε))) and is defined over an
alphabet of size 22t.

(ii) (Construction complexity) A code of blocklength N can be constructed in NO(ε−1 log(1/ε))

time deterministically and in O(log2N log(1/ε)/ε2+1/t) time probabilistically.

(iii) (Erasure list-decodability) A code of blocklength N in the family can be list decoded from
up to a fraction (1−ε) of erasures using lists of size O(t log(1/ε)) in O(N2ε−O(1) logN)
time.

10.8 Concluding Remarks

Our lower bound on R̃L(p) from Theorem 10.6 guarantees the existence of binary linear code
families of rate Ω(ε) which can be list decoded from up to a fraction (1−ε) of erasures, using
lists of size, say O(ε−2). The construction of Theorem 10.12, however, only achieves a rate
of about ε2. Now the result of Theorem 10.11 implies that for linear code families of positive
rate, one requires a list size of at least Ω(1/ε) to list decode from (1 − ε) erasures. This
implies that our concatenated code constructions from Section 10.6 cannot be improved
by the choice of a better linear code as inner code. Moreover, the connection to bipartite
Ramsey graphs from Section 10.6.4 indicates that either the list size or the construction
time will probably be exponential in 1/ε if the rate of the code is asymptotically better
than ε2. In this sense, the rate in our result of Proposition 10.14 might be hard to improve
without worsening some of the other parameters.

In Section 10.7, by resorting to pseudolinear codes at the inner level, together with the
technique of juxtaposed code constructions, we were able to closely approach the optimal
rate of Ω(ε) by allowing a gradual increase in the alphabet size. These results achieve a
very small (about O(log(1/ε))) list size for list decoding up to a fraction (1− ε) of erasures.
The fact that this is impossible to achieve with linear codes (Theorem 10.11) is also one of
the surprising results of this chapter.

Below we list some open questions relating to the contents of this chapter.

Open Question 10.1 Is there a poly(n, 1/ε) time construction of binary linear codes with
the properties guaranteed in Lemma 10.13, namely codes which have rate close to Ω(ε2) and
which are efficiently list decodable up to a fraction (1− ε) of erasures?

Open Question 10.2 Is there a polynomial time construction of binary codes of rate
Ω(ε2−a) for some a > 0 which are efficiently list decodable up to a fraction (1 − ε) of
erasures? More ambitiously, can one construct such codes with close to the optimal Ω(ε)
rate? (We allow for the construction time to depend exponentially on 1/ε, and the codes to
be non-linear provided they have efficient encoding and decoding algorithms.)
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Open Question 10.3 Is there a polynomial time construction of q-ary codes that have (the
optimal) Ω(ε) rate and which are efficiently list decodable up to a fraction (1−ε) of erasures,
for some q that is a fixed constant independent of ε? (Certain constructions of AG-codes
achieve the optimal Ω(ε) rate, but require an alphabet size of O(1/ε2). Our juxtaposed codes
achieve a rate of about Ω(ε1+1/ lg q) and thus approach the optimal Ω(ε) rate for large q.)
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The concatenated code construction from Section 10.6 appears in [Gur01b]. The inter-
esting connection to Ramsey graphs, which indicated the difficulty of improving our result
for binary linear codes, was communicated to us by Noga Alon [Alo99]. The improvements
in rate by resorting to pseudolinear (as opposed to linear) inner codes, and the idea of code
juxtaposition from Section 10.7, appear in published form for the first time in this thesis.
They will be also be part of the upcoming submission [GI01a].
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Part III

Applications
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INTERLUDE

The first two parts of the thesis have explored the combinatorial and algorithmic aspects
of list decoding in detail and have presented list decoding algorithms that correct a large
fraction of errors for certain classical codes as well as some novel code constructions.

In addition to their inherent interest to the subject of list decoding, some of the results
and techniques developed so far have also found numerous applications outside the imme-
diate domain of list decoding and even coding theory. The next couple of chapters provide
a glimpse of some of these applications.

The next chapter will present an application of the techniques used in Chapter 9 to
the construction of binary linear codes which can be uniquely decoded up to the maximum
possible fraction (1/4− ε) of errors. The highlight of the construction will be the extremely
fast encoding and decoding algorithms that we will achieve. In fact, we will achieve codes
that are both encodable and decodable in linear time.

Chapter 12 discusses applications of list decoding to problems outside coding theory.
This will include a brief discussion of and pointers to the reasonably large number of
complexity-theoretic applications of list decoding, as well as some cryptographic appli-
cations and an interesting algorithmic application called “Guessing Secrets”.

After presenting these applications, we will conclude the thesis with some closing re-
marks and a list of open problems.
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Chapter 11

Linear-time codes for unique
decoding

Warning: This chapter contains material of an explicit nature.

11.1 Context

The goal of this chapter is also to construct codes which can be decoded from a large, and
essentially up to a “maximum” possible, fraction of errors. The difference is that we are
now interested in unique decoding as opposed to list decoding. Nevertheless we will now be
able to use some of the results and techniques from the previous chapters on list decodable
codes to construct good, uniquely decodable codes.

For unique decoding, the maximum number of errors that can be corrected is limited by
half the minimum distance of the code. In particular, it is never possible to correct more
than a fraction 1/2 of errors (while list decoding allowed us to correct up to a fraction (1−ε)
of errors, for any desired ε > 0). In this chapter, we will be interested in both binary codes
and codes over large alphabets. Since binary code families of positive rate have relative
distance less than 1/2,1 the half-the-minimum-distance barrier implies that the maximum
possible fraction of errors that can be uniquely decoded is (1/4 − ε) for binary codes. For
codes over large alphabets, the maximum unique decoding radius is (1/2− ε) (this requires
an alphabet size of Ω(1/ε), though).

Therefore, we are interested in codes over large alphabets that are uniquely decodable
up to a fraction (1/2− ε) of errors, and in binary codes that are uniquely decodable up to
a fraction (1/4− ε) of errors. These represent the “high-noise regime” for unique decoding.
For such code constructions, our goal is to achieve good rate together with highly efficient
encoding and decoding algorithms.

Due to the half-the-distance limitation of unique decoding, the relative distance of
such uniquely decodable codes must be at least (1 − O(ε)) for large alphabet codes and
(1/2−O(ε)) for binary codes. The best known explicit constructions of codes with such a
large relative distance achieve a rate of Ω(ε) and Ω(ε3) respectively. However, such codes
either used algebraic-geometric codes [She93] and hence suffered from complicated decoding
procedures (in particular the decoding time was at least cubic in the blocklength), or as in
the constructions of [ABN+92], were explicitly constructible but lacked a polynomial time

1This is a well-known bound in coding theory that follows for example from the “Plotkin bound”, cf.
[vL99, Section 5.2]
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algorithm to decode up to half the minimum distance (or for that matter to decode up to
any positive constant, no matter how small, fraction of errors). In short, codes of good rate
with a “maximum” relative distance (i.e., (1−ε) for codes over large alphabet, and (1/2−ε)
for binary codes) were not known together with very efficient decoding procedures, for both
the list and unique decoding versions.

In this chapter, we present constructions of large distance codes with the above rates
(i.e., match the best known rates), together with near-linear time (i.e., O(n1+β) time for
any desired β > 0) list decoding algorithms to decode well beyond half the distance. We
then focus on unique decoding of such large distance codes up to close to half the distance.
The goal here is to obtain better runtimes than for the list decoding case, and in particular
to obtain the optimal linear decoding time.2 We succeed in this goal, and present novel
constructions of large distance codes of the above “best known” rates, together with linear
time unique decoding algorithms, as well as linear time encoding algorithms. Specifically,
we can construct codes over a constant-sized alphabet that have the optimal (up to constant
factors) Ω(ε) rate and which are uniquely decodable from a fraction (1/2 − ε) of errors in
linear time and which are further encodable in linear time. We also construct similar linear-
time binary codes that can correct a fraction (1/4− ε) of errors and have Ω(ε3) rate (which
matches the best known rate for constructive codes of relative distance (1/2−O(ε))).

These are the first linear-time codes which are uniquely decodable up to the maximum
possible radius. The result for binary codes dramatically improves the fraction of errors
corrected by the only other construction of linear-time codes known prior to our work,
namely the codes due to Spielman [Spi96]. The large alphabet result is also striking since
it matches the optimal performance (in terms of rate) achieved by AG-codes, but comes
equipped with linear time encoding and decoding algorithms!

Though the unique decoding algorithms for large distance codes form the crux of this
chapter, we also discuss the list decoding results in this chapter since the techniques used
are similar to our unique decoding results. All our constructions share the common thread
of using expander-like graphs as a component, and there is a strong overlap in techniques
between this chapter and portions of Chapter 9 (specifically, Section 9.4). The expander
graphs enable the design of efficient decoding algorithms through various forms of voting
procedures. The result on near-linear time list decodable codes also uses the idea of multi-
concatenated codes from Chapter 9. Nevertheless, except for this one dependence on multi-
concatenated codes, the presentation in this chapter should be reasonably self-contained
and should allow the reader to read and appreciate the chapter on its own. Also, we should
mention that our unique decoding results can be read independently of the list decoding
results (and in fact we would recommend this for a first reading of this chapter).

We elaborate on the results of this chapter and compare them with previously known
bounds in the next section. Most of the material in this chapter appears in the pa-
per [GI01b], except for the results in Section 11.6 which appear for the first time in this
thesis, and will be part of an upcoming submission [GI01a].

11.2 Main Results

We first study the problem of constructing efficiently list decodable codes of good rate and
“maximum” possible relative distance. The parameters of these constructions are tabulated

2The goal of linear time list decoding algorithms for any non-trivial code family seems very difficult and
out of reach at this point.
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in Figure 11-1.

No Alphabet Relative LDR Rate Encoding Decoding Const. time
distance time time (probabilistic)

1a 21/ε 1− ε α < 1 ε n logO(1) n n1+β explicit
1b 2 1/2− ε η < 1/2 ε3 n logO(1) n n1+β + 21/ε3 1/ε3

Figure 11-1: The parameters of our near-linear time list decodable codes. n stands for the
length of the code. For readability, the O(·) and Ω(·) notation have been omitted. The
value of β is in the interval (0, 1]; its value influences the rate by a constant factor (which
admittedly depends rather badly on β). The LDR (list decoding radius) shows the fraction
of errors which the list decoding algorithms can correct.

We now elaborate on the performance achieved by these constructions. The first construc-
tion (1a) presents explicit codes with relative distance (1−ε) and an optimal (up to constant
factors) rate of Ω(ε), together with a near-linear time (i.e., O(n1+β) time for any desired
β > 0) list decoding algorithms to correct a fraction α of errors, for any desired constant
α < 1 (the constant in front of the ε in the rate depends on α, β). Concatenation of these
codes with a constant-sized large distance binary code gives a constructive family of bi-
nary codes of relative distance (1/2 − ε) and rate Ω(ε3), which is further list decodable
up to a fraction η of errors in near-linear time for any desired constant η < 1/2 (this is
our construction (1b)). These constructions match the best known rate for constructive
families of codes with such a large relative distance. In addition, we are able to give very
efficient list decoding procedures for such codes. Thus they provide a more efficient alterna-
tive to codes based on concatenation schemes involving AG-codes, which achieve a similar
rate, but only have complicated construction algorithms and high decoding complexity (the
best known runtime is cubic in the blocklength, even if we are only interested in unique
decoding, cf. [FR93]). We also mention that our codes are very similar to the codes con-
structed in [ABN+92], where constructions with similar rate and relative distance are given.
However, the constructions in [ABN+92] lacked a polynomial time decoding algorithm to
(unique) decode up to any constant fraction of errors, let alone list decode beyond half
the distance. In fact, the authors of [ABN+92] pose the question of whether there exists a
polynomial time decoding algorithm for their codes as an open problem. Our results can
be viewed as a positive resolution of the main open problem from their paper.

We next discuss our results for unique decoding. The results are tabulated in Figure 11-
2. We actually obtain two classes of constructions, each with constructions of binary and
large alphabet codes. The constructions (3a,3b) essentially subsume (2a,2b) (except for
the slightly larger alphabet size in (3a) compared to construction (2a)). However, the
constructions (2a,2b) are simpler to describe and nicely illustrate the main idea behind our
linear-time code constructions, and therefore we include a discussion of them in this chapter
(we also recommend reading them first before reading about constructions (3a,3b)). Note
also that as far as unique decoding is concerned, the constructions (3a,3b) also subsume the
constructions (1a,1b).
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No Alphabet Decoding Rate Encoding Decoding Construction time
radius time time (probabilistic)

2a 21/ε2 1/2− ε ε2 n/ε2 n/ε2 explicit
2b 2 1/4− ε ε4 n+ 21/ε2 n/ε2 + 21/ε4 1/ε4

3a 2ε
−2 log(1/ε) 1/2− ε ε n/ε2 n/ε2 explicit

3b 2 1/4− ε ε3 n+ 21/ε2 n/ε2 + 21/ε4 log(1/ε)/ε4

Figure 11-2: The parameters of our linear-time codes for unique decoding. n stands for
the length of the code. For readability, the O(·) and Ω(·) notation have been omitted,
and log(1/ε) factors have been omitted in the encoding and decoding times. The decoding
radius shows the fraction of errors which the unique decoding algorithms can correct.

Note that both classes of uniquely decodable codes come with linear-time encoding and
decoding algorithms (we call such codes linear-time codes). We use the same approach as
in constructions (1a,1b) to obtain constructions (2a,2b). The rate of these codes is an ε
factor worse compared to the best known rate for constructive codes with the necessary
relative distance. However, these codes are simple to describe, and can correct a fraction of
errors arbitrarily close to the maximum possible (i.e., 1/4 for binary codes and 1/2 for large
alphabet codes) in linear time. In fact, by decoding up to the maximum possible radius,
these codes exhibit a dramatic improvement in error-correction capability over that of the
only prior linear-time binary codes (due to Spielman [Spi96, Spi95]), or for that matter over
that of the linear-time decodable binary codes of Sipser and Spielman [SS96], Zémor [Z0́1],
and Barg and Zémor [BZ01]. To make a concrete comparison, the largest fraction of errors
corrected by the linear-time codes in [Spi96] (at least the bound directly deducible from
the paper) seems to be about 4.6 × 10−7. The linear-time decodable codes from [Z0́1] can
correct about a fraction 3.1 × 10−3 of errors with positive rate. In comparison, we can
correct a fraction (1/4− ε) of errors for arbitrary ε > 0.

Using a slightly different construction, we get the linear-time codes (3a,3b), which can
also correct a fraction of errors arbitrarily close to the maximum possible, and in addition
achieve rates of Ω(ε) and Ω(ε3) for codes over a large alphabet and binary alphabet respec-
tively (thereby improving the constructions (2a,2b)). We stress again that these are the
best known rates for codes of relative distance (1− ε) and binary codes of relative distance
(1/2 − ε) respectively, and are we are able to achieve these rates together with linear time
encoding and decoding procedures.

A Remark on Construction Times. Our constructions (1a,2a,3a) of codes over a large
alphabet are explicit.3 Our binary codes (1b,2b,3b) are obtained by concatenating the codes
(1a,2a,3a) with suitable binary codes. These binary codes can either be picked randomly or
found deterministically by a constant amount of brute-force search. If one considers codes
with only a constant amount of “non-constructivity” as still being “explicit”, then our codes
(1b,2b,3b) are also explicit. Moreover, we can make the construction completely explicit at
the expense of a (moderate) worsening of the rate, by picking some explicit binary code for
the final concatenation instead of the “best” non-explicit ones. We point out here that the
linear-time codes of Spielman [Spi96] also require a constant amount of non-constructivity,

3We do not try to formally define the notion of a construction being “explicit”. We refer to a construction
as explicit only if it is “constructive” in the strictest sense of the term, namely if it is specifiable by a formula
of an acceptable type.
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Figure 11-3: Basic structure of our code constructions. For binary codes, each symbol of
C1 is further concatenated with a good, constant-sized binary code.

which can eliminated at the expense of worsening the parameters (see the discussion in
[Spi96, Sec. 5, Remark 20]).

Comment on meaning of “linear time”: When we claim that our encoding and decod-
ing algorithms run in linear time, we must be careful to specify exactly what is meant, since
the meaning of “linear time” depends on the model of sequential computation considered.
We do not get into a further discussion of this aspect here, but instead point the interested
reader to the excellent discussion at the beginning of the papers [SS96, Spi96]. We just
remark that our codes use the linear-time codes due to Spielman [Spi96] as a black-box,
and use expanders on top of it to boost the number of errors tolerated by the code. Our
algorithms run in linear time in any model under which the algorithms of Spielman run in
linear time. In particular, they can be implemented to run in linear time on a RAM in the
uniform cost model, or on a Pointer Machine (see [SS96, Sec. 2] for details and pointers on
these models).

11.3 Techniques

At a high level, our codes are all constructed using the same scheme (which in turn is
similar to the scheme used in the expander-based constructions of Chapter 9). The basic
components of the constructions are: a “left” code (say, C), an expander-like graph G, and
(in case of binary codes) an efficient “right” binary code (say C ′).

Given the above components, the codes are constructed as follows. For each codeword
x of C, we construct a new codeword y by distributing the symbols of x from left to right
according to the edges in G. The juxtaposition of symbols “sent” to each right node of G
forms a symbol of the codeword y of the final large alphabet code C1. This is illustrated in
Figure 11-3. If we want to construct a binary code, we add a final level of concatenation
with the binary code C ′.
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The specifics of the implementation of the above ideas depend on the actual code con-
struction. For the constructions (1a,1b), we use for left code a list decodable code that can
correct an α fraction of errors for an appropriate constant α < 1 — such a code of constant
rate and with a near-linear time list decoding algorithm can be built using a concatenation
of several levels of Reed-Solomon codes followed by any explicitly specified large distance
code.

Our codes (2a,2b), as well as (3a,3b), use the linear-time encodable/decodable codes
of Spielman [Spi96] as the left code. The properties of the expander graph G allows us to
transform a heavily corrupted codeword y of C1 to a much less corrupted codeword x of C.
The latter can be decoded using the linear-time decoding algorithm for C. The encoding
can also be accomplished in linear time using the linear-time encoder for C.

Our constructions are similar to those in [ABN+92] where expanders were used to “am-
plify” the distance and thus construct codes of large minimum distance. However, while
the results of [ABN+92] as well as our results in Chapter 9 use only the vertex-expansion
properties of the graph G, here we use much stronger isoperimetric properties offered by
expander graphs. We need these stronger properties because we are also interested in good
decoding algorithms for our codes. Informally, the isoperimetric property just states that
the fraction of edges between two sufficiently large subsets of vertices is approximately
the product of their densities. The isoperimetric property of expanders is implied by the
spectral definition of expanders in terms of the second largest eigenvalue of the adjacency
matrix. It is this definition of “expanders” that we use in this chapter.

11.4 Near-linear time list decodable codes of large distance

In this section we present our constructions (1a,1b). The codes come in two versions: binary
and over a large alphabet. The latter ones have relative designed distance (1−ε), rate Ω(ε)
and alphabet size 2O(1/ε). The binary codes have relative designed distance (1/2 − ε) and
rate Ω(ε3). In both cases, we will present an algorithm to list decode up to any desired radius
that is less than the maximum one could hope for. Specifically, for any fixed α < 1 (resp.
η < 1/2), our codes over a large alphabet (resp. binary codes) will be list decodable up to
a fraction α (resp. η) of errors. A straightforward implementation of our idea, i.e., using a
“simple” left code, will lead to near-quadratic list decoding times for our constructions. By
complicating the choice of the left code C, we can obtain a decoding time of O(n1+β) for
any desired constant β > 0.

11.4.1 Combinatorial objects necessary for the constructions

We start the description from the codes over large alphabet that are uniquely decodable up
to a fraction (1/2 − ε) of errors. We will then concatenate this code with a suitable inner
code to get the desired binary codes. We need the following combinatorial objects for our
construction:

(1) For any α, β > 0, an (n, k)q code C with minimum distance at least n/2 and constant
rate rα,β > 0 such that C is list decodable in O(n1+β) time from up to a fraction
(1 − α) of errors. (Here q, r are constants that depend only on α, β and not on n or
ε.)

(2) A bipartite regular graph G = (A,B,E) with |A| = |B| = n and degree ∆, such that
for parameters (ε, δ, δ′) where ε ≤ δ′ ≤ δ, G has the following properties:
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(i) For X ⊂ A, |X| = n/2, we have |Γ(X)| > (1 − ε)|B| where Γ(X) ⊆ B is the
neighborhood of X (i.e., the graph has good vertex-expansion and is in particular
an (n,∆, 1/2, ε)-expander, in the terminology of Chapter 9, Definition 9.5).

(ii) For X ⊂ A, |X| = n/2, and Y ⊆ B, |Y | ≥ δ|B|, we have |E(X:Y )|
∆|X| ≥ δ′ (here

E(X : Y ) denotes the set of edges in the X : Y cut).

We next specify how the above objects can be constructed.

Explicit construction of the list decodable code C

It is not difficult to see that an explicit code construction C satisfying the above requirements
exists together with a near-quadratic time algorithm to list decode up to a fraction (1−α)
of errors.

For example, one can use constructions similar to those in Chapter 8 which concatenate
an outer Reed-Solomon code with an inner code over a large, constant-sized alphabet. The
inner code can be picked to be any explicitly constructible code of large minimum distance.
Appealing to the Johnson bounds, the inner code will have large list-of-` decoding radius
for some fixed constant `. The inner codes can be (list) decoded by a brute-force search for
all codewords within a certain radius (this will take quadratic time to perform for all inner
codes put together). The lists of size at most ` obtained from the list decoding of the inner
codes can be passed to an outer decoder. The outer decoder will be a (near-quadratic time)
list recovering algorithm for Reed-Solomon codes that finds all Reed-Solomon codewords
which agree with an element of the list passed by the inner decoder for at least a certain
fraction of the positions. Note that unlike the results presented in Chapter 8, where our
goal was to maximize the fraction of errors corrected for a fixed code and hence we used
the soft list decoding algorithms for Reed-Solomon codes, in the above we only need a list
recovering algorithm for Reed-Solomon codes (Theorem 6.17). We omit the details, but
picking a large enough alphabet size (that depends on α), this procedure can decode up to
a fraction (1−α) of errors, and the rate of the concatenated code will be a positive constant
that depends only on α.

To speed up the decoding time further and achieve near-linear decoding time as required
by (1), we need a more complicated construction. The quadratic time in the previous
algorithm comes from two sources. First there are Ω(n) inner codes, and a brute-force
decoding of each of them takes Ω(n) time (where n is the blocklength of the Reed-Solomon
code). Secondly, the Reed-Solomon decoding takes Ω(n2) time. In order to reduce the
decoding time, we need to reduce the blocklength of the Reed-Solomon code. This can
be done by considering Reed-Solomon codes over a very large alphabet size (for example,
we can have a blocklength of O(

√
n) using a field of size 2O(

√
n)). The dependence of the

runtime of the Reed-Solomon decoding algorithm (specifically the one from Theorem 6.17)
on the field size is pretty good, and this will permit list decoding the Reed-Solomon code
in near-linear time. However, the dimension of the inner code is no longer logarithmic,
and in fact brute-force decoding of each inner decoding will take super-polynomial time,
which is much worse than the quadratic time we began with! To tackle this problem, we
do not apply the inner code immediately to the outermost Reed-Solomon code, but instead
use a multi-concatenated scheme to gradually reduce the alphabet size, till it is finally
about poly(log n) (this is similar to the construction in Section 9.5). At this stage, the
brute-force decoding of each inner code will in fact take only logO(1) n time. Since we want
each of the intermediate codes used in the multi-concatenated scheme to also be efficiently
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list decodable, we will use Reed-Solomon codes with appropriate parameters over fields of
gradually decreasing size at the various levels of the concatenation.

The result thus obtained is formally stated below. We only sketch the proof since the
techniques used are similar to those used in the proof of Lemma 9.15 from Chapter 9.

Lemma 11.1 For every α > 0 there exists a prime power q = qα, which may be assumed
to be a power of two, such that for all β > 0 the following holds. There is an explicitly
specified code family with constant rate rα,β > 0 and relative distance at least 1/2 over an
alphabet of size q, with the property that a code of blocklength N from the family can be list
decoded from up to a fraction (1 − α) of errors in O(N1+β) time, and can be encoded in
O(N logO(1)N) time.

Proof Sketch: Let q = qα be a large enough power of two (q = O(1/α2) will suffice,
for example). The basic idea is to use a concatenated scheme where an outer code Cout

is concatenated with a large distance q-ary inner code Cin. But in order to reduce the
decoding time, instead of using as Cout a Reed-Solomon code, we use several Reed-Solomon
codes over decreasing alphabet sizes in a multi-concatenated scheme similar to the one
in Lemma 9.15. The change compared to Lemma 9.15 is that instead of using the (non-
explicit) large alphabet pseudolinear codes guaranteed by Lemma 9.11 at each stage, we use
(explicitly specified) Reed-Solomon codes with appropriate parameters. Since the innermost
code Cin can be any explicit large distance q-ary code, the overall code construction is
explicit.

We now sketch some details of the actual code construction. Define p = d2/βe and
let n be any large enough integer of the form mp, for some integer m. We now specify
how a message will be encoded by our multi-concatenated code. Given a message x ∈ Fnq
where n = mp, we first encode it using (p − 1) levels of Reed-Solomon codes, the i’th
level being a code of dimension m and blocklength aim over GF(qm

p−i
) for 1 ≤ i < p (the

constant ai will be chosen large enough so that the concerned Reed-Solomon code can be
efficiently list decoded from a certain fraction of errors, and its exact value will depend
upon α, p). It is easy to check that after these (p− 1) levels of encoding we will be left with
mp−1

∏p−1
i−1 ai = O(mp−1) symbols over GF(qm). We then encode each of these O(mp−1)

symbols of GF(qm) resulting from this (p − 1) stage encoding by a further two-levels of
Reed-Solomon encoding, this time over fields of size O(m) and O(logm) respectively. After
all this, the encoding of x is comprised of at most O(mp logm) strings of length O(log logm)
over GF(q). Finally, each of these strings is further encoded by an arbitrary explicit q-ary
linear code C̃ of dimension O(log logm), positive rate and large enough minimum distance
(as a function of α).4

The above gives an explicit specification of our final code, call it C∗. The distance of
the code is at least the product of the component codes used in the multi-concatenated
scheme. Therefore, by picking low enough rates, and hence large enough distances, for the
Reed-Solomon codes and the innermost code C̃, we can ensure that the final code C∗ has
relative distance at least 1/2, as required in the statement of the lemma.

We next sketch the list decoding procedure for C∗. The innermost code C̃ can be
list decoded to the necessary radius in logO(1)m time by a brute-force search over all the
codewords. Since there are O(mp logm) such decodings to be performed, all these can

4Explicit constructions of such C̃ are known by concatenating suitable algebraic codes with every code
from a so-called “Wozencraft ensemble” of codes (most codes in which meet the Gilbert-Varshamov bound).
See, for example, the discussion in the proofs of Theorem 8.8 and Proposition 8.10 from Chapter 8.
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be done within O(n logO(1) n) time (recall that n = mp). For decoding the Reed-Solomon
codes, we use the list recovering algorithm from Chapter 6 (specifically that of Theorem 6.17)
which runs in O(N2 logN logQ logO(1) logQ) time when decoding an [N,K]Q Reed-Solomon
code. In this way, the cost of decoding each codeword at the i-th level, for 1 ≤ i < p is
O(m2mp−i logO(1) n) (as the blocklength is O(m) and the alphabet size is qm

p−i
). Since

there are O(mi−1) Reed-Solomon decodings to be performed at the i’th stage, the total
decoding time for level i is O(mp+1 logO(1) n) which is certainly O(n1+β) (since p ≥ 2/β).
Similarly the decoding of the last two levels of Reed-Solomon codes can also be performed in
O(n1+β) time. The overall decoding can therefore be accomplished in O(n1+β) time. (The
reader might note the similarity between the above procedure and the decoding algorithm
for multi-concatenated codes from Lemma 9.15. The main difference is that, at each level
of the multi-concatenation, instead of using the codes and decoding algorithms guaranteed
by Lemma 9.11, we use Reed-Solomon codes and the very efficient list recovering algorithm
for Reed-Solomon codes from Theorem 6.17.)

The exact rate of each of the Reed-Solomon codes and C̃ must be chosen small enough so
that the above recursive decoding strategy will work and actually list decode the entire code
from a fraction (1−α) of errors. This can be done similarly to the proof of Lemma 9.15, and
we omit the tedious details. But the important thing is that all rates can be picked to be a
positive constant (solely as a function of α, p), and thus the overall rate will be a constant
depending upon α, β (though it will have a rather bad dependence on β, and not better
than around α−O(1/β2) since the rate goes down exponentially in p2, cf. Lemma 9.15). Since
we only claimed a positive rate that depends exclusively on α, β, we do not have to bother
about a precise calculation of the rate. The claimed encoding time also follows easily from
the construction (by using FFT based techniques to encode the Reed-Solomon codes and
an O((log logm)2) time encoding algorithm for the innermost code C̃). 2

Remark on the necessity of a strongly polynomial time Reed-Solomon decod-
ing algorithm: Note that the near-linear dependence of the Reed-Solomon decoding
algorithms over GF(Q) on logQ was critical for the above application (due to the very
large alphabets over which the Reed-Solomon codes were defined). In particular, we had
to use the result of Theorem 6.17, which in turn followed from the work of Augot and Pec-
quet [AP00], as opposed to, for example, the result of Theorem 6.16. The above application
is thus nice in the sense that it highlights an important difference between the various Reed-
Solomon list decoding algorithms, and crucially exploits a distinguishing feature, namely
the strongly polynomial runtime, of one of the algorithms.

Construction of the necessary “expander”

We now move on to the explicit construction of a graph with the properties required in
2(i) and 2(ii) (stated at the beginning of Section 11.4.1). The existence of such a bipartite
graph follows from the existence of certain expander graphs. There are several ways in
which expander graphs are defined in the literature. The definition of expanders we gave
in Chapter 9 is the common definition when one only needs vertex expansion. For our
application here we will also need some isoperimetric properties offered by expanders, and
therefore we use a spectral definition of expanders based on the second largest eigenvalue of
the normalized adjacency matrix. Under this definition a ∆-regular graph H on n vertices
with adjacency matrix A is an expander if λ(H) < 1, where λ(H) def= max{λ2, |λn|} is
defined to be the second largest eigenvalue in magnitude and 1 = λ1 ≥ λ2 ≥ · · ·λn ≥ −1
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are the n eigenvalues of 1
∆ ·A.

The following result relating the second eigenvalue to vertex expansion is well-known
and has appeared in many places (see, for example, Theorem 2.4 of [AS92, Chap. 9]).

Lemma 11.2 Let H = (V,E) be a ∆-regular graph with n = |V | and λ(H) = λ, and let
T ⊆ V with |T | = bn. Let t = |v ∈ V : N(v) ∩ T = ∅}| be the number of vertices of H that
have no neighbors in T . Then

t ≤ λ2(1− b)n
b

. (11.1)

The above lemma applies to a general graph while we are interested in bipartite graphs.
But this is easily fixed. One can define a n × n bipartite graph G = (A,B,E′) from the
above graph H by letting A,B to be copies of V and connecting a vertex a ∈ A with b ∈ B
iff the corresponding vertices in V are adjacent in H. We call such a graph G the double
cover of H. Together with the above lemma, this gives us the desired bipartite expanders,
stated in the form of the following corollary.

Corollary 11.3 Let H be a ∆-regular graph on n vertices with λ(H) = λ. Let G =
(A,B,E) be the double cover of H. Then for every subset X ⊆ A with |X| ≥ bn, we have
|Γ(X)| ≥ (1− λ2

b )n where Γ(X) ⊆ B is the set of all nodes with some neighbor in X.

Expander graphs with λ� 1 also have good isoperimetric properties. Loosely speaking
this means that the fraction of edges between two large sets of vertices approximately equals
the product of the densities of those sets. The formal lemma, stated below, is folklore (see
for example Corollary 2.5 in [AS92, Chap. 9]).

Lemma 11.4 Let H be a ∆-regular graph with λ(H) = λ < 1. Let G = (A,B,E) be the
double cover of H. Then for every pair of subsets X ⊆ A and Y ⊆ B, we have

∣∣∣E(X : Y )
∆|X|

− |Y |
|B|

∣∣∣ ≤ λ√ |Y ||X| .
Thus a low value of λ achieves both good vertex expansion and isoperimetric properties.

It is known, however, that the best value of λ one can hope for in an infinite family of ∆-
regular graphs is 2

√
∆−1
∆ −o(1). Amazingly enough, there are explicitly known constructions

of an infinite family of ∆-regular graphs {Gi}i≥1 with lim sup
i→∞

λ(Gi) = 2
√

∆−1
∆ < 2√

∆
. These

graphs, which are called Ramanujan graphs, were constructed independently in [LPS88] and
[Mar88].

Using Corollary 11.3 (with the choice b = 1/2) and Lemma 11.4, we conclude that
for ∆ = O(1/ε + 1/δ), Ramanujan graphs of degree ∆ give us an infinite family of the
desired bipartite graphs H that satisfy both the expansion property (i) and the isoperimetric
property (ii), for parameters (ε, δ, δ′ = δ/4). We record this in the lemma below. Note that
we are only using one direction of the isoperimetric property (namely the lower bound on
E(X:Y )

∆|X| ) from Lemma 11.4. We will need the other direction of the isoperimetric property

(namely an upper bound on E(X:Y )
∆|X| ) in the construction of linear-time binary codes in

Sections 11.5 and 11.6.
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Lemma 11.5 For every ε > 0 and δ ≤ ε, there exists ∆ = O(1/ε) such that for infinitely
many n there exists an explicitly constructible n × n ∆-regular bipartite graph G with the
necessary properties (i) and (ii) defined at the beginning of Section 11.4.1, for parameters
(ε, δ, δ′ = δ/4).

11.4.2 Codes with rate Ω(ε), relative distance (1 − ε) and alphabet size
2O(1/ε)

Theorem 11.6 For every β, δ > 0 there is a constant B > 1 such that for all small enough
ε > 0 there is an explicitly specified code family with the properties:

(i) It has rate ε/B, relative distance at least (1− ε) and alphabet size 2O(1/ε).
(ii) A code of blocklength n in the family can be list decoded in O(n1+β) time from up to

a fraction (1− δ) of errors, and can be encoded in O(n logO(1) n) time.

Proof: Let β, δ > 0 be given. We will construct an (n, k)Q code C1 with Q = q∆ starting
from the code C guaranteed by (1) at the beginning of Section 11.4.1, for the choice α = δ/8
and β as given. We will use the code C together with a ∆-regular bipartite expander as
guaranteed by Lemma 11.5. The expander will be used to redistribute the symbols in a
codeword of C to give a codeword in the final code C1. To encode a message x, we first
encode x by C, and then we push copies of each symbol of C(x) along the edges of G and
form C1(x). Formally, the i’th symbol of C1(x), 1 ≤ i ≤ n, will be the juxtaposition of
C(x)i1 , . . . , C(x)i∆ where i1, i2, . . . , i∆ are the ∆ neighbors on the left side of G, in some
fixed order, of the vertex number i on the right side of G.5

From the vertex-expansion property (i) of G and the fact that C has distance at least
n/2, it is easy to see that C1 has distance at least (1−ε)n. Since the rate of C is a constant
(independent of ε) and ∆ = O(1/ε), it is clear that the rate of C1 is Ω(ε). This proves Part
(i) of the theorem.

The decoding algorithm that list decodes C1 up to a (1−δ)n errors works as follows. Let
z ∈ [Q]n be a received word and x be any message such that ∆(C1(x), z) ≤ (1−δ)n.6 Let Y
be the set positions on which z agrees with C1(x); therefore |Y | ≥ δn. The algorithm tries
to recover the codeword of C that corresponds to z. This is done by constructing, for each
i = 1, 2, . . . , n (i.e., each node on the left side of the graph G), a list L(i) of t most popular
symbols among the corresponding values stored in z on positions in the neighborhood of
i, i.e. those in {j : (i, j) ∈ E}. (For each such j, zj is a ∆-tuple over [q], one of whose
components comes from the vertex number i on the left side of G — it is this component
that votes for the i’th symbol of C(x). The final list L(i) is comprised of the t symbols that
receive the most votes.) The crucial point is that if C(x)|i /∈ L(i), then the number of edges
in {(i, j) ∈ E : j ∈ Y } is at most ∆

t+1 . Let X be the set of i’s such that C(x)|i /∈ L(i). It
follows that

|E(X : Y )|
∆|X|

≤ 1
(t+ 1)

.

5The construction requires that the blocklength of C is exactly equal to the number of vertices in G.
Since G is constructed using Ramanujan graphs, this means that the blocklength of C should be such that
an explicit Ramanujan graph exists on that many vertices. As with the constructions in Chapter 9, this will
also be an assumption in our code constructions in this chapter. As discussed in Section 9.4.3 of Chapter 9,
Ramanujan graphs occur in sufficient density that it is not a problem to achieve this. Therefore, to keep
the presentation simple, for the rest of the chapter we simply assume that the blocklength of our “left code”
and the number of vertices in the “expander” graph match exactly.

6The double use of ∆ for both the Hamming distance and the degree of the expanders is unfortunate.
We hope that it will not cause any confusion.
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Let us pick t =
⌊

1
δ′

⌋
. Then 1

t+1 < δ′, and therefore, by Property 2(ii) of G (stated at the
beginning of Section 11.4.1), we must have |X| < n/2. So, we can pick one symbol from
each L(i) at random and we get a string s with expected fractional distance from C(x) at
most 1

2 + 1
2 · (1−

1
t ) = 1− 1

2t .
7 Since t =

⌊
1
δ′

⌋
, we have

1− 1
2t
≤ 1− δ′

2
= 1− δ

8
= 1− α .

Therefore ∆(C(x), s) ≤ (1− α)n, and we can decode x successfully using the list decoding
algorithm for C. The running time of this procedure is O(n/ε) plus the time to decode C,
which is O(n1+β), for a total of O(n1+β) time. The encoding time is the time required to
encode a message by C, which is O(n logO(1) n), plus the time required to redistribute the
symbols using the expander, which is O(n/ε), for a total of O(n logO(1) n) time. 2

Corollary 11.7 For every ε > 0, there exists a rate Ω(ε) code family over an alphabet of
size 2O(1/ε) with relative distance at least (1−ε) that can be uniquely decoded from a fraction
(1− ε)/2 of errors in near-linear time.

We stress that even to perform unique decoding of the final code C1 as stated in the
above corollary we need the list decodability of C.

11.4.3 Binary codes of rate Ω(ε3), relative distance (1/2− ε)

We now concatenate the code C1 from Theorem 11.6 with a binary code to get binary codes
of rate Ω(ε3) and relative distance at least (1/2− ε) and which have efficient algorithms to
decode up to a fraction (1/4− ε) of errors.

Theorem 11.8 For any β > 0 and any η, 0 < η < 1/2, there is a constant B > 1 such that
for all small enough ε > 0 there exists a binary code family with the following properties:

• It has rate ε3/B and relative distance at least (1/2− ε).
• Every code in the family can be constructed in probabilistic O(1/ε3) or deterministic

2O(1/ε3) time.
• A code of blocklength N from the family can be list decoded from up to a fraction η of

errors in O(N1+β + 2O(1/ε3)) time, and can be encoded in O(N logO(1)N) time.

Proof: The basic idea is to concatenate the (n, k)Q code C1 from Theorem 11.6 with a
suitable binary inner code. For the inner code, take an arbitrary [n′, k′]2 binary linear code
C ′ with k′ = lgQ = O(1/ε), n′ = O(k′/ε2) = O(1/ε3) and relative distance (1 − ε)/2. A
random [n′, k′]2 linear code will meet the Gilbert-Varshamov bound and have the necessary
relative distance with high probability. Hence the code C ′ can be found with high probability
in randomized O(1/ε3) time or by brute-force search in deterministic 2O(1/ε3) time. Pick η′

to be a constant that satisfies η < η′ < 1/2. The Johnson bounds for list decoding discussed
in Chapter 3 (specifically Theorem 3.2) imply that, for all small enough ε, such a code C ′

is (η′n′, A)-list decodable, where A is a constant that depends on η but is independent of ε.
7It is trivial to derandomize this and deterministically generate a list of at most t strings s1, s2, . . . , st,

one of which satisfies ∆(C(x), sj) ≤ (1 − 1/2t)n. This can be done, for instance, by taking sj to comprise
of the j’th symbols from each of the lists L(i), 1 ≤ i ≤ n. We describe the randomized variant for ease of
presentation.
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We obtain the desired binary code C2 by concatenating the code C1 from Theorem 11.6
with C ′. Clearly, C2 has blocklength N = nn′ = O(n/ε3), rate Ω(ε3), and minimum
distance at least d = (1−ε)2N

2 .
The decoding of C2 proceeds as follows. Let r be a received word and let x be any

message that satisfies ∆(C2(x), r) ≤ ηN . The goal of the list decoding algorithm for C2

is to find a list that includes the message x, and it proceeds as follows. We can write the
received word as r = r1, r2, . . . , rn, where each ri, 1 ≤ i ≤ n, is the portion of the received
word corresponding to the i’th inner block. For 1 ≤ i ≤ n, let L(ri) be a list of all symbols
γ ∈ [Q] such that ∆(C ′(γ), ri) ≤ η′n′. By the (η′n′, A)-list decodability property of C ′, we
know that each list L(ri) contains at most A symbols. Moreover, each L(ri) can be found
by a brute-force decoding of C ′ which will take Q = 2O(1/ε) time, and this can be speeded
up by table look-up to O(1/ε3) time (building up the table takes up a one-time cost of
2O(1/ε3) time and space).

Now, if C(x)|i /∈ L(ri) for some i, then we must have ∆(C2(x)|i, ri) ≥ η′n′ where C2(x)|i
denotes the i’th block of the encoding of x by C2. Together with ∆(C2(x), r) ≤ ηnn′,
this implies, by an averaging argument, that the number of i’s such that C(x)|i /∈ L(ri)

is at most µ def= η
η′ < 1. Therefore, if we choose one of the symbols from each L(ri)

at random, the resulting string s has expected fractional distance to C1(x) smaller than
µ+ (1− µ)(1− 1/A) = (1− 1−µ

A ).8 If we pick δ (for the construction of the outer code C1

from Theorem 11.6) to be smaller than (1− µ)/A, we will be able to successfully decode x
by running the list decoding algorithm for C1 on the string s. The decoding time includes
the time to decode the inner codes, which takes the one-time cost of 2O(1/ε3) to build the
look-up table and O(n/ε3) = O(N) time to actually perform the n inner decodings, and the
time to list decode the outer code C1 up to a fraction (1− δ) of errors, which takes O(n1+β)
time by Theorem 11.6. The encoding time of C2 is dominated by the encoding time of C1,
which is O(n logO(1) n). Since the overall blocklength N of the concatenated code C2 is at
least n, the claimed encoding and decoding times follow. This completes the proof of the
theorem. 2

Remark: In the construction of Theorem 11.6, we can start with C which is an additive
code over a field Fq of characteristic 2. In this case, the final code C1 obtained in Theo-
rem 11.6 will also be an additive code over a field GF(Q) of characteristic 2. Concatenating
an additive code over GF(Q) with a binary linear code of dimension lgQ will result in a
concatenated code which is a binary linear code. Hence, we can get the above theorem with
the added requirement of a linear code family.

We also note that even in order to get unique decoding of the above codes up to a fraction
(1/4− ε) of errors, we would need the list decodability of the code C1 from Theorem 11.6.

11.5 Linear-time encodable and decodable codes: Construc-
tion I

In this section, we present another version of the above constructions, which by worsening
the rate by a factor of ε, reduces the decoding time to linear in the blocklength. Moreover,
we can also make the codes linear-time encodable. However, we can only perform unique
decoding of these codes. This gives our codes (2a,2b) mentioned in Section 11.2. In the

8As in the proof of Theorem 11.6, it is easy to find such an s deterministically.
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next section, we will improve the rate to match those from the previous section and thus
get linear-time codes with the best known rates (specifically the codes (3a,3b) mentioned
in Section 11.2). The codes of this section are however easier to describe and contain the
main idea behind the constructions (3a,3b), and hence we discuss these first. We would
recommend reading this section before reading the improved constructions in Section 11.6.

11.5.1 Codes with rate Ω(ε2) decodable up to a fraction (1/2− ε) of errors

Theorem 11.9 For any ε > 0 there is an explicitly specified code family with rate Ω(ε2),
relative distance at least (1− ε) and alphabet size 2O(1/ε2), such that a code of blocklength n
from the family can be (a) encoded in O(n/ε2) time, and (b) uniquely decoded from up to a
fraction (1/2− ε) of errors in O(n/ε2) time.

Proof: We need the following two combinatorial objects for our code construction:

(1) A binary asymptotically good [n, k]2 linear code C, encodable and uniquely decodable
from a fraction γ > 0 of errors in linear time (here γ is an absolute positive constant).
An explicit construction of such a code is known [Spi96, Spi95].

(2) A ∆-regular bipartite graph G = (A,B,E) with |A| = |B| = n, such that:

(a) for every set X ⊂ A with |X| ≥ γn, if Y is the set of neighbors of X in G, then
|Y | ≥ (1− ε)|B|.

(b) for every set Y ⊂ B with |Y | ≥ (1/2 + ε)n, the set X ′ ⊆ A defined by

X ′ = {x ∈ A : x has as many neighbors in B \ Y as in Y } (11.2)

has size at most γn.

A graph as in (2) above with ∆ = O( 1
γε2

) can be obtained from a Ramanujan graph

(i.e., an expander with second largest eigenvalue O(1/
√

∆)). Indeed let H = (V,E′) be a
∆-regular Ramanujan graph with λ(H) = λ = O(1/

√
∆). Take G to be the double cover

of H. We will prove that G both the properties (a) and (b) described above. For property
(a), we apply Corollary 11.3 with the choice b = γ. This gives that for all X ⊆ A with
|X| ≥ γn, the set Y ⊆ B of all nodes with neighbors in X satisfies

|Y | ≥
(

1− λ2

γ

)
n ≥

(
1−O

( 1
∆γ

))
n ≥ (1− ε2)n > (1− ε)n ,

for ∆ = Ω( 1
γε2

).
For the second property (b), assume that |Y | ≥ (1/2 + ε)n and let X ′ be defined as in

(11.2). We need to prove that |X ′| ≤ γn. By the definition of X ′, we have E(X ′ : Y ) ≤
∆|X ′|/2. Applying the result of Lemma 11.4, we know that

E(X ′ : Y )
∆|X ′|

≥ |Y |
n
− λ

√
|Y |
|X ′|

≥
(1

2
+ ε
)
− λ

√
|Y |
|X ′|

.

262



Figure 11-4: The majority voting based decoding algorithm

Together with E(X ′ : Y ) ≤ ∆|X ′|/2, this implies that

|X ′| ≤ λ2|Y |
ε2

= O
( n

∆ε2

)
≤ γn ,

for ∆ = Ω( 1
γε2

). Hence we conclude that the graph G required in (2) above exists with
degree ∆ = O( 1

γε2
) = O(1/ε2), since γ is an absolute constant.

Given the code C and graph G, our final code, call it C ′, is constructed in the same way
as the code from Theorem 11.6. Namely, to encode a message x according to C ′, we first
encode it into C(x), and then push symbols of C(x) along the edges of G. The i’th symbol
of the codeword C ′(x), for 1 ≤ i ≤ n, comprises of the collection of the symbols received at
the i’th node of the right side B of G. This is the same as the construction illustrated in
Figure 11-3, with the left code being fixed to the linear-time codes due to Spielman [Spi96].

Since C has constant rate, clearly C ′ has rate Ω(1/∆) = Ω(ε2). Since C is uniquely
decodable up to a fraction γ of errors, its relative distance must be at least 2γ, and this
together with the expansion property (a) of G clearly implies that C ′ has relative distance
at least (1− ε).

The encoding time for C ′ is the same as for C (i.e., linear), plus O(n∆) = O(n/ε2). In
order to decode a received word z which differs from a codeword C ′(x) in at most a fraction
(1/2− ε) of positions, we first perform the following key voting step, which is illustrated in
Figure 11-4: Each node v in A recovers the bit which is the majority of the neighbors of v
in B (ties broken arbitrarily).

Since z and C ′(x) agree on at least (1/2 + ε)n positions, appealing to the property (b)
of the graph G, we conclude that at most γn nodes in A recover incorrect bits of C(x)
in the above voting procedure. Then, by the property of the code C, we can decode x in
linear time. The total decoding time is again equal to O(n/ε2) for the first stage and then
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a further O(n) time for the decoding of C. Hence the total decoding time is O(n/ε2), as
claimed. 2

11.5.2 Binary codes with rate Ω(ε4) decodable up to a fraction (1/4 − ε)
of errors

In this section we show how to augment the linear-time codes from the previous section in
order to obtain binary codes with linear-time encoding, and linear-time decoding up to a
fraction (1/4− ε) of errors.

Theorem 11.10 For every ε > 0 there is a binary linear code family of rate Ω(ε4) and
relative distance at least (1/2−O(ε)), such that a code of blocklength N from the family can
be uniquely decoded from up to a fraction (1/4 − ε) of errors in O(N/ε2 + 2O(1/ε4)) time,
and can be encoded in O(N + 2O(1/ε2)) time. The code can be constructed in probabilistic
O(1/ε4) or deterministic 2O(1/ε4) time.

Proof: The code is constructed by concatenating the code from Theorem 11.9 with a
suitable binary code. Details follow. Let C ′ be the code from the Theorem 11.9.9 The
alphabet size of C ′ is Q = 2O(1/ε2). Let C3 be any [O(lgQ/ε2), lgQ]2 linear code with
relative distance at least (1/2 − ε). Such a code can be constructed by a picking random
linear code from a “Wozencraft ensemble” in probabilistic O(1/ε4) time or by a brute-force
search in such an ensemble in 2O(1/ε4) time, cf. Proposition 8.10. We concatenate C ′ with
C3 obtaining a binary linear code , say C∗, of blocklength N = O(n/ε4), rate Ω(ε4) and
relative designed distance at least δ def= (1− ε)(1/2− ε) = (1/2−O(ε)).10 Since C ′ can be
encoded in O(n/ε2) time, the encoding of C∗ can be performed in O(n/ε4) time (since each
encoding by C3 can be done in 1/ε4 time using a look-up table building which takes a one-
time cost of 2O(1/ε2) time and space). As the overall blocklength of C∗ equals N = O(n/ε4),
the claimed encoding time holds.

We will now show how to unique decode C∗ from a fraction δ/2 of errors in linear-
time. Since δ = (1 − ε)(1/2 − ε) and ε > 0 is arbitrary, this will imply the claimed result.
To this end, we use the following general result on decoding concatenated codes. This
result appears to be folklore and has been observed and used by several authors, including
Justesen [Jus72] who gave an algorithm to decode his asymptotically good concatenated
code construction up to the product bound (i.e., half the product of the distances of the
outer and inner codes). The basic idea and inspiration behind this method comes from the
work of Forney [For66b] on Generalized Minimum Distance (GMD) decoding.

Proposition 11.11 (GMD decoding of concatenated codes) Let Cout be an (N,K)Q
code where Q = qk and let Cin be an (n, k)q code with minimum distance at least d. Let C
be the (Nn,Kk)q code obtained by concatenating Cout with Cin. Assume that there exists
an algorithm running in time Tin to uniquely decode Cin up to less than d/2 errors. Assume
also the existence of an algorithm running in time Tout that uniquely decodes Cout from S

9Actually, we will need to make slight changes in the assumptions about the components used in the
construction of C′ in Theorem 11.9, namely in the assumptions about the expander graph G. But the
construction of C′ itself (given the left code C and the expander G), as well all its properties claimed in
Theorem 11.9, remain unaltered — we will only pose some stronger requirements on G and the decodability
of C′. We will discuss these and justify how they can be achieved without any loss in rate later in the proof.

10The code C∗ will be linear since C3 is linear and it is easy to check that the construction from Theo-
rem 11.9 gives an additive code C′.
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erasures and E errors as long as 2E + S < D̃ for some D̃ ≤ dist(Cout). Then there exists
an algorithm A running in O(NTin + dTout) time that uniquely decodes C from any pattern
of less than dD̃

2 errors.

The number of times the decoding algorithm for Cout is invoked by the final algorithm
A is at most d (and hence the dTout term in the runtime), and independent of the outer
blocklength N . This will be crucial for us. The fact that GMD decoding allows for such a
few invocations of the outer decoding algorithm has been observed before (for example, by
Justesen [Jus72] who makes a one line comment on it). For completeness sake, we provide
a proof of the above proposition in Appendix A.

Since the relative distance of the inner code C3 in our concatenated construction C∗ is
at least (1/2− ε), it can be uniquely decoded up to a fraction (1/2− ε)/2 of errors. Since
the blocklength of C3 is O(1/ε4), this can be accomplished in O(1/ε4) time using table
look-up where building up the table takes a one-time cost of 2O(1/ε4) time. Below we will
show that outer code C ′ can be decoded in O(n/ε2) time from any pattern of fraction s of
erasures and fraction e of errors as long as 2e+ s ≤ (1− ε). Appealing to the above lemma,
therefore, we will have an O(n/ε4 + 2O(1/ε4) + ε−4 · n/ε2) time algorithm to decode C∗ up
to a fraction (1/2− ε)(1− ε)/2 = δ/2 of errors (the distance d of the inner code C3 equals
O(1/ε4)). Hence the total decoding time is O(n/ε6 + 2O(1/ε4)) = O(N/ε2 + 2O(1/ε4)) (since
N = O(n/ε4)).

It remains to show that the outer code C ′ can be decoded, in linear time, from a fraction
s of erasures and a fraction e of errors for any e, s that satisfy 2e+ s ≤ (1− ε). To this end,
recall the construction of C ′ from Theorem 11.9 using a binary asymptotically good code
C and the expander G. For this proof, we assume some small changes in the parameters
of the expander G = (A,B,E). Specifically, we assume that G satisfies a property (b’),
defined below, which is stronger than the property (b) from Equation (11.2) that was used
in Theorem 11.9.11

(b’) For every subset X ⊂ A with |X| ≥ γn/2 and every Y ⊆ B, we have∣∣∣∣ |E(X : Y )|
|X|∆

− |Y |
|B|

∣∣∣∣ ≤ ε/3 . (11.3)

Note the above strongly resembles the isoperimetric property of Lemma 11.4, and in
fact is implied by it provided λ = O(ε

√
γ). Therefore, by using Ramanujan graphs which

achieve λ = O(1/
√

∆), we can achieve the above property with ∆ = O( 1
γε2

). Thus, we
can achieve the stronger property (b’) above with essentially no asymptotic increase in the
degree ∆. Hence the rate of C ′ is still Ω(ε2).

We now proceed to describe the claimed O(n/ε2) time error-erasure decoding algorithm
for C ′ that can successfully decode from a fraction s of erasures and a fraction e of errors for
any s, e satisfying 2e+ s ≤ (1− ε). Let S be the set of erasures in the received word z, and
let F be the set of errors. The decoding algorithm proceeds by the same majority voting
scheme as before. That is, each node on the left side A of the bipartite graph G assumes
the bit which is majority of the values of the neighbors of that node on the right side B.

11Of course we could have defined and used this stronger property in the proof of Theorem 11.9 itself.
But, we chose to avoid this since we wanted to state only the minimum required property on the expander to
make the construction work. This has the advantage that a better construction of the combinatorial object
might be possible which in turn might lead to improvements in the code construction.
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The difference now is that the nodes corresponding to the set S of erased symbols do not
participate in the voting. In order to prove the correctness of the decoding algorithm, we
would like to prove that all but a fraction γ of the positions on the left (that of the code
C) receive the correct bit as the majority vote by this procedure. Then we can complete
the decoding using the linear-time decoder for C (which by assumption can correct up to
a fraction γ of errors). Note that the decoding is the time to decode C, i.e. O(n), plus
the time to perform the majority votings, which is O(n/ε2), for a total of O(n/ε2) time, as
desired.

To prove that at most a fraction γ of the nodes in A receive the incorrect bit as the
majority vote by the above voting procedure, define X ⊆ A to be the set of nodes which
have at most a fraction (1− s− ε/3) of neighbors in the set B \ S. Also, define X ′ ⊆ A to
be the set of nodes which have at least a fraction (e+ ε/3) of neighbors in F . It is easy to
infer using the property (b’) of Equation (11.3) that |X|, |X ′| ≤ γn/2.

Now consider any node from A\(X∪X ′). It has less than a fraction (e+ε/3) of neighbors
in F . Moreover, it has more than a fraction (1− s− ε/3)− (e+ ε/3) = (1− s− e− 2ε/3) of
neighbors in B \ (S∪F ) (i.e., in the set of correct positions). Since 2e+s ≤ (1−ε), we have
(e+ ε/3) ≤ (1− s− e− 2ε/3). Therefore, every node in A \ (X ∪X ′) has more neighbors
among the correct positions (i.e., those in B \ (S ∪ F )) than among the incorrect positions
(i.e. those in F ). It follows that the the voting procedure works correctly for all nodes
in A \ (X ∪ X ′), and hence for all but a fraction γ of the codeword positions of C (since
|X|, |X ′| ≤ γn/2). This is exactly what we desired to show, and the proof is complete. 2

11.6 Linear-time codes with improved “optimal” rate

In this section, we present our linear-time codes (3a,3b) which enable unique decoding up
to the maximum radius of (1/2− ε) (resp. (1/4− ε)) for codes over a large alphabet (resp.
binary alphabet), and which have rates Ω(ε) (resp. Ω(ε3)). The former rate is in fact
optimal (up to constant factors), while the latter Ω(ε3) rate for binary codes is the best
known for constructive binary codes with relative distance (1/2 − O(ε)). Thus in some
sense our results get the optimal error-correction performance with the best rate one can
(currently) hope for, together with linear time encoding and decoding algorithms.

The construction follows an approach similar to (2a,2b) with some differences that enable
us to improve the rate by a factor of ε factor. Our presentation in this section will sometimes
refer to ideas from the previous section, so familiarity with the constructions (2a,2b) might
be useful in reading this section.

As usual, we first present the construction over a large alphabet. The binary construction
will then follow using an appropriate concatenation together with GMD decoding as in
Theorem 11.10.

11.6.1 Codes of rate Ω(ε) uniquely decodable up to a fraction (1/2− ε) of
errors

Below we state a more general result that handles both errors and erasures. This will help us
deduce the result for binary codes in the next section very easily, since the GMD algorithm
(as in the proof of Theorem 11.10) requires an errors-and-erasures decoding algorithm.

Theorem 11.12 For any ε > 0 there is an explicitly specified code family with rate Ω(ε),
relative distance at least (1−ε/2) and alphabet size 2O(ε−2 log(1/ε)), such that a code of block-
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Figure 11-5: Basic structure of the construction from Theorem 11.12 that achieves the
optimal Ω(ε) rate for unique decoding up to a fraction (1/2− ε) of errors. The binary code
is first broken into blocks and each block encoded by a constant-sized code. Note that the
second symbol a of the encoded block is sent to the second neighbor of the corresponding
node of the expander. This is in general how symbols are redistributed from the left to the
right using the expander. On the right side, the symbol at each position is the juxtaposition
of the symbols received from the neighbors on the left. For example, in the figure the second
position receives a from its third neighbor on the left, and therefore has a at the third
position of the 5-tuple of symbols that it receives.

length N from the family can be (a) encoded in O(N logO(1)(1/ε)/ε2) time, and (b) uniquely
decoded from a fraction e of errors and a fraction s of erasures in O(N logO(1)(1/ε)/ε2)
time as long as e, s satisfy 2e+ s ≤ (1− ε).

Proof: The construction is roughly similar to that of Theorem 11.9 (where we achieved a
rate of Ω(ε2)). The main difference is that the symbols of the codeword of the linear-time
binary left code C are not directly fed into the expander graph G (as in Figure 11-3), but
rather the codeword of C undergoes another level of encoding before this happens. The
intuition behind the construction is the following. The construction of Theorem 11.9 can be
viewed as encoding each symbol of the left code by a repetition code (of length equal to the
degree of the expander), and then sending these repeated symbols along the edges of the
expander. The construction here attempts to use a better choice for this code (compared to
the repetition code). By picking an appropriate code for this step, we are able to improve
the rate of the whole construction to the optimal bound of Ω(ε).

The specific details are as follows. Each codeword of C is broken up into blocks each with
b bits, for some large enough constant b (jumping ahead, we will pick b = O(ε−1 log(1/ε))).
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Each block is then encoded using a constant-sized q-ary code for some q = O(1/ε2), call
it Ĉ. The code Ĉ will have rate Ω(ε) and relative distance at least (1 − ε/4). This gives
us n′ = n/b blocks of, say, ∆ = O( b

ε lg q ) symbols over Fq. The bits in each block are then
redistributed using the edges of a suitable ∆-regular bipartite expander with n′ vertices on
each side in the following way: the j’th bit of the i’th block, for 1 ≤ j ≤ ∆ and 1 ≤ i ≤ n′,
is sent to the j’th neighbor on the right of the the i’th vertex on the left. See Figure 11-5
for an illustration of the basic construction scheme. Let us denote by C1 the final code
obtained after redistribution of the symbols by the expander in the above manner.

We now highlight the construction of each of the three combinatorial objects C,G, Ĉ
used in the above construction.

• The properties we need from C are the same as the one in Theorem 11.9, namely
that it be an explicit [n, k]2 code of constant rate encodable and uniquely decodable
from a fraction γ of errors in linear time, for an absolute constant γ > 0. An explicit
construction of such a code is known [Spi96].

• For the bipartite expander G = (A,B,E), we will require a ∆-regular expander with
|A| = |B| = n′ which has the following property (this is the same as Property 11.3
with ε/3 replaced by ε/4):

(b’) For every subset X ⊂ A with |X| ≥ γn′/2 and every Y ⊆ B, we have∣∣∣∣ |E(X : Y )|
|X|∆

− |Y |
|B|

∣∣∣∣ ≤ ε/4 . (11.4)

Once again, as in the proof of Theorem 11.10, Ramanujan graphs of degree ∆ = O( 1
γε2

)
give explicit constructions of bipartite graphs with Property (11.4).

• For the code Ĉ we can take a Reed-Solomon code of rate, say ε/4, and blocklength ∆
over a field of size q, where q = O(∆) = O(1/ε2) is a power of two. It will map blocks
of b = O(ε−1 log q) = O(ε−1 log(1/ε)) bits, or equivalently O(1/ε) symbols over Fq,
into ∆ symbols over Fq. The relative distance of Ĉ is at least (1− ε/4), as desired.

Rate, alphabet size, and distance of C1. Let us estimate the parameters of the final
code construction C1. The blocklength of C1 is n′ = n/b = O(εn/ log(1/ε)). Now each
position of C1 receives symbols belonging to Fq from ∆ positions on the left. Therefore the
alphabet size of C1 is Q = q∆ = 2O(ε−2 log(1/ε)) (since q,∆ = O(1/ε2)). The dimension of
C1, as a Q-ary code, equals k′ = k/ lgQ = Ω(ε2k/ log(1/ε)). The rate of C1 is

k′

n′
= Ω

(ε2k/ log(1/ε)
εn/ log(1/ε)

)
= Ω

(εk
n

)
= Ω(ε)

(since the linear-time binary code C we start from has constant rate).
Let us compute the relative distance of C1. The relative distance of C is at least 2γ,

since it can correct a fraction γ of errors. Let c be a non-zero codeword of C — it must have
1’s in at least 2γn positions. Hence a fraction 2γ of the blocks of c must be non-zero, and
these will be mapped to non-zero strings of Hamming weight at least (1− ε/4)∆ by Ĉ (by
the distance property of Ĉ). Let X1 ⊆ A be the vertices corresponding to such blocks, we
have |X1| ≥ 2γn′. Let Y1 ⊆ B be the set of non-zero positions of the final codeword of C1

that corresponds to c. Each vertex in X1 contributes at least (1− ε/4)∆ non-zero symbols,
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and hence must have at least (1 − ε/4)∆ edges into Y1. Therefore |E(X1:Y1)|
|X1|∆ ≥ 1 − ε/4.

Since |X1| ≥ 2γn′ > γn′/2, Condition (11.4) implies that |Y1| ≥ (1 − ε/2)n′. Hence any
non-zero codeword of C1 has Hamming weight at least (1 − ε/2)n′, implying that C1 has
relative distance at least (1− ε/2).

Encoding complexity. The time to encode C1 is time to encode C, which is O(n) =
O(n′b), plus the time to encode each of the n′ Reed-Solomon codes Ĉ of blocklength ∆,
which takes a total of O(n′∆ logO(1) ∆) time, plus the time to redistribute the symbols
using the expander, which takes time O(n′∆). Since ∆ = O(1/ε2), the total encoding time
is O(n′ logO(1)(1/ε)/ε2), as claimed.

Decoding complexity. It remains to describe the claimed linear time error-erasure
decoding algorithm for C1. Let z be a received word for C1 with a fraction s of erasures
and a fraction e of errors, where 2e+s ≤ (1−ε). Since the relative distance of C1 is greater
than (1−ε), there is a unique message x that is solution to the decoding problem. Let S be
the set of erasures in the received word z, and let F be the set of errors (i.e., the positions
where C1(x) and z differ). We have |S| = sn′ and |F | = en′.

Given the received word z, the decoding algorithm proceeds as follows. In the first step,
the word z is used to compute certain “received words” zi, 1 ≤ i ≤ n′, for the n′ encodings
by Ĉ (corresponding to the n′ blocks into which a codeword of C is broken into). This is
done as follows. For each i, j, 1 ≤ i ≤ n′ and 1 ≤ j ≤ ∆, if the j’th neighbor of the i’th
node of A has an unerased symbol, say ζ ∈ GF(q∆), then the j’th symbol of zi is set to
the symbol in the appropriate coordinate of ζ (namely, the coordinate which received that
symbol through the expander). If the j’th neighbor of the i’th node of A has an erased
symbol, then we declare an erasure at the j’th position of zi.

For each i, 1 ≤ i ≤ n′, let zi be the received word thus obtained for the encoding of
i’th block. Let si be the fraction of positions in zi which are erased, and let ei be the
fraction of positions in zi which are set to a wrong symbol. With the zi’s computed, the
algorithm continues as follows. For each i, we run a unique error-erasure decoding algorithm
for the Reed-Solomon code Ĉ with received word zi. If it succeeds in decoding, we let yi be
the message it outputs (note that yi ∈ {0, 1}b), otherwise we let yi be an arbitrary string
in {0, 1}b. Finally, the decoding is completed by running the linear time unique decoding
algorithm for C on the received word y = 〈y1, y2, . . . , yn′〉, and outputting whatever message
x it outputs.

It is easily checked that the runtime of the decoding algorithm is O(n′ logO(1)(1/ε)/ε2)
(the significant component is the n′ Reed-Solomon decodings, each of which can be imple-
mented in O(∆ logO(1) ∆) time). We now prove the correctness of this procedure. We claim
that it suffices to prove that the received words zi (obtained from the first stage of the
decoding that uses the expander) satisfy 2ei + si < (1 − ε/4) for at least (1 − γ)n′ values
of i. Indeed, for any such i, the Reed-Solomon decoder will succeed in finding the correct
block yi (as the relative distance of each Reed-Solomon code is at least (1 − ε/4)). Hence
the received word y passed to the decoding algorithm for C will agree with C(x) entirely
on a fraction (1 − γ) of the blocks, or in other words y and C(x) will differ in at most γn
positions. Since the assumed decoding algorithm for C can correct up to a fraction γ of
errors, we will correctly find and output the message x.

It remains to prove that 2ei + si < (1− ε/4) for all but γn′ values of i. This part closely
parallels the final portions of the proof of Theorem 11.10. Define X ′ ⊂ A to be the set of
nodes which have at least a fraction (s+ ε/4) of neighbors in the set S (the set of erasures
in the received word z). Also define X ′′ ⊂ A to the nodes which have at least a fraction
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(e+ ε/4) of neighbors in F (the set of erroneous positions in z). It easily follows from the
isoperimetric property (11.4) of the expander that |X ′|, |X ′′| ≤ γn′/2.

Now consider any node i ∈ A \ (X ′ ∪ X ′′). It has less than a fraction (e + ε/4) of
neighbors in F . These correspond to the errors in the received word zi, and hence we have

ei < e+ ε/4 for every i ∈ A \ (X ′ ∪X ′′) . (11.5)

A node i ∈ A \ (X ′ ∪X ′′) also has less than a fraction (s + ε/4) of neighbors in S. These
correspond to the erasures in the received word zi, and hence we have

si < s+ ε/4 for every i ∈ A \ (X ′ ∪X ′′) . (11.6)

Since 2e+ s ≤ (1− ε) by hypothesis, we have, combining (11.5) and (11.6) that 2ei + si <
(1 − ε/4), for each i ∈ A \ (X ′ ∪ X ′′). Since |X ′|, |X ′′| ≤ γn′/2, we have proved that the
condition 2ei + si < (1 − ε/4) holds for all but a fraction γ of i’s in the range 1 ≤ i ≤ n′.
This completes the proof of correctness of the decoding algorithm. 2

11.6.2 Linear-time binary codes of rate Ω(ε3) decodable up to a fraction
(1/4− ε) of errors

Theorem 11.13 For every ε > 0 there is a binary linear code family of rate Ω(ε3) and
relative distance at least (1/2 − ε), such that a code of blocklength N from the family can
be uniquely decoded from up to a fraction (1/4 − ε) of errors in O(N logO(1)(1/ε)/ε2 +
2O(ε−4 log(1/ε))) time, and can be encoded in O(N + 2O(ε−2 log(1/ε))) time. The code can be
constructed in probabilistic O(ε−4 log(1/ε)) or deterministic 2O(ε−4 log(1/ε)) time.

Proof: The construction is obtained by concatenating the codes C1 from Theorem 11.12
with a binary linear code, say C̃, of dimension O(ε−2 log(1/ε)), rate Ω(ε2) and relative
distance at least (1 − ε)/2. The concatenated code, say C∗, will have rate Ω(ε3) and
relative distance at least (1/2 − ε). By Theorem 11.12, C1 has a linear time error-erasure
decoding algorithm to decode a fraction e of errors and a fraction s of erasures as long
as 2e + s ≤ (1 − ε). Together with Proposition 11.11 on GMD decoding of concatenated
codes, this implies a linear time decoding algorithm for the concatenated code C∗ up to
a fraction (1−ε)(1−ε)

4 ≥ (1/4 − ε) of errors. The claimed runtimes of the encoding and
decoding algorithm follows from a straightforward calculation similar to that from the proof
of Theorem 11.10. 2

Note that the above result uses only a constant amount of non-constructivity, even which
can be eliminated by giving up an ε factor in the rate (one would then use an explicit rate
Ω(ε3) code of relative distance (1/2−O(ε)) as the inner code in the concatenation scheme,
instead of random codes of rate Ω(ε2)).
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Chapter 12

Sample Applications outside
Coding Theory

An ounce of application is worth a ton of abstraction.

- Booker’s Law

We now move on to provide a sample of some of the applications which both combi-
natorial and algorithmic aspects of list decoding have found in contexts outside of coding
theory. As it turns out, by now there are numerous such applications to complexity theory
and cryptography. Hopefully, by providing a peek into some of these applications, this
chapter will not only highlight the importance of list decoding to these areas, but also give
a flavor of why the notion of list decoding perfectly fits the ball in several of these situa-
tions. Except for a few of the applications where we will present formal theorem statements
and/or proofs, the nature of this chapter is more survey-like, and we will only provide a brief
high-level discussion of the applications. But in cases where we only sketch an application,
we will provide the relevant pointers where the interested reader can find more details.1

We actually begin this chapter with an application of list decoding to an algorithmic
question, before moving on to the complexity-theoretic and cryptographic applications. The
algorithmic problem, called “Guessing Secrets”, is discussed in detail in Section 12.1 (the
results of this section appear in a recent paper [AGKS01]). This will be followed by a survey
of the several complexity-theoretic applications in Section 12.2. Finally, we will discuss a
few cryptographic applications of list decoding in Section 12.3.

12.1 An algorithmic application: Guessing Secrets

Under the familiar “20 questions” game a player, say B, tries to discover the identity of
some unknown secret drawn by a second player, say A, from a large space of N secrets,
by asking binary (Yes/No) questions about the secret to A (cf. [I52]). The assumption is
that A answers each question truthfully according to the secret he picked. The goal of B
is of course to recover the secret by asking as few questions as possible. If the N secrets

1The criterion for inclusion of proofs and/or formal statement of results for only a small subset the results
is simple — these applications, or at least portions of them, were discovered jointly by the author, and this
thesis will be the first published form where the results are discussed. For all other applications there are
published articles or preprints where further details can be found, and accordingly we only sketch the details
and point the reader to the original articles.
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are associated with dlgNe-bit strings, then clearly dlgNe questions are both necessary and
sufficient to discover the secret.

Now, consider the following variant of the above game. Under this variant, the player
A picks not one, but a set of k secrets, for some k ≥ 2. For each question asked by B,
A gets to adversarially choose which one of the k secrets to use in supplying the answer,
but having made the choice must answer truthfully according to the chosen secret. This
variant was introduced by Chung, Graham and Leighton in [CGL01], and they called the
problem “Guessing Secrets”. In this situation, what is the best strategy for B, and how
many questions does it take in the worst-case for B to “find” the secrets? In addition
to being an interesting “puzzle”, secret guessing problems of this type have apparently
arisen recently in connection with certain Internet traffic routing applications (cf. [CGL01]).
Moreover, problems of a related nature have been studied in the literature under the label
of separating systems (see [Seg94, CES01] and references therein), and have been applied
in different areas of computer science such as technical diagnosis, constructions of hash
functions, and authenticating ownership claims. The focus of much of this line of work has
been combinatorial, and our work appears to be the first to present non-trivial algorithms
to deal with (certain kinds of) separating systems. Specifically, in this section we present
an algorithmic solution using list decoding to a problem left open by the work of [CGL01]
for the case of k = 2 secrets. The details will be made clear shortly.

12.1.1 Formal problem description

We first restrict ourselves to the case k = 2 when there are only two secrets. This is
already a non-trivial case, and as we shall see one where a very satisfactory solution exists
to the guessing secrets problem. In this case, A has a set X = {x1, x2} of two secrets,
chosen from a universe U of N possible secrets. We now proceed to precisely formulate the
algorithmic problem that B wishes to (and can hope to) solve (the reader familiar with the
paper [CGL01] probably already knows the formal definition, and can skip the next few
paragraphs).

Note that A can always choose to answer according to the secret x1, and thus B can never
hope to learn with certainty more than one of A’s secrets. Moreover, a moment’s thought
reveals that B cannot even hope to pin down with certainty one secret and claim that it must
be one of A’s secrets. This is because A could pick there secrets {x1, x2, x3} and answer
each question asked by B according to the majority vote of the answers corresponding to
x1, x2, x3. For such a strategy, irrespective of the number of questions B asks, A can always
“justify” any subset of two of these secrets as the set X he picked.

In light of these, it turns out that the best that B can hope for is the following: For
every set of two disjoint pairs of secrets X = {x1, x2} and Y = {x3, x4} where the xi’s
are all distinct, rule out one of X or Y as the set which A picked. An instructive way to
visualize this requirement is in terms of graphs. Let KN denote the complete graph on the
universe U of N secrets. View a pair of secrets X = {x1, x2} as an edge (x1, x2) of KN .
A question is simply a function F : U → {0, 1}, and the answer to it naturally induces a
partition U = F−1(0) ∪ F−1(1). If A answers question F with a bit b ∈ {0, 1}, then we
know that the set X which A picked must satisfy X ∩ F−1(1 − b) = ∅, and hence B can
“eliminate” all edges within the subgraph of KN spanned by F−1(1 − b). Stated in this
language, the goal of B is to ask a series of questions by which he can eliminate all edges
except those in a set W that contains no pair of disjoint edges.

Now, there are only two possibilities for such a surviving set W . Either W must be a
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“star”, i.e., a set of edges all sharing a common x0, or W must be a “triangle”, i.e., the set
of three edges amongst a set {x1, x2, x3} of three secrets. In the former case, B can assert
that x0 must be one of A’s secrets. In the latter case, B can assert that the secret pair of
A is one of (x1, x2), (x2, x3), or (x3, x1). In the sequel, when we use the phrase “find the
secrets” we implicitly assume that we mean finding the underlying star or triangle as the
case may be. We also use the phrase “solve the 2-secrets problem” to refer to the task of
finding the underlying star or triangle.

Oblivious vs. Adaptive Strategies: There are two possible strategies that one can
consider for B: adaptive and oblivious (also called non-adaptive). For adaptive strategies
each question of B can depend on A’s answers to the previous questions. For oblivious
strategies B must fix the set of questions to be asked right at the outset and be able to
infer the secrets just based on A’s answers to those fixed questions.

Definitely, adaptive strategies seem more natural for a “20 questions” kind of set-up.
However, oblivious strategies have the merit of being easy to play (and being more demo-
cratic in terms of different players’ abilities), since one just has to read out a fixed pre-
determined set of questions. Moreover, as we shall see, it is possible to do surprisingly well
using just oblivious strategies. In fact, it turns out that there exist oblivious strategies
that find the secrets using just O(logN) questions, which is only a constant-factor off the
obvious lower bound of logN on the number of necessary questions. Moreover, the quest for
oblivious strategies runs into some intriguing combinatorial questions, and leads us, quite
surprisingly, to list decodable codes! We focus exclusively on oblivious strategies here. (See
the work of [CGL01] for some lower and upper bounds on the number of questions required
by adaptive strategies.)

A probabilistic construction shows that O(logN) questions are sufficient to solve the
2-secrets problem [CGL01]. But this only proves the existence of good strategies and the
questions are not explicitly specified. In the next section, we discuss how certain binary
codes give explicit oblivious strategies.

12.1.2 An explicit strategy with O(logN) questions

A characterization of oblivious strategies using separating codes

An oblivious strategy for B is simply a sequence F of n Boolean functions (questions)
fi : [N ]→ {0, 1}, 1 ≤ i ≤ n. We say a strategy solves the 2-secrets guessing problem if the
answers to the questions fi bring down the possible pairs of secrets to a star or a triangle.

For each secret x ∈ [N ], we denote the sequence of answers to the questions fi on x by
C(x) = 〈f1(x), f2(x), . . . , fn(x)〉. We suggestively call the mapping C : [N ] → {0, 1}n thus
defined as the code used by the strategy. There is clearly a one-one correspondence between
oblivious strategies F and such codes C (defined by fi(x) = C(x)i, where C(x)i is the i’th
bit of C(x)). Hence we will from now on refer to a strategy F using its associated code C.

We say that a code C is (2, 2)-separating (or simply, separating) if for every 4-tuple
of distinct secrets a, b, c, d ∈ [N ], there exists at least one value of i, 1 ≤ i ≤ n, called
the discriminating index, for which C(a)i = C(b)i 6= C(c)i = C(d)i. Note that if B asks
questions according to a separating code C, then for every two disjoint pairs of edges (a, b)
and (c, d), B can rule out one of them based on the answer which A gives on the i’th
question, where i is a discriminating index for the 4-tuple (a, b, c, d). In fact it is easy to
see that the (2, 2)-separating property of C is also necessary for the corresponding strategy
to solve the 2-secrets guessing game.
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This implies the following characterization for the existence of oblivious strategies for
the 2-secrets guessing game.

Lemma 12.1 There exists a (2, 2)-separating code C : [N ] → {0, 1}n if and only if there
exists an oblivious strategy for B using n questions that solves the 2-secrets guessing problem
for a universe size of N .

Hence the problem of finding a small set of questions to solve the 2-secrets problem
reduces to the task of finding a good (2, 2)-separating code. There is a reason why we called
these objects “codes” since the following result states that any error-correcting code with a
certain property is also a (2, 2)-separating code. We will assume without loss of generality
that N = 2m so that we can conveniently view each secret as an m-bit binary string. The
separating code C then encodes an m-bit string into an n-bit string.

Lemma 12.2 Let C be an [n,m]2 binary linear code with minimum distance d and max-
imum distance (i.e., the maximum number of coordinates where two distinct codewords
differ) equal to m1. Assume further that d,m1 satisfy the condition d > 3m1

4 . Then, C is a
(2, 2)-separating code. If the constraint of linearity is removed, then an (n,m)2 binary code
C is (2, 2)-separating if d > m1

2 + n
4 .

The above lemma is proved in the work of Cohen, Encheva, and Schaathun [CES01].
The result for linear codes had been previously proved by Segalovich [Seg94]. The result
for non-linear codes can be strengthened and in fact a code C is (2, 2)-separating provided
d > n/2 (cf. [AGKS01]).

There is a big advantage in using linear codes C for B’s strategy, since then each question
simply asks for the inner product over GF(2) of the secret with a fixed m-bit string. Thus
all questions have a succinct description, which is not the case for general non-linear codes.
Hence, we focus exclusively on strategies based on linear separating codes from now on.

Construction of good linear separating codes

Definition 12.1 (ε-biased codes) A binary linear code of blocklength n is defined to be
ε-biased if every non-zero codeword in C has Hamming weight between (1/2 − ε)n and
(1/2 + ε)n.

Now Lemma 12.2 implies the following separation property of ε-biased codes.

Corollary 12.3 If a binary linear code C is ε-biased for some ε < 1/14, then C is a
(2, 2)-separating code.

Thus, in order to get explicit (2, 2)-separating codes (and hence, an explicit strategy for
the 2-secrets guessing game), it suffices to explicitly construct an ε-biased code for some
ε < 1/14.

A simple explicit construction of ε-biased codes can be obtained by concatenating an
outer Reed-Solomon code with relative distance (1 − 2ε) with an inner binary Hadamard
code. It is easy to see that all non-zero codewords have relative Hamming weight between
(1/2 − ε) and 1/2, and thus this gives an ε-biased space. This construction encodes m
bits into O(m2/ε2) bits. Other explicit constructions of ε-biased codes of dimension m and
blocklength O(m2/ε2) are also known (cf. [AGHP92]). In fact, the explicit construction
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of a secret guessing strategy with O(log2N) questions in [CGL01] is based on one of the
ε-biased codes from [AGHP92]. All these constructions suffer from the drawback of needing
Ω(log2N) questions, and this means they provide a strategy with O(log2N) questions,
while we would like to achieve the optimal O(logN) questions.

But, there are also known ways to achieve ε-biased codes with blocklength O(m/εO(1)).
For example, one can use a concatenated scheme with outer code any explicitly specified
code with relative distance (1 − O(ε)) over a constant alphabet size (that depends on ε),
and inner code itself being a Reed-Solomon concatenated with Hadamard code. Specifically,
one can use for the outer code the construction from [ABN+92] that achieves rate Ω(ε)
and alphabet size 2O(1/ε). It is easy to check that this gives an explicit [O(m/ε4),m]2 ε-
biased code. A better choice of inner code can be used to bring down the blocklength to
O(m/ε3) [ABN+92], but this is not very important to us since this will only improve the
number of questions by a constant factor.

We therefore have:

Lemma 12.4 ([ABN+92]) For any ε > 0, there exists an explicitly specified family of
constant rate binary linear ε-biased codes.

Applying the above with any ε < 1/14, and using the connection to separating codes
from Corollary 12.3 and the result of Lemma 12.1, we get the following:

Theorem 12.5 There is an explicit oblivious strategy for the 2-secrets guessing game that
uses O(logN) questions where N is the size of the universe from which the secrets are
drawn.

12.1.3 An efficient algorithm to recover the secrets

The construction of an explicit strategy using O(logN) questions is not difficult, and follows
rather easily once one realizes the connection to ε-biased spaces. However, a fairly basic
and important point has been ignored so far in our description. We have only focused on
strategies that “combinatorially” limit the possible pairs of secrets to a star or a triangle.
But how can B figure out the star or triangle as the case may be, once he receives the
answers to all the questions? One obvious method is to simply go over all pairs of secrets
and check each one for consistency with the answers. By the combinatorial property of the
strategy, we will be left with only a star or a triangle. The disadvantage of this approach,
however, is that it requires O(N2) time. We would ideally like to have a strategy to recover
the secrets that runs in poly(logN) time, since we would like to have a runtime which
is polynomial in the number of bits in the secret. Strategies with such an efficient secret
recovery algorithm are called invertible strategies in [CGL01]. In [CGL01], the authors
mention an invertible strategy for the 2-secrets guessing game, attributed to Lincoln Lu,
which uses O(log3N) questions to find the star/triangle in O(log4N) time. Note, however,
the number of questions is much larger than O(logN). The problem of finding an invertible
strategy that uses only O(logN) questions was left unanswered in [CGL01]. Independent
of our work, [MS01] answered this question by presenting an adaptive invertible strategy
using only O(logN) questions, together with an O(log2N) time algorithm to recover the
secrets.

In this section, we present a connection between list decoding and the 2-secrets guess-
ing game. Using this connection, we are able to give an invertible strategy that uses only
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O(logN) questions. The time to recover the secrets (i.e., the triangle or a succinct represen-
tation of the star) is O(log3N). We stress that, unlike the result of [MS01], our strategy is
oblivious, and is therefore incomparable to their result (it is not strictly better because the
constants in front of the logN in the number of questions and the time needed to find the
secrets are slightly worse in our construction). Details on the connection to list decoding
and our construction follow.

Connection to list decoding

Lemma 12.6 Suppose that C is a [cm,m]2 binary linear code which is ε-biased for some
constant ε < 1/14. Suppose further that there exists a list decoding algorithm for C that
corrects up to a fraction (1/4 + ε/2) of errors in time O(T (m)). Then, C is a (2, 2)-
separating code which gives a strategy to solve the 2-secrets guessing game for a universe
size N = 2m in O(T (lgN) + lg3N) time using c lgN questions.2

Proof: Let C be a code as in the statement of the lemma and assume that B is using C
for its strategy. Let X = {x1, x2} be the set which A claims he picked after giving all the
answers. Let the set of answers be a = (a1, a2, . . . , an). Then for each i, we must have
either C(x1)i = ai or C(x2)i = ai since A is supposed to answer each question according to
one of x1 or x2. Now by the property of C, we have C(x1)i = C(x2)i for all i ∈ A for some
set A ⊆ [n] of size at least (1/2 − ε)n. For each i ∈ A we have C(x1)i = C(x2)i = ai, and
for each i /∈ A, exactly one of C(x1)i and C(x2)i equals ai. It follows that either C(x1) or
C(x2) is within Hamming distance (n− |A|)/2 of a; assume without loss of generality that
it is C(x1). Then

∆(a, C(x1)) ≤ n− |A|
2

≤ (1/2 + ε)
n

2
=
(1

4
+
ε

2

)
n .

The algorithm for B to recover the secrets (i.e., the triangle or the star) after receiving
the answer vector a is as follows.

1. Perform list decoding of the code C using the assumed algorithm to find the set, say
S, of all x ∈ {0, 1}m that satisfy ∆(a, C(x)) ≤ (1

4 + ε
2)n.

2. For each x ∈ S returned by the list decoding algorithm in the previous step, do the
following. Compute A = {i : C(x)i = ai}, and perform an erasure list decoding of
the received word a when all of its symbols in positions in A are erased. In other
words find (some representation of) the set Sx of all x′ for which C(x′)i = ai for each
i ∈ [n] \A. If Sx is empty, then remove x from S.

3. Return the set of unordered pairs {(x, x′) : x ∈ S, x′ ∈ Sx} as the final set of all
possible feasible pairs.

We now argue the correctness of the algorithm. First note that any pair returned by the
algorithm is a proper solution to the guessing secrets. This is because the set Sx consists of
precisely those secrets that could form the other secret in a pair with x so that the resulting
pair will be “consistent” with the answers a. We next prove that any pair (x, x′) which

2The lg3 N component in the runtime comes from the time it takes to solve an O(n)×O(n) linear system,
where n = lgN . We can therefore replace the runtime by O(T (logN) + M(lgN)) where M(n) is the time
taken to multiply two n× n matrices over GF(2) (which is asymptotically the same as the time required to
solve an O(n) × O(n) linear system over GF(2)). To keep things simple, we simply use an O(lg3 N) time
bound instead of O(M(lgN)) for this task.
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is a consistent solution to the 2-secrets problem for the answers a, will be found by the
algorithm. Appealing to (2, 2)-separation property of C (which is implied by Corollary 12.3
since C is ε-biased for some ε < 1/14), the above two facts imply that the final set of pairs
will either be a triangle or a star.

If a pair (x, x′) is consistent with a, then we know by the initial arguments in this proof
that min{∆(a, C(x)),∆(a, C(x′))} ≤ (1/4 + ε/2)n. Assume without loss of generality that
∆(a, C(x)) ≤ (1/4 + ε/2)n. Then, x will be found as part of the set S is the first list
decoding step of the above algorithm. Now for each i such that C(x)i 6= ai, we must have
C(x′)i = ai, or otherwise (x, x′) would not be a consistent pair for the answers a. Hence
x′ will be a solution to the erasure decoding performed in the second step. It follows that
x′ ∈ Sx and that (x, x′) will be output by the algorithm, as desired.

Now we move on to the runtime analysis of the algorithm. By the hypothesis of the
lemma, the first list decoding step can be performed in O(T (m)) time. Moreover, the size of
the list S returned will be bounded by an absolute constant. This follows from the Johnson
bound (cf. Theorem 3.1, Chapter 3), which for binary codes states that list decoding to a
fraction α/2 of errors in a code of relative distance δ/2 when α < 1−

√
1− δ, requires lists

of size at most (α2 − 2α+ δ)−1. Applying this with α = 1/2 + ε and δ = 1− 2ε, gives that
the list size will be at most (ε2− 3ε+ 1/4)−1, which is at most 24.5 for ε < 1/14. Hence we
will have |S| ≤ 24 and therefore the second erasure decoding step will only be performed
for O(1) choices of x.

For the second step we critically use the fact that C is a linear code, and hence erasure
list decoding amounts to finding all solutions to a linear system. The set Sx, therefore,
is either empty or the coset of a linear subspace, say Wx, of Fm2 , and in the latter case
can be represented by one solution together with a basis for Wx. Hence an O(m2) size
representation of each non-empty Sx can be computed in the time needed to solve a linear
system, which is certainly O(m3).

Hence the above algorithm finds either the triangle or the star of all pairs of secrets
consistent with the answer vector a in O(T (m) +m3) time. Note that in the case when it
outputs a star, the number of pairs could be quite large (as high as (N − 1) in case the
answer vector a exactly matches C(x) for some secret x). The algorithm exploits the fact
that the non-hub vertices the star, being the set of solutions to a linear system, can be
described succinctly as the coset of a linear space. 2

Remark: We stress here that the use of list decoding in the above application is critical,
and the result cannot be obtained using unique decoding. This is because for any pair
(x, x′) which is consistent with a, we are only guaranteed that one of x or x′ is within
Hamming distance (1/4 + ε/2)n from a. Thus, we need to perform decoding to a relative
radius of (1/4 + ε/2). Therefore, if we were to perform unique decoding, we would need a
relative distance of (1/2 + ε), which is of course impossible for binary codes (unless they
just have a constant number of codewords which is not very useful). Also, note that after
the list decoding algorithm finds the set S of codewords close to a, the application gives a
natural post-processing routine to prune the list and actually zero down the possibilities to
the actual solutions. This will also be a characteristic of several of the applications of list
decoding discussed in this chapter.

The final result using specific list decodable codes

We now prove that explicit codes with the property needed in Lemma 12.6 exist, and thus
conclude our main algorithmic result about the 2-secrets guessing game. The following result
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is quite standard and can be proved easily using techniques from Chapter 8 on concatenated
codes. The only new element is the requirement of an ε-biased code, but as we shall see
this necessitates no significant change in the proof technique.

Lemma 12.7 For every positive constant α < 1/2, the following holds. For all small
enough ε > 0, there exists an explicit asymptotically good family of binary linear ε-biased
codes of which can be list decoded up to a fraction α of errors in O(n2( logn

ε )O(1)) time.

Proof: (Sketch) We only sketch the proof since it is by now quite routine. Given α < 1/2,
we pick ε = O((1/2−α)2). The code construction will be the concatenation of an outer Reed-
Solomon code CRS of rate smaller than ε with inner code Cin being an explicitly specified
ε/2-biased binary linear code (such a code exists by Lemma 12.4). It is clear that the
resulting concatenated code, say C, has relative distance at least (1−ε)(1/2−ε/2) > 1/2−ε,
and maximum relative distance at most 1 · (1/2 + ε/2) < 1/2 + ε. Hence C is definitely an
ε-biased code.

Assume that the Reed-Solomon code be defined over GF(2`) and has blocklength n0 =
2`. Let the blocklength of Cin be n1. The blocklength of C is then N = n0n1. To list decode
a received word r ∈ Fn2 , we first divide r into n0 blocks r1, r2, . . . , rn0 corresponding to the n0

inner encodings, where each ri ∈ Fn1
2 . Each of the ri’s is decoded by brute-force to produce

a list Li of all ζ ∈ GF(2`) for which ∆(Cin(ζ), ri) ≤ βn1, for some β where α < β < 1/2.
Since δ(Cin) ≥ 1/2− ε and α = 1/2− Ω(

√
ε) (by our choice of ε), it follows using Johnson

bounds for list decoding from Chapter 3, for example using Theorem 3.1, that for each i,
|Li| = O(1/ε). Now if x is such that ∆(C(x), r) ≤ αN , then by an averaging argument for
at least a fraction α/β of i’s in the range 1 ≤ i ≤ n0, we must have CRS(x)i ∈ Li. Therefore,
to finish the list decoding, it suffices to list recover the outer Reed-Solomon code to find all
x for which CRS(x) has an element from Li at the i’th position for at least αn0/β values of
i. If the rate of CRS is at most O(α2ε/β2), this can be accomplished in O((n0/ε)2 log3 n0)
time using the Reed-Solomon list decoding algorithms from Chapter 6 (for example, the
version stated in Theorem 6.17). This completes the proof of the lemma. 2

Applying the above result with α = 1/4 + 1/28 = 2/7 and any ε < 1/14, gives an
explicit construction of the codes which were needed in Lemma 12.6, with a quadratic list
decoding algorithm. The O(lg3N) time required to perform the “simple, clean-up” erasure
decodings in Lemma 12.6 therefore dominates the overall time to recover the triangle or
star of secrets. This gives our main result of this section, which achieves the optimal (up
to constant factors) number of questions together with a poly(logN) algorithm to recover
the secrets.

Theorem 12.8 (Main Result on Guessing Secrets [AGKS01]) For the guessing se-
crets game between players B and A with 2 secrets picked out of a universe of size N ,
there exists an explicit oblivious strategy for B to discover the underlying star or triangle of
possible pairs of secrets, that requires O(log3N) time and uses O(logN) questions.

12.1.4 The case of more than two secrets

One can also consider the situation when the player A has k > 2 secrets. In this case, stated
in the same graph-theoretic language that we used to describe the 2-secrets problem, the
goal of B would be to find a k-uniform hypergraph H with vertex set being the N secrets
with the property that every two hyperedges of H intersect. Let us call such a hypergraph
an intersecting hypergraph.
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12.1.5 Explicit oblivious strategies with O(logN) questions

Unlike the case of graphs, where there were only two classes of such graphs, namely a
triangle or a star, the situation even for 3-regular hypergraphs is much more complicated.
Nevertheless, there exist explicit strategies which will allow B to “combinatorially” reduce
the possibilities to an intersecting hypergraph, even though we do not know any method for
B to actually find some representation of this hypergraph short of trying out all k element
subsets of secrets and pruning out all “inconsistent” ones. This follows from a connection
of the k-secrets guessing problem to the study of 2k-universal families of binary strings.
The latter problem concerns finding a subset S ⊂ {0, 1}N of as small size as possible with
the property that for every subset of 2k indices i1, i2, . . . , i2k and every (a1, a2, . . . , a2k) ∈
{0, 1}2k, there exists a string x ∈ S such that xij = aj for each j = 1, 2, . . . , 2k. Explicit
constructions of such universal families of very small size, namely at most ck logN , are
known [NN93, ABN+92], where ck is a constant that depends exponentially on k.

We claim this implies the existence of explicit oblivious strategies using ck logN ques-
tions for the k-secrets guessing game. Indeed let {y1, y2, . . . , yn} be a 2k-universal family
of N -bit strings for some n ≤ ck logN . For 1 ≤ i ≤ n, define the function fi : [N ]→ {0, 1}
as follows: for each x ∈ [N ], fi(x) is simply the x’th bit of the string yi. That is, the
string yi gives the truth table of the function fi. Clearly if the yi’s are explicitly specified
then so are the functions fi. We claim the sequence of questions f1, f2, . . . , fn is a valid
oblivious strategy for the k-secrets guessing game. This is because, for every pair of disjoint
sets of k secrets each, say S1 = {i1, i2, . . . , ik} ⊂ [N ] and S2 = {ik+1, . . . , i2k} ⊂ [N ], by
the 2k-universality property there exists some i for which fi(x) = 0 for each x ∈ S1 and
fi(z) = 1 for each z ∈ S2. This implies that the answer to question number i rules out one
of the sets S1 or S2 as being a possible set of k secrets consistent with all answers to the
questions f1, f2, . . . , fn. This is exactly what we wanted to show, and the k-sets of secrets
consistent with any answer to the questions f1, f2, . . . , fn therefore form an intersecting
k-uniform hypergraph.

The best known explicit construction of 2k-universal families, due to [ABN+92], achieves
ck = ck26k where c is an absolute constant. We therefore have:

Theorem 12.9 For the k-secrets guessing game over a universe of size N , there exists
an explicit oblivious strategy for B that uses at most ck26k logN questions, where c is an
absolute constant independent of k.

12.1.6 An efficient “partial solution” for the k-secrets game

For the case of k > 2 secrets, the question of whether there exists a strategy together with
an efficient algorithm to actually find a representation of the intersecting hypergraph is
wide open, and appears to be rather difficult to solve. We instead aim for the weaker goal
of finding a small “core” of secrets such that any k-set which A might pick must intersect
the core in at least one secret. This at least gives useful partial information about the set
of secrets which A could have picked.

This version of the problem is quite easily solved if we could ask not binary questions,
but questions over a larger alphabet [q]. That is, each of the n questions that B asks is
now a function Fi : [N ] → [q], 1 ≤ i ≤ n. For any set of k secrets which A might pick,
the sequence of answers a ∈ [q]n must agree with the correct answers to one of the secrets
for at least n/k values of i. If q is a prime power bigger than k, the results of Chapter 8
give explicit constructions of q-ary linear codes, say C, with N codewords and blocklength
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n = O(logN) which are efficiently list decodable from a fraction (1− 1/k) of errors. Basing
the questions Fi on the n positions of the code (as in the earlier binary case), the answer
vector a of A will differ from at least one secret in A’s set in at most a fraction (1−1/k) of
positions. The list decoding algorithm, when run on input a, will output a small list that
includes that secret.

When B is only allowed binary questions, we can still give such a “core finding” strategy
as follows. Pick q to be a prime power larger than k2, and C to be an explicit q-ary linear
code that is list decodable from a fraction (1−1/k2) of errors (such an explicit code follows
from the concatenated code constructions of Chapter 8). As above, we first encode each
secret by C to get a string of length n = O(logN) over [q]. We then encode each element
of [q] further using 2k-universal family F of strings in {0, 1}q. That is, we encode i ∈ [q],
by the string comprising of the i’th entry from the set of strings in F . In other words, we
concatenate C with the 2k-universal family F to get a binary code C ′. Player B now asks
A for the bits of the encoding of the secret as per the concatenated code C ′.

Using the 2k-universal property of F , B can recover an intersecting k-hypergraph Hi on
[q] for the value of the i’th symbol of the encoding of the k secrets by C. B can do this by
a brute-force search over all k-element subsets of q, and since q, k are constants, this only
takes constant time for each i. B then picks one of the hyperedges Ei from Hi arbitrarily,
and then picks an element ai ∈ [q] from it at random.

Let S = {x1, x2, . . . , xk} be the set of k-secrets that A picked. Note that each hyperedge
Ei in Hi must intersect the set, say Si = {C(x1)i, . . . , C(xk)i}, that consists of the i’th
symbols of the encoding of the secrets in S by C. Therefore, we will have ai ∈ Si for an
expected fraction 1/k of i’s. An averaging argument that implies that there must exist at
least one xj ∈ S, for some 1 ≤ j ≤ k, for which ai = C(xj)i holds for at least a fraction 1/k2

of i’s. Therefore, the assumed list decoding algorithm for C on input a = 〈a1, a2, . . . , an〉
will find a small list that includes the secret xj . This gives us the following result.

Theorem 12.10 For the k-secrets guessing game with a universe of N secrets, there exists
an explicit oblivious strategy for B that uses O(logN) questions. Moreover, there is an
efficient poly(logN) time algorithm for B to find a small core of poly(k) secrets such that
the k-set picked by A must contain at least one secret from the core.

12.2 Applications to Complexity Theory

The interplay of coding theory and computational complexity theory has had a long and
sustained history, and has been a rich source of both problems and results. In particular
there are numerous examples of results in complexity theory that make use of, or are
inspired by, results in coding theory. Examples include the early work on computation
in the presence of noise, and more recent successes like the theory of program testing and
correcting, and new characterizations of traditional complexity classed like PSPACE, NEXP
and NP in terms in interactive or probabilistically checkable proofs. The survey article of
Feigenbaum [Fei95] gives a detailed account of many such uses of results from coding theory
in complexity theory.

Here we present applications of error-correcting codes to complexity theory which differ
from the above ones in that they crucially rely on the strength of the decoding algorithms,
and in particular on the ability to list decode from a very large fraction of errors. A related
survey article by Sudan [Sud00b] also deals with connections between list decoding and
complexity theory. In comparison, our survey is a little more detailed in nature.
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12.2.1 Hardcore predicates from one-way permutations

The first work that (implicitly) exploited list decoding for the purpose of a complexity-
theoretic application seems to be the seminal work of Goldreich and Levin [GL89], who gave
a generic construction of hardcore predicates from an arbitrary one-way function. Implicitly,
their work gives a highly efficient list decoding algorithm to decode Hadamard codes from
up to a fraction (1/2−ε) of errors.3 We now discuss how any good list decodable binary code
immediately gives such a hardcore predicate. Moreover, viewing the question in the general
terms of list decodable codes gives some quantitative improvements in the construction, as
was first noticed by Impagliazzo in an unpublished work. Details of this generic connection
to list decoding have since appeared in the survey article by Sudan [Sud00b].

The hardcore predicate construction problem lies at the very foundations of cryptog-
raphy. Formally, the problem is the following. Given an arbitrary one-way permutation
f : {0, 1}k → {0, 1}k which is easy to compute everywhere but hard to invert by size s cir-
cuits even on a small fraction of the range, construct a Boolean predicate P : {0, 1}k → {0, 1}
such that P (x) is very hard to predict given f(x), even for a (1/2 + ε) fraction of the x’s,
by size s′ circuits (for s′ ' s). Intuitively, the existence of such a predicate means that any
one-way permutation hides at least one bit, since the knowledge of f(x) does not help at
all in predicting the value of P (x).

The above task, as stated, is actually impossible to achieve, since for any predicate P ,
it is possible to construct one-way permutations f such that f(x) immediately gives away
P (x). However, this arises due to the deterministic nature of P , and by allowing P to be a
function of x and a random string r, such predicates can indeed be built. In fact any list
decodable code with a certain property gives such a construction, which is sketched below.

Let C be an (n, k)2 binary code with n = poly(k/ε) that has an efficient encoding
algorithm and an efficient (poly(n) time) list decoding algorithm to decode up to a fraction
(1/2 − ε) of errors. Then P (x, r) = C(x)r, i.e. the r’th bit of the encoding of x, gives us
a predicate with the desired hardness. Indeed, if for some x, a small circuit Ĉ computes
P (x, r) correctly for a (1/2 + ε) fraction of r’s, then one can use the assumed list decoding
algorithm to decode Ĉ’s output to find a small list of candidates that includes x. Further,
the knowledge of f(x) tells us how to find out which element of the list is x. This gives a
small circuit to invert f(x) for any x for which Ĉ predicts P (x, r) correctly for a (1/2 + ε)
fraction of r’s. The assumed hardness of inverting f now implies that the fraction of such
x’s must be tiny, and hence Ĉ does not predict P much better than random guessing.

Finally, we note that several constructions of the code C with the required properties
are now known. All of them are based on code concatenation and indeed the results of
Chapter 8 imply that such codes exist for n = O(k/ε4). If one seeks explicit constructions
of the predicate, then one can achieve n = O(k2/ε4) or n = O(k/ε8). The exact dependence
of n on k, ε does not matter for this application, as long it is polynomial in k and 1/ε.

We would like to stress two aspects of the above application. First, the power of list
decoding was necessary since we want to decode binary codes up to a fraction (1/2 − ε)
of errors. Second, the application gave a natural tie-breaking scheme, namely the value of
f(x), to pick the “correct” codeword from the list of candidates output by the decoding

3Since a Hadamard code of blocklength n has only n codewords, it is trivial to list decode the Hadamard
code up to any radius under the models we have been considering so far. The result of [GL89] works under
an “implicit model” where one only has oracle access to the codeword, and gives a poly(logn) time algorithm
to decode the Hadamard code under such a model. We will return to the implicit version of list decoding in
further detail in Section 12.2.2.
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algorithm. These should provide some indication that list decoding exactly fits the ball for
this application.

It is also possible to get hardcore functions that output more than one bit. For a
constant number of bits this just involves using q-ary list decodable codes for larger q as
opposed to the binary codes used above. Recent work by Ta-Shma and Zuckerman [TZ01]
uses extractors to give constructions of codes over very large alphabets which can be used
to extract as many as O(log2 k) hardcore bits.

In a different construction, H̊astad and Näslund [HN98] prove that all bits of ax+b mod p
give hardcore predicates for any one-way function. Specifically, they prove that if f is any
one-way function mapping n bits into n bits, then for each i, 1 ≤ i ≤ m, the predicate
Pi(x; p, a, b) defined to be the i’th bit of (ax + b) mod p where p is a random m bit prime
(for m = Ω(log n)) and a, b are random numbers modulo p, is a hardcore predicate for f .
This result also uses list decoding; specifically it uses an efficient list decoding algorithm
for Chinese Remainder codes (similar to those discussed in Chapter 7).

12.2.2 Hardness amplification of Boolean functions

An important area of complexity theory that has benefited greatly from elegant connections
to coding theory is the hardness amplification of Boolean functions. The basic question here
is the following. Given a Boolean function f : {0, 1}` → {0, 1} with high worst-case circuit
complexity, i.e., no small circuit can compute f correctly on every input, the goal is to
“amplify” its hardness and transform it into a Boolean function f ′ : {0, 1}`′ → {0, 1} which
has very high average-case circuit complexity, i.e. no small circuit can compute f ′ on even
an α fraction of inputs, for some α, 1/2 < α < 1. Ideally, we would like to obtain extreme
average-case hardness without blowing up the input length too much. Quantitatively, this
means we would like to have `′ = O(`) and α very close to 1/2 (say, α = 1/2 + 2−Ω(`) —
we call such hardness “extreme average-case hardness” in the sequel).

The transformation of worst-case hardness into extreme average-case hardness can be
achieved via a two-step process. The first step obtains a predicate with mild average-
case hardness (i.e., α = 1 − `−O(1)) from a worst-case assumption [BFNW93], and is itself
inspired by ideas from coding theory. In the second step, the hardness is amplified by using
the celebrated Yao’s XOR Lemma, which states that a mild average-case hardness can
be amplified to extreme average-case hardness by taking the XOR of several independent
instances together (cf. [GNW95]). The problem with this approach is that the length of
the input of the function f ′ blows up; specifically we will have `′ = Ω(`2).

The big motivation for reducing the input length `′ to O(`) is the application to deran-
domization of BPP. Specifically, using a result of Nisan and Wigderson [NW94], such a
hardness amplification implies BPP = P under a worst-case hardness assumption (namely
that E = DTIME(2O(n)) does not have circuits of size 2o(n)). Such a hardness amplification
(with `′ = O(`) and α = 1/2 + 2−O(`)) was achieved by a striking result due to Impagli-
azzo and Wigderson [IW97]. The transformation involved three steps: the worst-case to
mild hardness transformation due to [BFNW93], a first derandomized XOR Lemma due to
Impagliazzo [Imp95], and a second derandomized XOR Lemma due to [IW97] (the deran-
domized XOR lemmas amplify the hardness while blowing up the input length only by a
constant factor).

In one of the most striking applications of list decoding to complexity theory, Sudan,
Trevisan, and Vadhan [STV99] show that, using certain very efficiently list decodable codes,
one can achieve the above hardness amplification in a single step, without any need for com-
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plicated XOR lemmas. They require codes Ck,ε which encode k bits into n = poly(k, 1/ε)
symbols (assume n is a power of two), which can be encoded in poly(n) time, and which
can be list decoded in poly(log k, 1/ε) time from up to a fraction (1/2− ε) of errors. This
is similar to the codes we required for the application to hardcore predicate construction,
except that we now allow the list decoder only time which is polynomial in log k, 1/ε (and
not the “more reasonable” poly(k, 1/ε) time).

To obtain the desired hardness amplification using such a code, we treat the truth
table of f as a k = 2` bit string, and treat its encoding it by Ck,ε, which is of length
n = poly(k/ε) = 2O(`+log(1/ε)), as a function f ′ : {0, 1}`′ → {0, 1} where `′ = O(`+log(1/ε)).
Thus we can pick ε = 2Ω(`′) and still have `′ = O(`). Using the list decoding properties
of Ck,ε, it is easy to prove that a circuit for f ′ that computes it correctly on a fraction
(1/2+ε) of inputs implies a slightly larger circuit that computes f correctly on every input.
The assumed worst-case hardness of f then immediately implies the extreme average-case
hardness of f ′.

Of course the requirement on our code Ck,ε is fairly severe, since we want a list decoding
algorithm that runs in time which is sub-linear in k. In particular, this implies that there
is not even enough time to scan the entire received word before decoding it, or to output
the entire message after decoding is complete! This seems impossible to achieve. But
by both specifying the input received word “implicitly” and allowing the output message
to also be specified “implicitly”, it becomes possible to decode in time sub-linear in the
blocklength. The implicit representation of the input just means that there exists an oracle
which when queried with index i responds with the i’th bit of the received word. The
implicit representation of the output message is more tricky to define, but loosely speaking,
we require the decoding to output a program, which on input j will output the j’th bit of
the message. The exact definition allows these programs to be randomized and is a little
more subtle, and we point the reader to [STV99] for further details.

Finally, the authors of [STV99] are also able to construct such a code Ck,ε with a
poly(log k, 1/ε) list decoding algorithm in the above implicit model. Their construction
is based the concatenation of a Reed-Muller code with the Hadamard code, and a highly
efficient list decoding algorithm for Reed-Muller codes in the implicit model. The first such
list decoding algorithm for Reed-Muller codes was due to Arora and Sudan [AS97], where
they used the list-decoding algorithm/algebra to reduce the “low-degree testing question”,
which is an important one in complexity theory, to an analysis of a version of Hilbert’s test
for irreducibility of multivariate polynomials. While the algorithm from [AS97] would have
sufficed for the result from [STV99] stated below, [STV99] also gives a simpler list decoding
algorithm for Reed-Muller codes that corrects more errors. After concatenation with an
Hadamard code, they are able to prove:

Theorem 12.11 ([STV99]) For every q, ε, k, if n ≥ poly(k, q, 1/ε), then there exists an
explicitly specified [n, k]q linear code with a polynomial time list decoding algorithm for up
to a fraction (1− 1/q − ε) of errors. Furthermore, the algorithm runs in poly(log k, q, 1/ε)
time if both the input and the output are specified implicitly.

(The case q = 2 is described explicitly in [STV99]; the case of larger q is stated explicitly
in [Sud00b] and it can also be inferred from the proof in [STV99].)

Using the above code construction and the above-mentioned connection to hardness am-
plification, [STV99] obtain an elegant one-step hardness amplification of Boolean functions,
which is strong enough to imply BPP = P under a worst-case hardness assumption.
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12.2.3 Average-case hardness of Permanent

One of the first results to establish the average-case hardness of a problem that is believed to
be very hard on the worst-case was Lipton’s striking discovery of the random self-reducibility
of the permanent modulo a large enough prime. Specifically, Lipton [Lip91] showed the
following result: if it is easy to compute the permanent of an n× n matrix modulo a prime
p > n with probability 1−O(1/n), then it is also easy to compute the permanent of every
n×n matrix modulo p. This important result laid down the seed for a number of interesting
results in complexity theory, including IP = PSPACE and the PCP characterizations of NP.

Subsequent results attempted to obtain the same (or similar) consequence as Lipton’s
result but assuming algorithms which only worked for a much smaller fraction of random
matrices. For example, the work of Feige and Lund [FL92] showed that the existence
of an efficient procedure to compute the permanent of n × n matrices over Fp on even an
exponentially small fraction of matrices would imply that P#P ⊆ AM, and in particular that
the polynomial hierarchy collapses. Therefore, such an algorithm is unlikely to exist. Here,
we would like to point out that their proof implicitly proves and uses a certain combinatorial
list decodability property of Reed-Solomon codes.

Cai, Pavan and Sivakumar [CPS99] strengthened the result of Lipton by showing that
it suffices to assume an algorithm that works for an inverse polynomial fraction of matrices,
provided the prime p is sufficiently large. Their result uses the efficient list decodability
of Reed-Solomon codes from a large fraction of errors (and builds upon ideas from an
earlier paper by Gemmell and Sudan [GS92], who obtained a weaker result using unique
decoding of Reed-Solomon codes). In [GRS99], it was shown that if there exists an algorithm
for computing the permanent with an inverse polynomial success probability when both
the matrix and the prime are picked at random, then P#P ⊆ BPP. This result uses list
decoding algorithms for both the Reed-Solomon code and the Chinese Remainder code.
Cai et al. [CPS99] later observed that it is possible to obtain the same results as [GRS99]
using their techniques, thus avoiding the use of Chinese Remainder decoding. But the use
of efficient Reed-Solomon list decoding remains crucial to these applications.

12.2.4 Extractors and Pseudorandom Generators

Explicit constructions of combinatorial objects which exhibit strong pseudorandom proper-
ties are desirable for numerous applications in computer science. Examples of such objects
include expanders, dispersers, extractors, and pseudorandom generators. Recently various
non-trivial interconnections have been found between some of these seemingly disparate ob-
jects. One of the common threads underlying these results has been the crucial role played
by list decoding and constructions of good list decodable codes. We now review some
of these inter-relations between extractors, pseudorandom generators, and list decodable
codes. We first give brief, informal definitions of extractors and pseudorandom generators.

Extractors are functions which take two inputs, say x and y, where x comes from a
weak source of randomness (which has a certain “min-entropy”), and y is a much smaller
string of truly random bits. When fed with inputs from such distributions, the output of
the extractor should be statistically close to uniform. Intuitively, an extractor is a function
that “extracts” almost truly random bits from the output of weak random source using
a small number of additional truly random bits as a catalyst. We refer the reader to the
survey by Nisan [Nis96] for further details on extractors.

Pseudorandom generators are deterministic functions which take as input a small “seed”
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and expand it into a much longer string. The crucial property of pseudorandom generators is
that when the input seed is completely random, the output of the pseudorandom generator is
computationally indistinguishable from a truly random string of the same length. Intuitively,
a pseudorandom generator stretches a small random string into a much longer one which
appears random to and “fools” any computationally-bounded adversary. Such a generator
which creates randomness out of nowhere provably cannot exist in the information-theoretic
setting, but exists in the computational setting (assuming the existence of one-way functions,
for example). We refer the reader to [Gol99, Chap. 3] for further definitions and background
on pseudorandom generators.

Extractors from codes

Explicit constructions of extractors are of great interest and have a wide variety of applica-
tions. Initial constructions of extractors all relied on properties offered by various families of
hash functions. In a departure from these approaches, Trevisan [Tre99] gave a breakthrough
construction of extractors by combining a pseudorandom generator of Nisan and Wigder-
son [NW94] together with binary codes with good combinatorial list decoding properties.
The intriguing aspect of this result was the use of pseudorandom generators, originally in-
tended to work only in a computational setting, to derive a purely information-theoretic
result. The use of a list decodable code as in Trevisan’s construction is also part of the
numerous improvements to Trevisan’s extractor that have since been obtained.

Very recently, a different, more direct, algebraic approach to constructing extractors was
found by Ta-Shma, Zuckerman, and Safra [TZS01]. Their results were later improved by
Shaltiel and Umans [SU01]. In this construction, the string sampled from the weak random
source is viewed as a multivariate polynomial over a finite field and the seed is viewed as
a random evaluation point. In coding-theoretic terms, the construction can be viewed as
encoding the input from the weak source by a code obtained by concatenating a Reed-
Muller code with a “suitable” binary code, and then selecting a (carefully chosen) subset
of bits of the encoding as the output (the actual subset chosen is governed by the random
seed). The binary code used is again one with good combinatorial list decoding properties.
In addition to the use of list decodable codes in the construction itself, the proof of the
extractor property also critically makes use of the combinatorial list decoding property of
Reed-Solomon codes. In fact, codes are more inherent to and more deeply exploited in
these constructions than that of Trevisan, where the use of pseudorandom generators was
the most crucial component.

Explicit constructions of codes with efficient (as opposed to just combinatorial) list
decodability is crucial to the work of Mossel and Umans [MU01], who use such codes
to construct “extractor-like” objects, namely zero-error dispersers for certain generalized
bit-fixing sources. (Such “dispersers” are used in [MU01] to prove the Σ3-hardness of
approximating the VC-dimension to a factor even slightly better than 2.)

Codes from extractors

The above applications exploit codes and list decoding to construct extractors (or extractor-
like objects). Recently, Ta-Shma and Zuckerman [TZ01] showed a result in the opposite
direction, namely that extractors give codes over large alphabets with good combinatorial
list decoding properties. However, in general it is not clear how to match the combinatorial
list decoding potential of the code with an efficient list decoding algorithm. For the specific
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case of Trevisan’s extractor, [TZ01] were able to obtain an efficient list decoding algorithm.
While the parameters of such a code are not very interesting from a coding point of view
(the alphabet size is huge and the rate is extremely small), they applied such extractor codes
to constructions of hardcore functions that output many bits. In order to give an efficient
algorithm, [TZ01] needed the underlying binary code used by Trevisan’s construction itself
to have an efficient list decoding algorithm to correct close to a fraction 1/2 of errors.
Therefore, this application, even though its final output is a “new” list decodable code,
needs an efficiently list decodable binary code to start with.

Pseudorandom generators from codes

In their paper, Shaltiel and Umans [SU01] also modify their extractor construction based
on Reed-Muller codes to construct a new pseudorandom generator, directly based on a
worst-case hardness assumption for functions in E = DTIME(2O(n)). Their construction
matches the parameters of the construction of [IW97, STV99], and in particular is strong
enough to prove that BPP = P under a worst-case hardness assumption for some function
in E. It is also the first such construction that does not use the Nisan-Wigderson generator.

We point out here that the new pseudorandom generator construction of [SU01] requires
efficiently list decodable binary codes, as well as efficient list decodability of Reed-Solomon
codes. Recall that pseudorandom generators were crucial to Trevisan’s extractor, which in
turn were used in [TZ01] to construct good list decodable codes (at least over very large
alphabets). Therefore, it is interesting to note that this application of list decodable codes
to a pseudorandom generator construction “returns the favor” to pseudorandom generators,
and completes a full circle!

12.2.5 Membership comparable sets

List decoding also has applications to “membership comparability” of NP-complete lan-
guages. A language A is said to be k(n) membership comparable if there is a polynomial
time computable function that, given k(n) instances of A of length at most n, excludes one
of the 2k(n) possibilities for memberships of the given strings in A.

The motivation for studying membership comparability is two-fold. First, membership
comparability investigates whether even the least amount of information about the k-wise
direct product of a hard function can be computed. To elaborate with an example, if SAT
is the characteristic function of the NP-complete language of satisfiable CNF formulae,
then the k-fold direct product SAT k, which is a function that takes a vector of k formulae
~φ = 〈φ1, φ2, . . . , φk〉 and outputs the k-bit vector 〈SAT (φ1), . . . , SAT (φk)〉, is presumably
much harder to compute. Membership comparability asks if even the least amount of
information about SAT k can be computed efficiently. That is, given an instance vector ~φ,
can one rule out at least one of the 2k k-bit vectors as being not equal to SAT k(~φ) ?

Second, it generalizes the notion of p-selectivity, which in turn has found many applica-
tions in complexity theory. A language A is said to be p-selective if there is a polynomial
time computable function f such that for all x, y, f(x, y) ∈ {x, y} and f(x, y) ∈ A whenever
at least one of x, y is in A. Informally, the selector function tells which of its two input
strings is “more likely” to be a string that belongs to the language A. It is easy to see
that p-selective sets are a special case of k(n) membership comparable sets when k(n) = 2,
where given instances x, y of A, the membership comparator always excludes one of the
possibilities (0, 1) or (1, 0) for the sequence (χA(x), χA(y)).
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We refer the reader to the paper of Sivakumar [Siv99] for an excellent discussion of
membership comparable sets, their motivation and role in complexity theory, and further
pointers. For us, we just would like to mention the one connection to p-selective sets
that motivates the problem solved here. It is known that if a language A is polynomial
time truth table reducible to a p-selective set, then A is O(log n) membership comparable.
Sivakumar [Siv99] proves the nice hardness result that if SAT is O(log n) membership
comparable, then NP = RP. Through the connection to p-selective sets, this implies an
alternative proof of the fact that if SAT is reducible to a p-selective set by polynomial
truth-table reductions, then NP = RP. This proof was, however, more complicated than
the original proofs of [Tod91, Bei88]. Below we give a somewhat easier proof of Sivakumar’s
result which works by simply appealing to the existence of certain list decodable codes.

Theorem 12.12 ([Siv99]) If SAT is O(log n) membership comparable, then NP = RP.

Proof: Suppose there exists a constant d such that SAT is d log n membership comparable.
We will prove that UniqueSAT ∈ P under this assumption. Together with the randomized
reduction from SAT to UniqueSAT [VV86], this implies the claim of the theorem.

Let φ be an instance of UniqueSAT on n boolean variables. Define p = d log n and
q = 2p = nd. Let C be an [N,n]q linear code of dimension n and blocklength N which can

be list decoded in poly(n) time from a fraction
(

1− 1
q−1

)
of errors. An explicit construction

of such a code with N = poly(n) can be obtained using a suitable concatenated code (for
example one can apply Theorem 12.11 with the settings k = n, q = nd and ε = n−2d).

For each i, j, where 1 ≤ i ≤ N and 1 ≤ j ≤ p, construct a collection of p = d log n Sat

formulae φi,j over n variables as follows: For each a ∈ {0, 1}n,

φi,j(a) def= (φ(a) ∧ The jth bit of C(a)i equals 1) .

(Here C(a)i stands for the i’th symbol in the encoding of a as per the code C, and we view
elements of GF(2p) as p-bit vectors using some fixed basis GF(2p) over GF(2).)

Suppose φ were satisfiable (in case it is not, we will never find a witness, so we only worry
about the satisfiable case), and let a be the unique satisfying assignment to φ. We use the
polynomial membership comparator function f guaranteed by the hypothesis, to get, for 1 ≤
i ≤ N , vectors bi = f(φi,1, . . . , φi,p) ∈ {0, 1}p such that bi 6= (χSAT (φi,1), . . . , χSAT (φi,p)).
By the definition of φij and the fact that a is the unique satisfying assignment to φ, we can
conclude, for 1 ≤ i ≤ N , that bi when viewed as an element of GF(q), is not equal to C(a)i.
Thus we have a word (b1, b2, . . . , bN ) ∈ GF(q)N with all symbols in disagreement with the
codeword C(a).

Now, for each i, 1 ≤ i ≤ N , if we pick ri at random from GF(q) \ {bi}, then r =
〈r1, r2, . . . , rN 〉 will have expected Hamming distance at most (1− 1

q−1)N from C(a). This
procedure can be easily derandomized to find r which is guaranteed to be within Hamming
distance (1− 1

q−1)N from C(a). Now we can run the list decoding algorithm for C on input
r, and the list L that is output will contain the string a. One can then go over all strings
in L to see if any of them satisfy the formula φ. If we find such a string, we accept φ,
otherwise we reject φ. This would give a polynomial time procedure to decide membership
in UniqueSAT, as desired. 2

Once again note that the application above provided a nice tie-breaking criterion, namely
the satisfiability of the formula φ, to pick the “correct” element from the list output by the
list decoding algorithm.
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12.2.6 Inapproximability of NP witnesses

For an NP-complete language, say L, given a string x ∈ L, we know that it is unlikely that
a polynomial time algorithm can find a witness for the membership of x in L. But can a
polynomial time algorithm compute a non-trivial “approximation” to the witness?

There are various ways in which one can formalize the notion of “approximation”. For
example, one can compute a small portion of some true witness. Or, one can compute a
string which agrees with the witness is a non-trivial fraction of positions. These notions
were first studied by [GHLP99] and [KS99]. In this section, we use list decoding to prove
hardness results for even approximately computing NP witnesses.

The models

The work of Gál, Halevi, Lipton, and Petrank [GHLP99] considered the first model where
the goal is to correctly compute a small portion of the witness. For several important NP-
complete problems, the authors of [GHLP99] proved that computing even a small fraction
of the witness is as hard as finding the full witness. For example, by using codes uniquely
decodable up to a fraction (1/2 − ε) of erasures, they proved that computing a (1/2 + ε)
fraction of any satisfying assignment of a CNF formula is NP-hard. By an implicit use
of codes with very good list decodability from erasures, they also proved that, for any
γ > 0, given a SAT instance on N variables, computing an assignment to N1/2+γ variables
which can be extended to a full satisfying assignment to all N variables, is NP-hard under
randomized reductions.

The realization that the application in [GHLP99] really calls for codes list decodable
from a large number of erasures was made in [KS99]. There is, however, one subtle and
important difference between the models used by [GHLP99] and [KS99], which we highlight
below. Every language L in NP comes with a polynomial-time decidable witness predicate
RL such that L = {x : ∃w, (|w| = |x|c) ∧ RL(x,w)}. Moreover, there is often a “natural”
choice for the witness predicate RL. For example, for SAT, the witness is just a satisfying
assignment and the witness predicate, on input (φ,w), simply checks if the assignment w
satisfies the formula φ. Gál et al. [GHLP99] wanted to map an instance x of L into another
instance y of L, and then argue that partial computation of some witness for membership
of y in L for the predicate RL, enables the computation of an entire witness for membership
of x in L, for the same witness predicate RL. In [KS99], the authors allowed a different,
not so natural, witness predicate R′L, and related the partial computation of a witness for
R′L with the computation of a full witness for the “natural” predicate RL. This implies
that there is a formulation of every NP language via some (unnatural) witness predicate
R′L for which computing a partial witness or approximating a correct witness is NP-hard.
Naturally, results under the model of [KS99] are easier to obtain. In fact, as observed by
[KS99], there a simple, general transformation of predicates using list decodable codes that
does the job in the latter model. This is outlined next.

The connection to list decoding

Let RL be a witness predicate for a language L ∈ NP. Let C be a family of good list
decodable binary codes, with a code Ci of dimension i for every i ≥ 1. Suppose that
each code Ci is list decodable from a fraction (1 − ε) of erasures in poly(i) time. We use
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C = {Ci}i≥1 to define a predicate R′L from RL as follows:

R′L(x, z) =
[
(|z| = |x|d) ∧ (∃y) [RL(x, y) ∧ (|y| = |x|c) ∧ (z = C|y|(y))]

]
.

Now, suppose x ∈ L with |x| ∈ {0, 1}n, and that there is a polynomial time procedure
to compute a string ẑ comprising an ε fraction of the symbols in a witness z for which
R′L(x, z) holds. Let N = nc and let y ∈ {0, 1}N be such that CN (y) = z. Then, one can
run the polynomial time erasure list decoding algorithm for CN on input ẑ, to compute, in
poly(N) = poly(n) time, a polynomial-sized list {y1, y2, . . . , y`} ⊂ {0, 1}N which includes
the witness y. We can then run through the elements in this list and for each yi check if
RL(x, yi) holds, and if so, output it as the witness that x ∈ L (for the witness predicate
RL). This gives a polynomial time algorithm to compute an entire witness for the predicate
RL, given only an ε fraction of some witness for the predicate R′L.

By using a code family C which is list decodable from a large fraction of errors (as
opposed to erasures), we can similarly deduce the hardness of computing an “approximate
witness”, i.e., computing a string with non-trivial agreement with some witness.

Exploiting this connection, Kumar and Sivakumar [KS99] presented various results in
this vein. But the codes they used were not the best possible, and later the author and
Sudan [GS00] constructed better list decodable codes. Using these better codes, they were
able to improve the results of [KS99]. The results they obtain are formally stated below;
the proofs may be found in [GS00].

Theorem 12.13 ([GS00]) For every γ > 0 the following holds. For every language L in
NP, there exists a polynomial time decidable witness predicate R′L such that for every x ∈ L,
given any |z|1/2+γ bits of an unknown witness z that satisfies R′L(x, z), one can, in poly(|x|)
time, compute a witness z′ that satisfies R′L(x, z′).

Theorem 12.14 ([GS00]) For every γ > 0 the following holds. For every language L in
NP, there exists a polynomial time decidable witness predicate R′L such that for every x ∈ L,
given an arbitrary string of length N which agrees with some (unknown) N -bit witness z that
satisfies R′L(x, z) in at least N/2 +N3/4+γ positions, one can, in poly(|x|) time, compute a
witness z′ that satisfies R′L(x, z′).

Hardness of approximating “natural” NP witnesses

While the results of Theorems 12.13 and 12.14 provide strong hardness results for approxi-
mate witness computation for NP languages, they have one shortcoming. They assume we
have enough freedom in how to encode witnesses. Specifically, the predicates R′L for which
the stated results hold may not be the “natural” ones for the language. For example, for
SAT, it would be desirable to get a result similar to the above results when the witness is
a satisfying assignment of the CNF formula and R′L is the natural predicate that simply
checks if the witness assignment satisfies the input CNF formula. This model was the orig-
inal focus of [GHLP99]. But the notion of a “natural witness” cannot be formalized in any
generality, and hence results in the vein of [GHLP99] have to be on a problem-to-problem
basis. Nevertheless, it is a worthwhile question to study at least for the most fundamen-
tal NP-complete problems. Such a study was recently undertaken by Feige, Langberg and
Nissim [FLN00], who built upon and improved the results in [GHLP99].

Using good binary codes efficiently list decodable from up to a fraction (1/2 − ε) of
errors (for example any of the concatenated codes we discussed in Chapter 8), they proved
the following result on the witness inapproximability of SAT.
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Theorem 12.15 ([FLN00]) For every ε > 0, the following holds. Given a satisfiable
3SAT instance φ on n variables, the problem of finding a string of length n that agrees with
some satisfying assignment of φ on at least (1/2 + ε)n variables, is NP-hard.

Actually one can have the above result with ε = n−γ for some γ > 0. In addition to
being interesting in its own right, as noted in [FLN00], the above result is also important due
to a recent randomized algorithm for finding a satisfying assignment for 3SAT formulas due
to Schöning [Sch99]. This algorithm has a runtime of O((4/3)n), which is the best currently
known for solving 3SAT. The runtime of Schöning’s algorithm can be further improved if
there were a polynomial time algorithm to compute an initial assignment that agrees with
some satisfying assignment on a (1/2 + ε) fraction of the variables for some constant ε > 0.
The above result pretty much rules out the prospect of improving the algorithm in this
manner.

A similar result for the hardness of finding partial satisfying assignments, stated below,
was proved earlier by [GS00], using techniques from [GHLP99] together with good erasure
list decodable codes.

Theorem 12.16 ([GS00]) For every γ > 0, the following holds. Given a satisfiable 3SAT

instance φ on n variables, the problem of finding an assignment to some subset of n3/4+γ

variables such that the partial assignment can be extended to a satisfying assignment, is
NP-hard.

The authors of [GHLP99] had obtained the above result even for an assignment to
n1/2+γ variables, but they only proved NP-hardness under randomized reductions (this was
because they used probabilistic constructions of certain erasure list decodable codes, while
Theorem 12.16 uses explicit constructions of such codes with slightly worse parameters).

Similar to 3SAT, [FLN00] proves hardness results for approximating witness for several
canonical NP-complete problems to within a factor even slightly better than what random
guessing would achieve. As an example, we state their result for 3-Coloring below. This
result uses the existence of ternary codes that are efficiently list decodable from up to the
“maximum possible” fraction (2/3− ε) of errors.

Theorem 12.17 For every ε > 0, the following holds. Given a 3-colorable graph G on n
vertices, the problem of finding a 3-coloring of its vertices which agrees with some proper
3-coloring of G on at least (1/3 + ε)n vertices, is NP-hard.

12.3 Applications to Cryptography

The hardcore predicate construction problem that we discussed in Section 12.2.1 as a
complexity-theoretic application of list decoding is also at the very foundations of mod-
ern cryptography. Below we discuss some other cryptographic applications of list decoding.

12.3.1 Cryptanalysis of certain block ciphers

Block ciphers are constructs used to securely permute a block of bits (of certain convenient
size). Mathematically, a block cipher is a collection of permutations mapping plaintexts
into ciphertexts, each of which is determined by a “key”. Knowledge of the key enables
efficient computation of both the permutation and its inverse. The ideal security condition
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of a block cipher demands that without knowledge of the key a polynomial-time bounded
adversary with oracle access to both directions of the permutation is unable to distinguish
the cipher from a truly random permutation on the same message space.

A number of block ciphers used in practice encode the plaintext in several rounds. At
each round a certain round function (possibly using its own “round key”) is applied, and
the output of one round function is the input to the next round function. The security
of the overall block cipher generally improves with the number of rounds, but a larger
number of rounds also means larger keys and less efficient enciphering algorithms. For
some block ciphers, the round function can be described by a low-degree polynomial for a
non-negligible fraction of its input values. Some simple round functions of this nature in
fact provide very good security against the common forms of attacks involving differential
and linear cryptanalysis, even for relatively few rounds.

Nevertheless, intuitively such ciphers do appear to be weak, since the existence of a non-
trivial algebraic relation between the plaintext and the ciphertext would make the round
function appear quite non-random, and it is not clear this will be alleviated by taking several
rounds of such functions. But there was no formal attack which corroborated this intuition.
Recently, Jakobsen [Jak98] exposed the weakness of such block ciphers using techniques
from coding theory, and in particular list decoding. Specifically, he used the Reed-Solomon
list decoding algorithms to break several rounds of block ciphers whose round functions have
even a small agreement with low-degree polynomials. In particular, he was able to break
up to 10 rounds of a construction by Nyberg and Knudsen that was provably secure against
differential and linear cryptanalysis. This represents an interesting use of list decoding in
cryptanalysis, and on the flip side provides useful new design criteria for block ciphers. In
particular, it indicates that good properties against differential or linear attacks alone is
not enough, and that one must avoid using round functions which are algebraically very
simple. For further details on the details of the cryptanalysis, we refer the reader to the
original article [Jak98].

12.3.2 Finding smooth integers

An integer N is said to be s-smooth if all its prime factors are smaller than s. The problem of
finding smooth integers in a given interval is important since common factoring algorithms
such as the quadratic sieve work by searching for smooth integers. Actually these algorithms
search for integers x ∈ [−B,B] for which f(x) is s-smooth, where f is some low-degree
polynomial over the integers, and B, s are suitable parameters used by the algorithm. For
example, the quadratic sieve algorithm, on input N , uses polynomials of the form fa(x) =
(x+ b

√
aNc)2 − aN for some small values of a. It uses a technique called “sieving” to find

integers x ∈ [−B,B] such that fa(x) is s-smooth. Further details about the quadratic sieve
algorithm may be found, for example, in [LL90].

By generalizing the list decoding algorithm for Chinese Remainder codes, Boneh [Bon00]
showed how to solve the above problem in polynomial time for certain settings of parameters.
As a side consequence, the upper bound on list size also implies interesting upper bounds on
the number of integers that can lie in intervals of certain size and have a large smooth factor.
However, the current bounds on CRT decoding turn out to be inadequate for improving the
basic quadratic sieve. The main problem is that random intervals of the length for which
CRT decoding applies are too small to contain sufficiently many smooth integers. In order
for this line of research to have hopes of improving the best known factoring algorithms, a
significant improvement to CRT decoding would be required. Specifically one would need
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a version of CRT decoding which works for random intervals of much larger length by
exploiting the fact that such an interval, unlike a possibly worst-case interval of similar
size, will not contain too many smooth integers.

12.3.3 Efficient traitor tracing

Consider the situation where a set of authorized users/subscribers have access to a paid
service via their own “keys” (which can be bought from the subscription provider). A good
example is the distribution of digital information over a broadcast channel (like encrypted
pay-TV programs), where each subscriber has access to a “decoding box” that contains a
secret decryption key. In this situation, nothing prevents an authorized subscriber from
simply distributing his/her secret key to other users, thus making the “paid” service freely
available also to non-subscribers. One possible approach to combat this, which motivates
and underlies the rationale of traitor tracing, is to distribute a set consisting of several keys
to each subscriber in such a manner that the set of keys not only enables the subscriber to
decrypt, but also identifies the subscriber. The threat of an illegitimately distributed key
being traced back to the owner of that key would then serve as a deterrent to the subscribers
from involving in piracy.

In general, traitor tracing tries to do even better and deal with the situation where a set
of c subscribers collude together and combine portions of their respective sets of keys in a
clever way in order to create a new set of keys, which can still decrypt, but which hopefully
(from their perspective!) cannot be traced back to any one of them. The phrase traitor
tracing itself was first coined in [CFN94], and since then there has been a lot of research on
the design of good traitor tracing schemes.

The design of a traitor tracing scheme is a two-fold process. The first task is com-
binatorial and the goal here is to choose the set of keys that will be distributed to each
authorized subscriber. The second task is algorithmic and deals with the actual tracing of
traitors involved in a collusion that produces a fake set of keys. Here, the usual assumption
is that the number of users involved in the collusion is fairly small, and tracing schemes
are designed to deal with collusions of up to some size c. The ideal goal would be that the
tracing algorithm finds and implicates all members of the collusion and also only members
involved in the collusion. But one can also relax this requirement to that of finding at least
one member of the collusion (as that itself serves as a reasonable deterrent), and possibly
allow for a small probability of accusing an innocent subscriber.

We now come to the connection to list decoding. We will only sketch this connection at a
high level, and point the reader to the relevant articles for further details. By assuming that
the set of keys distributed to each subscriber is ordered, one can construct tracing schemes
with the necessary combinatorial property by deriving the keys from error-correcting codes
with large minimum distance. Thus, roughly, each subscriber has some codeword for her
set of keys. Then, given a pirated set of keys, viewing that as a noisy received word
and performing list decoding, gives a list of codewords which includes at least one of the
codewords corresponding to colluding subscribers, and hopefully no spurious codewords
corresponding to innocent subscribers.

Silverberg, Staddon and Walker [SSW00] observed that the above connection, when
applied to constructions based on Reed-Solomon, algebraic-geometric, and concatenated
codes (with outer Reed-Solomon or AG-codes and inner Hadamard code), gives very good
traitor tracing schemes. Their result crucially exploits the list decoding algorithms discussed
in this thesis for these codes. In fact, they need list decoding up to exactly the radius to
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which our algorithms from Chapters 6 and 8 can decode these codes! Namely, they need
the ability to decode up to (close to) the Johnson radius. In particular, the improvement
in number of errors corrected that we obtained over the earlier works [Sud97a, SW99] is
essential for the application in [SSW00]. 4

The work of [SSW00] gives highly efficient traitor tracing algorithms. For example, the
scheme based on Reed-Solomon codes can run in poly(logN) time where N is the number
of subscribed users, and protect against collusions of size logΩ(1)N . The drawback is that
the scheme is guaranteed to find only one traitor in the worst-case, though it never accuses
innocent subscribers.

Codes have also been used in less direct ways for traitor tracing. For example, the
scheme of Boneh and Franklin [BF99] uses Reed-Solomon codes in the construction, albeit
together with other components. Their tracing algorithm requires only unique decoding of
Reed-Solomon codes; however, they do mention that using the list decoding algorithms will
increase the size of the collusion for which the algorithm performs meaningful tracing (see
[BF99] for further details). The nice feature of their scheme is that it traces all traitors in
coalitions of up to a certain size, and once again never accuses innocent subscribers.

4This makes this application somewhat unique. For example, the improvement in Reed-Solomon decoding
we obtained in this thesis over the earlier work of [Sud97a] is definitely important for its own sake and also
because the technique generalized to soft decoding which in turn is crucial in applications to decoding
concatenated codes and elsewhere. But for all the applications to complexity theory that we have outlined,
the earlier result of [Sud97a] would have sufficed. This is not the case for this application to traitor tracing.
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Chapter 13

Concluding Remarks

The outcome of any serious research can only be to
make two questions grow where only one grew before.

Thorstein Veblen

13.1 Summary of contributions

In this thesis, we have addressed several fundamental questions concerning list decoding.
We began in the first part of the thesis with the study of certain combinatorial aspects of
list decoding, and established lower and upper bounds on the number of errors correctable
via list decoding, as a function of the rate and minimum distance of the code. In particular,
the “Johnson bounds” highlighted the radius up to which list decoding with small lists is
possible for any code of certain minimum distance, thereby posing algorithmic challenges to
design efficient algorithms to decode important codes up to their “list decoding potential”
(i.e., their respective Johnson radii).

We then met this challenge for several important families of codes. In particular, we
presented such a list decoding algorithm for Reed-Solomon codes, and also obtained a
version of it that could handle soft information. We also presented a unified (soft) list
decoding algorithm for a general family of codes called ideal-based codes that includes
Reed-Solomon, algebraic-geometric, and Chinese Remainder codes as special cases.

Using our soft decoding algorithm for Reed-Solomon and algebraic-geometric codes at
the core, we then presented algorithms to list decode several interesting families of concate-
nated codes to close to their “list decoding potential” (at least for low rates, and sometimes
for all rates). This enabled us to construct binary codes of good rate which were efficiently
list decodable from the “maximum” possible fraction of errors, i.e., a fraction (1/2 − ε) of
errors for a constant ε > 0 as small as we seek. The best construction obtained a rate of
Ω(ε4), which comes close to Θ(ε2), the best possible rate (achieved by random codes and
exponential time brute-force decoding). We also studied the analogous question of list de-
coding from erasures, established combinatorial bounds for it, and obtained constructions
of codes with good, and sometimes almost optimal, rate along with list decoding algorithms
that worked even when almost all (i.e., a fraction (1− ε)) of the symbols are erased.

In the quest for either improving the rate, or achieving a similar rate with simpler con-
structions, we then presented several novel constructions of codes that shared the common
thread of using expander graphs as a component to redistribute symbols. This yielded codes
of rate Ω(ε2) which were efficiently list decodable using small lists even when most (i.e., a
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fraction (1 − ε)) of the symbols are in error. This construction was much simpler and the
decoding algorithms much faster than those for AG-codes, which also enjoy a similar list
decodability property. We were also to obtain the optimal Ω(ε) rate for such codes, but the
list decoding algorithm had sub-exponential runtime and the construction was probabilistic.
En route obtaining these results, we also introduced two important constructs: pseudolinear
codes and juxtaposed codes, which we believe will find applications in future constructions
as well.

Using the ideas from our expander-based list decodable code constructions, we were also
able to obtain a construction of asymptotically good linear time encodable and decodable
codes that can be unique (not list) decoded from the maximum possible fraction of errors;
i.e., codes over a large alphabet that can correct a fraction (1/2− ε) of errors, and binary
codes that can correct a fraction (1/4−ε) of errors. The large alphabet codes simultaneously
achieve optimal (up to constant factors) rate, encoding time, and decoding time! The binary
codes also achieve optimal encoding and decoding times, and their rate is the best known
for constructive codes of relative distance (1/2 − O(ε)) (which is an a priori requirement
for being able to unique decode a fraction (1/4 − ε) of errors). Hence, in some sense our
linear-time binary code constructions are also “optimal” in all relevant dimensions.

13.2 Directions for future work

Although we managed to answer some of the basic algorithmic questions concerning list
decoding, a number of questions and directions remain open for future work. We have
already described many specific open questions in the relevant chapters, but there a few
which we highlight below, followed by the mention of a broad, long-term goal where much
work remains to be done.

13.2.1 Some specific open questions

The following lists a couple of central combinatorial questions concerning list decoding that
are still unanswered (Open Questions 4.1 and 6.1):

• Is the Johnson radius J(δ) = (1 −
√

1− 2δ)/2 the largest (relative) radius for which
a binary linear code of relative distance δ is guaranteed to have a polynomial number
of codewords? We answered this question in the affirmative in Chapter 4 assuming
the GRH (Theorem 4.6), and the result is known to hold unconditionally for general,
non-linear codes (Proposition 4.1).

• Is (1−
√
r) the largest fraction of errors that can be list decoded with polynomial-sized

lists for a Reed-Solomon code of rate r?

We next list some questions concerning algorithmic list decodability and explicit con-
structions of list decodable codes.

• Is there a near-linear time algorithm to list decode Reed-Solomon codes of rate r up to
a fraction (1− ε)(1−

√
r) of errors (for ε > 0 a fixed, but arbitrarily small constant)?

(Question 6.2)

• Is there a polynomial time construction of codes over a large but constant-sized al-
phabet which are list decodable up to a fraction (1− ε) of errors in polynomial time
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and which have rate asymptotically better than Ω(ε2) (here ε > 0 is an arbitrarily
small constant) ?

• The same question as above for binary codes, with decoding radius and rate replaced
by (1/2− ε) and Ω(ε4) respectively. (Question 8.4)

• Is there a constructive family of binary codes list decodable in polynomial time from
a fraction (1− ε) of erasures and which have rate close to the optimal bound of Ω(ε)?
(Question 10.2)

• Is there a polynomial time algorithm to list decode concatenated codes (with outer
code being, say, a Reed-Solomon code) beyond the product bound for every choice of
outer and inner distances? (Question 8.3)

13.2.2 Construction of “capacity-approaching” list decodable codes

The reader might recall the discussion in Chapter 5 (namely the one following Theorem 5.1)
about the fact that list decoding permits one to approach the capacity of, say, the binary
symmetric channel, even when the errors are adversarially, and not randomly, effected.
Specifically, for binary linear codes, Theorem 5.5 shows that one can get within ε of the
Shannon capacity 1−H(p) of the binary symmetric channel BSCp with cross-over probability
p, 0 < p < 1/2, using list decoding with lists of size 1/ε, even if the p fraction of errors are
adversarially chosen by the channel.

This result is highly non-constructive, and it is not clear how to construct binary codes
with rate close to the capacity 1 −H(p) and which are list decodable from a fraction p of
errors using lists of a constant, or even polynomial, size. The requirement of an efficient list
decoding algorithm for up to a fraction p of errors makes the question even harder.

Towards the latter portions of this thesis, we studied this question focusing on the high-
noise regime, i.e., when the fraction p of errors equals (1/2 − ε) for some small constant
ε > 0. (We also considered the case p = (1 − ε) for codes over a large alphabet, but let
us now focus on the binary case.) In this case, the “capacity result” says that there exist
binary linear codes of rate σε2 list decodable from a fraction (1/2 − ε) of errors (using
lists of size O(1/ε2)), for an absolute constant σ > 0. For this question, even matching
the quadratic dependence on ε, let alone getting close to the exact rate σε2, is a highly
non-trivial task. Our best constructive results achieve a rate of Ω(ε4), and we can improve
it to Ω(ε3) with a sub-exponential time list decoding algorithm. There is much room for
improvement; however, getting anywhere close to the optimal Ω(ε2) rate seems extremely
challenging, and such a result would definitely be a major breakthrough.

All this applied only to the high-noise (and consequently, low-rate) regime. In general,
an interesting question is how close to the capacity (1 − H(p)) one can get for codes list
decodable from a fraction p of errors, for other, smaller, values of p. We are still a long way
off from answering this question. A constructive family of binary codes of rate (1−H(p)−
f(L)) and that is efficiently list decodable from a fraction p of errors using lists of size L, for
any function f (let alone the function f(L) = 1/L as guaranteed by the existential results),
would be a remarkable result. Such a result would represent a constructive version of the
“capacity theorem” for list decoding. We are no where close to such a result yet.

A good goal to attack first is to construct such binary codes with a rate better than
1 − H(2p) for every value of p in the range 0 < p < 1/2 (for 1/4 < p < 1/2, we already
know such constructions, so the interesting case is when 0 < p < 1/4). The motivation
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for this question is the following. In order to be able to unique decode a code up to a
fraction p of errors, its relative distance has to be at least 2p. The best rate known for such
codes, even non-constructively, is 1 − H(2p), as given by the Gilbert-Varshamov bound.
Therefore, beating a rate of (1−H(2p)) would imply a constructive version of list decoding
that surpasses the best performance achievable using unique decoding, even when it is
allowed non-constructive codes and exponential time decoding! There is some hope that
a concatenated code based on outer AG-code and a carefully chosen constant-sized inner
code, together with a decoding algorithm that uses the soft list decoder for AG-codes with
a careful choice of weights, can achieve this goal. But, further work needs to be done to
verify this intuition and formally prove such a result.

In conclusion, we want to point out that the quest for better and better codes that
approach Shannon capacity in the probabilistic noise model has led to a lot of ground-
breaking research in coding theory and has seen significant successes. List decoding offers
the potential of achieving rates close to capacity even under adversarial noise models. As
this thesis provides ample evidence that list decoding can be efficiently performed for a wide
variety of codes, this now raises the hope that the analogous pursuit of constructive capacity-
approaching codes for list decoding as discussed above, might, after all, be a tractable one,
and one which will eventually meet with substantial successes. The end result of such a
pursuit, if it is successful, will of course be dramatic, but in addition we believe that there
are several novel code constructions and algorithmic techniques to be discovered en route.
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Appendix A

GMD Decoding of Concatenated
Codes

We present a proof of Proposition 11.11, restated below, which was used in the construction
of linear-time binary codes from Chapter 11. The result in particular implies an efficient
algorithm to decode concatenated codes up to the product bound provided there exists an
efficient errors-and-erasures decoding algorithm for the outer code, and the decoding of the
inner codes can also be performed efficiently (which is usually easy since the dimension of
the inner code is typically small).

Proposition A.1 Let Cout be an (N,K)Q code where Q = qk and let Cin be an (n, k)q code
with minimum distance at least d. Let C be the (Nn,Kk)q code obtained by concatenating
Cout with Cin. Assume that there exists an algorithm running in time Tin to uniquely decode
Cin up to less than d/2 errors. Assume also the existence of an algorithm running in time
Tout that uniquely decodes Cout from S erasures and E errors as long as 2E + S < D̃ for
some D̃ ≤ dist(Cout). Then there exists an algorithm A running in O(NTin + dTout) time
that uniquely decodes C from any pattern of less than dD̃

2 errors.

The proof is based on the same approach as the GMD decoding algorithm due to For-
ney [For66b, For66a] and its use by Justesen [Jus72] to decode his explicit asymptotically
good code constructions. The exact style of presentation is inspired by that of [Sud00a].
One technical aspect in the proof is that we show that GMD decoding works with as many
rounds of decoding of the outer code as there are distinct weights passed by the inner stage.
In particular this implies that one has to invoke the outer errors-and-erasures decoding
algorithm at most bd/2c+ 1 times.

A.1 Proof

Let r ∈ [q]Nn be a received word which is at a Hamming distance less than dD̃/2 from a
codeword z of the concatenated code C. We divide r and z into N blocks of n symbols each
corresponding to the n encodings by the inner codes. Denote by ri (resp. zi) the i’th block
of r (resp. z), for 1 ≤ i ≤ N . Let yi be the unique codeword of Cin with ∆(yi, ri) < d/2, if
one exists. The inner decoder can find such an yi if it exists in time Tin. If the inner decoder
fails to find any codeword within distance d/2 of ri, we set yi to be an arbitrary codeword
of Cin. For each yi, we compute a weight wi = min{∆(ri, yi), bd/2c}. The inner codewords
y1, y2, . . . , yN together with the weights w1, . . . , wN can all be found in NTin time.
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Assume without loss of generality that w1 ≤ w2 ≤ · · · ≤ wN . Let s be the number of
distinct weights among w1, w2, . . . , wN . By the definition of the weights, we clearly have
s ≤

⌊
d
2

⌋
+ 1. Let Sj be the block of (contiguous) indices with the same value of wi for

1 ≤ j ≤ s, and denote by w̃j this common weight. Let nj = |Sj |.
The decoding of r is now finished as follows. For each p, 1 ≤ p ≤ s, we run the assumed

errors-and-erasures decoding algorithm for Cout on the received word 〈y1, y2, . . . , yN 〉, by
declaring the yi’s in the last p blocks Sj , s − p + 1 ≤ j ≤ s, as erasures. If any of these
decodings finds a message x such that ∆(r,C(x)) < dD̃/2, we output the codeword C(x)
and terminate the algorithm, otherwise we report that there exists no codeword of C at a
Hamming distance less than dD̃/2 from r.

Since the algorithm runs the outer decoding algorithm s times, the total time of the
decoding algorithm is O(NTin+dTout), as claimed. We next proceed to prove the correctness
of the algorithm. That is, if there exists z ∈ C with ∆(r, z) < dD̃/2, then the above
algorithm will find and output z.

Let `i = ∆(ri, zi) — then by our definition of wi, we have `i ≥ wi. Also, if yi 6= zi
(i.e., the inner decoder makes a mistake in position i), then clearly `i ≥ d−wi (by triangle
inequality). So if we denote by ai the indicator variable for yi 6= zi, we have `i ≥ ai(d−wi).
Together with `i ≥ wi, this gives

`i ≥ (1− ai)wi + ai(d− wi) = wi + ai(d− 2wi) . (A.1)

We would like to prove that if the decoding failed to find the codeword z, then we must
have ∆(r, z) ≥ dD̃/2 errors. In our notation this means we want to prove

N∑
i=1

`i ≥
D̃d

2
. (A.2)

Define the quantities Aj =
∑

i∈Sj ai and Lj =
∑

i∈Sj `i. We have by (A.1), for 1 ≤ j ≤ s,

Lj ≥ njw̃j +Aj(d− 2w̃j) . (A.3)

Rewriting (A.2), recall that our goal is to prove that

1
d

s∑
j=1

Lj ≥
D̃

2
. (A.4)

Define xj = (1− 2w̃j/d). Clearly 1 ≥ x1 > x2 > · · · > xs ≥ 0. We have from (A.3) that

Lj
d
≥ nj

(1− xj)
2

+Ajxj . (A.5)

Define ∆j = nj
2 − Aj . Using (A.5) above and the fact that

∑s
j=1 nj = N , we get that in

order to prove (A.4), it suffices to prove that
s∑
j=1

∆jxj ≤
N − D̃

2
. (A.6)

Now if each of the s errors-and-erasures outer decodings fail to find the codeword z,
then in each run the E + S/2 < D̃/2 condition must fail. In such a case we must have, for
each p, 1 ≤ p ≤ s,

p∑
j=1

Aj +
1
2
·

s∑
j=p+1

nj ≥
D̃

2
, (A.7)
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which is the same as
p∑
j=1

∆j ≤
N − D̃

2
. (A.8)

Define xs+1 = 0. Multiplying the p’th equation above with the non-negative quantity
(xp − xp+1) for 1 ≤ p ≤ s, and adding up the resulting inequalities, we get

s∑
j=1

∆jxj ≤
N − D̃

2
· x1 ≤

N − D̃
2

, (A.9)

which is exactly Equation (A.6) that we had to prove. 2
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structions of almost k-wise independent random variables. Random Structures
and Algorithms, 3:289–304, 1992.

[AGKS01] Noga Alon, Venkatesan Guruswami, Tali Kaufman, and Madhu Sudan. Guess-
ing secrets efficiently via list decoding. Manuscript, July 2001.

[AS92] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley and Sons,
Inc., 1992.

[ALRS99] Sigal Ar, Richard Lipton, Ronitt Rubinfeld, and Madhu Sudan. Reconstructing
algebraic functions from mixed data. SIAM Journal on Computing, 28(2):488–
511, 1999.

[AS97] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its appli-
cations. Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, pages 485–495, 1997.

[Art65] Emil Artin. Collected Papers. ed. S. Lang and J. T. Tate, Springer-Verlag,
1965. pp. viii-ix.

[Art91] Michael Artin. Algebra. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991.

[ABL00] Alexei Ashikhmin, Alexander Barg, and Simon Litsyn. A new upper bound
on codes decodable into size-2 lists. In Ingo Althofer et al., editor, Numbers,
Information and Complexity, pages 239–244. Boston: Kluwer Publishers, 2000.

[AB83] C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE
Transactions on Information Theory, 29:208–210, March 1983.

303



[AP00] Daniel Augot and Lancelot Pecquet. A Hensel lifting to replace factorization
in list decoding of algebraic-geometric and Reed-Solomon codes. IEEE Trans-
actions on Information Theory, 46:2605–2613, November 2000.
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