Better Extractors for Better Codes?

Venkatesan Guruswami

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195

venkat@cs.washington.edu

ABSTRACT

We present an explicit construction of codes that can be list
decoded from a fraction (1 — ¢) of errors in sub-exponential
time and which have rate £/1og®™ (1/¢). This comes close
to the optimal rate of Q(g), and is the first sub-exponential
complexity construction to beat the rate of £ achieved by
Reed-Solomon or algebraic-geometric codes.

Our construction is based on recent extractor construc-
tions with very good seed length [17]. While the “standard”
way of viewing extractors as codes (as in [16]) cannot beat
the O(£?) rate barrier due to the 2log(1/¢) lower bound on
seed length for extractors, we use such extractor codes as
a component in a well-known expander-based construction
scheme to get our result. The O(e?) rate barrier also arises if
one argues about list decoding using the minimum distance
(via the so-called Johnson bound) — so this also gives the
first explicit construction that “beats the Johnson bound”
for list decoding from errors.

The main message from our work is perhaps conceptual,
namely that good strong extractors for low min-entropies
will yield near-optimal list decodable codes. Given all the
progress that has been made on extractors, we view this as
an optimistic avenue to look for better list decodable codes,
both by looking for better explicit extractor constructions,
as well as by importing non-trivial techniques from the ex-
tractor world in reasoning about and constructing codes.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity.

General Terms
Algorithms, Theory.

Keywords

Error-correcting codes, List decoding, Pseudorandomness,
Expander graphs, Randomness extractors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC' 04, June 13-15, 2004, Chicago, Illinois, USA.

Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

1. INTRODUCTION

An area of algorithmic coding theory that has received
much attention lately is that of List Decoding. List decoding
deals with the situation when the amount of noise is too
large to be able to identify the original transmitted codeword
unambiguously. For example, when more than 1/2 of the
symbols could be in error, unique decoding of the correct
codeword is impossible. Under list decoding the goal is to
output a small number of candidate codewords one of which
is the correct one. We refer the interested reader to [13, 3]
for more detailed background and history on list decoding.

Informally, a code has good list decoding properties if ev-
ery Hamming ball of a “large” radius contains very “few”
(say at most L) codewords of the code. This requirement
only addresses the combinatorial aspect of list decoding, and
in addition one would also like the code to be explicitly
specified (say, constructible in polynomial time), efficiently
encodable, and also have a decoding algorithm to efficiently
find and output the list of at most L codewords that are close
to a noisy received word. Let us quickly recap that an error-
correcting code over alphabet ¥ is a map C : £t — £V
where ny is said to be the dimension of C, N is the block
length of C, and the ratio n1 /N, which measures the amount
of redundancy introduced by the code, is called the rate of C'.
Such a code C'is said to be (p, L)-list decodable if for every
re XN {z | A(r,C(z)) < pN}| < L, where A(y, z) denotes
the Hamming distance between strings y and z; in other
words there are at most L codewords which differ from r in
at most a fraction p of symbols. The fundamental question
in the subject of list decoding is then to construct (p, L)-list
decodable codes for large p, small L and which have good
(large) rate. These being conflicting combinatorial goals,
there are natural trade-offs to how large the rate can be,
and ideally we would like explicit codes with near-optimal
rate, together with efficient encoding and list decoding al-
gorithms.

We focus on the “high noise” situation in this paper where
the error fraction p = (1 —¢) for ¢ > 0 treated as a very
small constant. This turns out to be the cleanest setting for
an initial study of the asymptotics and also represents the
regime where list decoding is most beneficial. It is known
that (1 — e,0(1/e))-list decodable codes of rate Q(e) ez-
ist (over an alphabet size of, say O(1/€?)), and that Q(e)
is the best rate possible for such codes. The best explicit
construction® achieves a rate of ¢ — this is achieved by

1For purposes of this paper, by an “explicit” construction
we mean a deterministic polynomial time construction.

Reed-Solomon and algebraic-geometric codes [7] and certain
expander-based constructions (that still use Reed-Solomon
codes as a building block) [5]. Despite much progress in the
general area of list decoding, the O(¢?) bound has been a
“barrier” for the rate for codes list-decodable up to a frac-
tion (1 — ¢) of errors. One explanation for this perceived
barrier is that Q(e?) is the best rate one can achieve if one
constructs codes with good relative distance and then uses
a combinatorial result called the “Johnson bound” to argue
about the (1—¢, L)-list decodability properties of the code.?

The question of improving the rate beyond the 0(52) bar-
rier is one of the central open questions in the subject of
list decoding, as it represents one of the (necessary) initial
steps in progress towards explicit list-decodable codes with
near-optimal rate vs. decoding radius trade-off. In fact,
achieving a rate of ce? for some constant ¢ > 1 and thereby
doing just slightly better than Reed-Solomon codes remains
a challenge. In [5], the authors present a randomized Monte
Carlo code construction with rate Q(g) together with sub-

exponential (of the form 20("1/p)) time algorithms to list
decode them up to a fraction (1 —¢) of errors. However, the
construction is not explicit, and there is also no efficient way
to certify that the code, once constructed randomly, has the
necessary list decoding properties.

In this paper, we present the first explicit construction of
codes of rate better than Q(e?) with non-trivial list decod-
ing properties up to radius (1 — €). In fact, the rate we
achieve is £/ log®" (1/¢) and thus close to the optimal rate
of Q(g). A shortcoming of our result is that the alphabet size
is huge, namely 206" log(1/2)) " compared to O(1/e) which
is the best one can hope for. However, we note that Reed-
Solomon codes require an alphabet size that grows with the
message length n1, and beating the €2 rate even with the
luxury of such large alphabet size remains open, so having
a fixed large constant that depends only on € is not terri-
ble (at least qualitatively). We also remark that alphabet
size being exponentially large in 1/¢ is a common negative
feature of the recent expander-based code constructions in-
cluding this work as well as [5, 6]. A more severe shortcom-
ing of our result is that the list decoding algorithm runs

in sub-exponential time (of form 20("}/10)) and could re-
turn sub-exponential sized lists as output. But we point
out that prior to this work, even the combinatorial problem
of an explicit code construction with rate better than O(g?)
and sub-exponential list size for (1 — ¢) errors (with no re-
quirement on decoding time) was open. Needless to say, a
polynomial list decoding complexity is more desirable, but
nevertheless our construction is the first to beat the naive
exponential bounds and demonstrates that something non-
trivial is possible in this setting, thereby lending hope to
eventually beating the Q(e?) rate barrier, and perhaps even
achieving the optimal Q(e) rate, with polynomial decoding
complexity.

2The reason is that one needs a relative distance of 1-
O(g?)) for the Johnson bound argument to work, and this
in turn restricts the rate to O(¢?) (by the Singleton bound).
Therefore, any improvement of the rate beyond Q(e?) must
bypass the Johnson bound paradigm, which is the primarily
employed approach including in the Reed-Solomon decoding
result [7].

Extractors and codes

Our construction is based on a connection between list-
decodable codes and extractors. Extractors are well-studied
objects in the pseudorandomness literature, cf. the recent
survey [10]. An extractor takes as input a sample drawn
from a weak-random source, and using a small seed of truly
random bits as catalyst, “extracts” almost pure randomness
from it. Since [16] first pointed this out, it is now well-
known that (strong) extractors give list decodable codes —
in fact, (strong) 1-bit extractors are equivalent to binary
list-decodable codes with related parameters. To obtain a
code from an extractor, one views the input from the weak-
random source as the message, and its encoding consists of
the extractor’s output as the seed varies over all possible
values. The block length (and hence rate) of the code de-
pends on the length of the seed. The error of an extractor
is the deviation of its output from the uniform distribution,
and roughly speaking an extractor that outputs several bits
with error € yields a code list-decodable up to radius (1—¢).
Now, a lower bound of 2log(1/e) — O(1) on the seed length
as a function of the extractor’s error € [9] translates into an
O(£?) upper bound on the rate of the extractor code.® This
suggests that the above connection between extractors and
codes cannot be used to meet out goal of constructing codes
with near-optimal rate, or even with rate better than Q(¢?).

Extractor codes, however, have a property that is stronger
than good list decodability, as observed by [16]. Specifically,
given a set S; C {1,2,...,q} of possibilities for the i’th
symbol for every i, there are a small number of codewords
whose i'th symbol belongs to S; for e N more coordinates
than the quantity >, |S:|/q (which is simply the expected
number of coordinates for which x; € S; for a random string
z € [q]"). When the S;’s have exactly one element, this
corresponds to list decoding, but otherwise it is more general
and was called “list-recovering” in [6]. Our basic idea is to
use extractors with large error, say v = 1/4, so that the
O(7?) upper bound on the rate of the associated codes is a
constant independent of €. But now one cannot argue that
these codes are (1 — ¢, L)-list decodable. However, these
codes have a very useful list-recovering property that can
be used in certain expander-based constructions as in [5] to
give codes with rate almost the optimal Q(e) bound. We
view this connection between good extractors and good list-
decodable codes as the main conceptual contribution of the
paper.

Despite this connection between extractors and codes, there
are certain concerns (that do not normally arise when one
studies extractors for their own sake) that have to be ad-
dressed for this way of constructing codes to be useful for
us. For example, the list size is related exponentially to
the min-entropy of the weak-random source, and thus one
is interested in the low, ideally logarithmic or lower, min-
entropy regime which is not that interesting for extractors
in their pseudorandomness context. Furthermore, in order
to get rate that is bounded away from zero, it is crucial
that the extractors used have seed length logn + O(1), i.e.
with the constant in front of logn being 1 (as opposed to
the O(logn) seed length which is good enough for other ap-
plications of extractors). Extractors with such seed length
were not known till recently (except for some constructions

3Throughout this paper, all logarithms will be to the base
2.

in [15], but these were just obtained by viewing certain list-
decodable codes as extractors and are therefore not useful to
us). Fortunately, in recent work, Ta-Shma, Zuckerman, and
Safra [17] construct such extractors, which we will hence-
forth refer to as TZS extractors. The min-entropy needed
for their result is n*™") and this dictates the sub-exponential
list decoding complexity of the codes we construct from
them. We recall that obtaining O(logn) seed length for
min-entropies smaller than n?M is a qualitatively harder
problem (eg. Trevisan’s celebrated extractors [18] required
M min-entropy), though it was eventually obtained in
subsequent works. In light of this, improving our codes us-
ing this connection to extractors will probably require ad-
ditional key insights — we should point out that even the
subsequent improvements to TZS extractors by Shaltiel and
Umans [11] (which work for up to polylogarithmically small
min-entropy) fall short for our purposes, due to the seed
length becoming at least awlogn for a > 1.

Finally, we note that explicit specification of the extractor
implies a polynomial time encoding procedure for the codes.
As for decoding, this does not follow directly from any as-
pect of the extractor world, since the extraction property
only implies a combinatorial list decoding property, namely
small list size, and in general it does not imply anything
other than a brute-force decoding procedure to find the list
of codewords. Nevertheless, for the extractors we use, we
are able to turn the proof of the extraction property into an
algorithm, thereby giving a sub-exponential time algorithm
to perform the list decoding. This is by now not surprising,
as Ta-Shma and Zuckerman [16] did a conceptually similar
thing with Trevisan’s extractor construction [18] and gave a
decoding algorithm for it. In addition they point out that
any proof of the extraction property that follows the “re-
construction paradigm” (as is the case for the TZS extrac-
tors) yields a decoding algorithm. The complexity of the
decoding algorithm is tied to the complexity of the recon-
struction procedure used in the proof, and fortunately the
reconstruction procedure for the TZS extractors admits an
efficient implementation.

Dispersers and Codes. While not explicitly pointed out
in the literature, it is clear that the dispersers, the one-sided
analogue of extractors, correspond, in the coding world, to
decodability from erasures. We look at the quantitative as-
pects of this connection and point out that constructing
optimal dispersers will solve another central open question
concerning list decoding: constructing binary codes of rate
Q(e) that can be decoded from a fraction (1 —¢) of erasures
— currently the best known explicit construction has rate
O(g?). We also point out that there is an alternate view of
dispersers as binary codes for the noise model where 0’s can
get flipped to 1’s but not the other way around [19].

Organization. In the next section, we present our main
conceptual result connecting extractors and codes. In Sec-
tion 3 we use extractors from [17] based on bivariate poly-
nomials to achieve a 20V list decoding complexity. We
then use the multivariate polynomial based extractors from
s
[17] to improve the complexity to 2°N") for arbitrary § > 0
in Section 4. Dispersers and erasure codes are discussed in
Section 5.

2. CODES FROM EXTRACTORS:
THE MAIN CONNECTION

In this section, we will present our method of construct-
ing good list-decodable codes from extractors. It is already
known that extractors can as such be viewed as codes [16].
Our construction is a little less direct in that we uses extrac-
tors as a component in a expander-based code construction
scheme (such expander-based schemes have already been
used a few times, eg. in [1, 5]). We now turn to the defini-
tions of extractors and expanders.

DEFINITION 1 (EXTRACTORS). A function E : {0,1}™ x
{0,1}¢ — {0,1}™ is a strong (k,~)-extractor? if for every
X C{0,1}™ of size at least 2%, the distribution of yo E(x,y)
where x,y are picked uniformly from X and {0, l}d respec-
tively, is y-close to (i.e., has statistical distance at most
from) the uniform distribution on {0,1}%T™. The parameter
k is called the min-entropy and k — m is referred to as the
entropy loss of the extractor.

Viewing an Extractor as a Code. We now mention
a “direct” way of getting codes from extractors first made
explicit by Ta-Shma and Zuckerman [16]. Given an ex-
tractor E : {0,1}™ x {0,1}* — {0,1}™, define a code
Cg:{0,1}™ — [Q]zd where @ = 2™ as follows: Cg(z) =
(B(2,9))yeqo,13a- Thus Cg is a code over alphabet [Q] of
dimension n1 /m (as n1 bits can be viewed as ni/m symbols
over [Q]) and block length 2¢. This view of extractors as
codes motivates an algorithmic problem concerning “decod-
ing” extractors.

DEFINITION 2 (y-FREQUENT ELEMENTS). For a statis-
tical test T C {0,1}™%¢, we define an x € {0,1}™ to be
~v-frequent for T if Prob, [y o E(z,y) € T} > QJnTld + v for
y picked w.a.r from {0,1}<.

DEFINITION 3 (DECODING EXTRACTORS). A 7y-decoding
algorithm for a (strong) extractor E : {0,1}™ x {0,1}¢ —
{0,1}™ takes as input a “test” subset T C {0,1}™F¢ and
outputs all x € {0,1}™ which are y-frequent for T. An ex-
tractor is said to be y-decodable in time T (n1) if there exists
a vy-decoding algorithm for it that runs in time T(n1).

The following is immediate from the definition of an ex-
tractor:

FacT 1. Let E: {0,1}" x {0,1}% — {0,1}™ be a strong
(k,~)-extractor and T C {0,1}™+? be a statistical test. Then
there are at most 2% elements © € {0,1}™ that are -
frequent for T.

DEFINITION 4 (EXPANDER). For positive integers n,d
and reals (,e > 0, an (n,d,(,e)-expander is an n X n d-
regular bipartite graph (L, R, E) with the property that for
every subset S C R with |S| > €|R)|, the fraction of nodes in
L that have no neighbors in S is at most (.

Combining a code and an expander. We now review
the basic operation by which we combine a code with an

“We will use ni to denote the length of the string from
the weak-random source to avoid confusion with the block
length of codes for which n is usually reserved. Also all
extractors we will be interested in will be strong, so we will
often omit the qualifier strong in the sequel.

expander to “improve” its error-resilience (at the expense of
increase in alphabet size). This operation is quite natural
and simple and dates back to the work of Alon et al more
than a decade ago [1].

DEFINITION 5. Given a code C of block length n over
alphabet 3, and a A-reqular n X n bipartite graph G =
(L, R, E), define the code G(C) over alphabet &2 which has
the same number of codewords as C as follows. For each
c = (c1,ca,...,cn) € C, define a codeword G(c) € G(C) by
pushing the symbols of ¢ along the edges of G and at each
node on the right side R of the bipartition, collecting A sym-
bols from its neighbors in the left side L to form a symbol
from 2. Formally, G(c); = (cr, (i), - - - Cr) where Ty (i)
is the index of the k’th meighbor (in the left side L) of the
i’th node on the right side R of G.

We remark that the above can be viewed as encoding each
symbol of ¢ by the repetition code of block length A and
then redistributing these symbols via an expander. Clearly,
one can (and should) use better codes than the repetition
code, and such generalizations of above have been crucial
in [2, 6]. For the high noise regime we are interested in,
keeping things simple as in above construction does not cost
us much, and for ease of presentation, we will just use the
above expander-based construction in this paper.

To avoid confusion with our use of ¢ for the agreement
from which we list decode, we will use v to denote the error
of extractor. We will think of this error v as an absolute
constant independent of € and this will be key to avoid the
21og(1/~) lower bound on seed length from ruining our final
rate. The reader might want to think of v as being fixed to,
say, 1/4 (we keep an additional parameter and don’t fix it
as 1/4 throughout only because we will have to work with
~ very close to 1 in Section 4). The following lemma is just
an instance of converting “list-recoverable” codes into list-
decodable codes implicit in [5], where we plug in an extrac-
tor code as the list-recoverable code. For self-containment
we present a proof without explicitly referring to the list-
recovering terminology. For ease of notation, for an integer
p, we will use (p) to stand for {0, 1}? throughout the paper.

LEMMA 1. Let E : (n1) x (d) — (m) be a strong (k,~)-
extractor. Let G be a (2%, A, , €)-expander. Then, provided
2™ > A/(1=¢—7), G(CE) is a (1—g, 2F)-list decodable code
over alphabet [2™]* with block length 2¢ and “dimension”
w3 (and thus rate 571). Furthermore, if the extractor is
y-decodable, in time T'(n1), then G(Cg) can be (1—e, 2%)-list
decoded in time O(T(n1) + 2¢A).

Proof: Denote by N = 2¢ the block length of the code
G(Cg), and let ¥ = [2™] be its alphabet. Let r = (r, 72,
...,rn) be an arbitrary element of YN, We wish to prove
that there are at most 2* codewords in G(Cg) that agree
with r on e N or more locations, and that the list of all such
codewords can be found in time O(T'(n1) + NA).

Consider the following decoding algorithm. For each y €
{1,2,...,2%}, let Ng(y) C [27] be the set of neighbors on the
right of the y’th node on the left in G. Now each symbol on
the right votes for what it thinks the corresponding symbol
at each of its neighbors on the left is. Formally, we compute
the sets Ty = {yo(ri)x | ¢ € Na(y) and T'x(¢) = y} C (d+m)
(where (7;)k is the k’th component of the A-tuple r; and can
thus be viewed as an element of (m)) for each 1 < y < 2¢
where y is viewed as an element of {0,1}%. We then set

T = Uye(d) T,, and run the y-decoding algorithm for the
extractor E on input the statistical test 7. Note that by
Fact 1, we will output at most 2¥ codewords. The claimed
runtime also follows immediately.

It remains to prove that the algorithm outputs each mes-
sage x whose encoding by G(Cg) agrees with r on locations
in some S C [N] with S > eN. This amounts to proving that
such an x is y-frequent for the test 7' computed above. Here
is the key point in proving this: for such x, by the property
of the expander G, we are guaranteed that y o E(z,y) € T,
for at least (1 — ¢)2¢ values of y. Hence we have

Prob,[yo E(z,y) € T| > (1-() . (1)

Now |T'| < 2¢A and since 2™ > A/(1—¢ —+) by hypothesis,
we have Q{Lﬂn < (1—=¢ —7). Combining this with Equation

(1), we conclude that x is y-frequent for T, as desired. O

To use the above lemma, we use the fact that the nec-
essary expanders of degree A = O(g_ls) can be explicitly
constructed, cf. [1]. We state two corollaries which record
consequences of the above lemma once we use such an ex-
pander. The first one says that very good extractors will do
wonders for codes, and it captures the main conceptual mes-
sage “Better Extractors for Better Codes” of this work. The
second one is more “realistic” and notes down the parame-
ters obtainable from possibly sub-optimal constructions.

COROLLARY 2. For every fized positive integer k, if a
family of near-optimal strong (k,1/4)-extractors with seed
length logni + O(1) and entropy loss O(1) can be explicitly
constructed, then we can explicitly construct (1—¢e,0(1/¢))-
list decodable codes of rate Q(g/log(1/e)) over an alphabet

of size 90(c ™ og(1/2)) Furthermore, if the extractors can
be 1/4-decoded in time polynomial in n1, then the resulting
codes can be list decoded up to a fraction (1 —¢) of errors in
polynomial time.

Proof: We use Lemma 1 with a (k, 1/4)-extractor E : (n1)x
(d) — (m) where 2™ > a/e, k = log(1/e) + O(1), and d =
logni +0(1), and a (24,b/e,1/2, ¢)-expander G (an explicit
such expander can be constructed using Ramanujan graphs,
cf. [1]) — here a,b are absolute constants. If we choose
a > 4b, then Lemma 1 guarantees that G(Cg) is (1 — ¢, 2")-
list decodable, and 2 = O(1/¢) so the claim about list
decodability follows. The rate of the code is 2‘1:715)771 which
is Q(g/m) and since m = O(log(1/¢)), we get Q(g/log(1/¢))
rate. O

COROLLARY 3. For arbitrary € > 0, if for a function k :
N — N a family of strong (k(n1),1/4)-extractors E : (n1) X
(d) — (m) where 2™ = O(1/e) and d = logni + c. can
be explicitly constructed, then one can explicitly construct a
family of codes of rate Q(#g(l/s)) such that a code of block

length N in the family is (1 — 5,2]“(1\’/205))—%515 decodable.
Furthermore, if the extractor is 1/4-decodable in time T (n1),

then the resulting code can be list decoded up to a fraction
(1 —¢€) of errors in time T(N/2°) + O(N/e).

3. CONSTRUCTION USING BIVARIATE
POLYNOMIALS

As mentioned in the introduction, we need extractors whose
seed length d is logni + O(1), with the constant in front of
logni being 1, so that the rate of the codes we construct

using Lemma 1 will be bounded away from zero. The only
currently known extractors with this property are due to
Ta-Shma, Zuckerman, and Safra [17] who use Reed-Muller
codes (which are based on multivariate polynomials) to con-
struct such extractors. Naturally, we turn to these extrac-
tors in our quest for codes via Lemma 1. Specifically, in this
section, we will use the bivariate polynomial based extrac-
tors from [17] to prove the following.

THEOREM 4. For every constant € > 0, there is a polyno-

mial time constructible family of codes of rate Q(@)

over an alphabet of size 907 108(1/2) guch that every code
in the family is (1 — e,2°VN18N)) _list decodable in ran-
domized 2°0VN8N) time where N is the block length of the
code.”

Improving the extractor used for the above result to work
for lower min-entropies will improve the runtime and list
size. In the next section, we will improve the decoding time

and list size to 2V° for any desired § > 0 at the expense
of some worsening in the rate, by using the multivariate
polynomial based extractors for lower min-entropies from
the same paper [17].

Perspective: Since the TZS extractor is itself based on
codes, our construction can be cast purely as an operation
on Reed-Muller codes, with no reference to extractors. How-
ever, not only was the extractors language useful to define
such a nice operation, but techniques from the domain of ex-
tractors like next-bit predictor and reconstruction paradigm
seem crucial for the development of the list decoding algo-
rithm.

3.1 The TZS extractor

We recall the extractor construction from [17]. Recall
that the goal is an (k,v) extractor FE : (n1) x (d) — (m)
with d = logni + ¢m,y and k as small as possible. Define
p = v/2m — we will set v = 1/4 and m = log(1l/e) +
O(1) where our target is to list decode up to radius (1 —¢),
but retain these parameters to maintain the same notation
as [17]. Pick parameters h,q that satisfy (h;rl) logq > n1,

ni
logny

O(h/p*). Let Cbea (1/2—p, O(1/p?))-list decodable binary
linear code of dimension ¢ = loggq. Such a code of block
length £ = O(p~2logq) (and thus rate Q(p?)) exists and

can be found in qo<1/”2) time [4]. (Alternatively, such a

specifically h = [3 1 and ¢ a power of two of size

code of rate Q(p*) can be found in (log q)o(’)_Q) time, but
we will use the stronger bound since it will still give an
affordable construction time of /<)) for our choice of
parameters.)

The strong extractor, say E* : (n1) X (d) — (m), is de-
fined as follows. We associate with z € (ni1) a bivariate
polynomial p; : IF?I — T, of total degree at most (h — 1)

(the number of such polynomials is at least q(hgl) > 2™ so
each z can be associated with a different polynomial). We
set d = 2log g +log £ and view the seed y = (a, j) as a point
a = (a1,a2) € F2 and an index j € [f]. The extractor output
is now defined to consist of the j’th bit of the encoding by

5By a randomized list decoding algorithm we mean a proce-
dure that outputs a list that with high probability includes
exactly the correct set of solution codewords.

C of the evaluations of p, at m successive points along a
“horizontal” line beginning with a. Formally,

E'(z,((a1,02),7)) = (C(pa(ar,02)); 0 C(palar +1,a2));
o--0C(pe(ar +m— 1,a2))]-> -(2)

Note that d = log(q*?) = log(¢*logq) + 2log(1/p) + O(1).
Now, by our choice of ¢ = ©(p~*y/n1/logn1), we have d <
logni + 10log(1/p) + O(1), and thus the above has a very
good seed length. The main result of [17] is the following
which states that is also a good extractor for min-entropy
at least about /n;.

THEOREM 5. The function E* : (n1) x (d) — (m) as
defined above gives a strong (k,~y)-extractor with d = logni+

10log(m/7) + O(1) provided k > Q(m+/n1log(ni/7)).

For the choice v = 1/4 and m = log(1/e) + O(1) we
can apply Corollary 3, this immediately gives codes of rate
Q(e/log' (1/¢)) which have at most sub-exponentially many
codewords in any Hamming ball of (relative) radius (1 —¢).
Thus the combinatorial aspect of list decoding is already
taken care of!

3.2 Decoding the TZS Extractor

It remains to give a decoding algorithm to find and output
these sub-exponentially many codewords in sub-exponential
time, in other words a ~-decoding algorithm for the extrac-
tor that runs in 2°vV?) time and finds the set of all ~-
frequent elements x for a given T'— Theorem 5 guarantees
that there will be at most 2% such z’s. The proof that there
are not too many such z’s follows a reconstruction paradigm
by demonstrating a reconstruction procedure which outputs
each y-frequent = with good probability using a short advice
string as input (the advice kick starts and guides the pro-
cedure by helping it make the right choices). If the needed
advice string is short, then there cannot be too many ~-
frequent x’s. This proof method is by nature algorithmic so
we really only need to revisit the analysis to ensure that all
the steps can be performed efficiently. The contents of this
section are therefore implicit in the literature, for example
in [16] where the authors present an efficient decoding al-
gorithm for Trevisan’s extractors [18] and point out that a
similar result applies for extractors proved correct using the
reconstruction paradigm. We therefore include this section
primarily for the sake of completeness.

The dominant component in the runtime ends up being
trying out the various advice strings for the reconstruction
procedure, and this also governs the list size (or the min-
entropy for which the construction works, in extractor ter-
minology).

3.2.1 Next-element predictors

The first step is to use the distinguishing subset T to
obtain a next-element predictor. This is quite standard, cf.
[17, 11]. By Yao’s next-bit predictor lemma, there must
exist an 7, 1 < i < m, and a randomized next-bit predictor
A:{0,1}*"' — {0,1}, such that

* * * 1
Prob[A(E" (@,y) - B"(z,y)i1) = E"(2,9):] = 5 + L

where the probability is taken over y picked u.a.r from (d)
as well as A’s coin tosses. In fact, A works as follows. On

input y € (d) and bits b1,bs,...,b;—1 which are supposedly
the first (z — 1) bits of E*(z,y), it predicts the ¢’th bit as
follows.

1. Pick (m—i+1) bits bi, bit1,...,bm € {0,1} at random.

2. If yo (b1, b,...,by) €T, output by, else output b;.

Clearly there must exist a fixing of the coin tosses of A to
give a function g : {0,1}~' — {0,1}, such that
°

+ .
m

N —

Prob, [g(E" (z,y)1--- E"(2,y)i-1) = E"(z,y)i] >

Alternatively, by going over all possible 2™ ! random
choices, as well as various choices of i, we conclude the fol-
lowing (we can assume i = m, since for smaller ¢ the next-bit
predictor can simply ignore the first (m — 7) bits owing to
the symmetry of the extractor’s definition):

LEMMA 6. For every T C (d 4+ m), we can find a set G
of at most 2™ Boolean functions on (m — 1) bits such
that for every x that is ~y-frequent for T, there is a func-
tion g € G such that the probability, taken over random

choices of a € F2 and j € [I], that g(C(px(a))j,C’(px(a +
(1,0)))5,-- -, Clpz(at+(m—1,0)));) equals C(pz(a+(m,0)));,

is at least + + .

Recalling that p = 5L, one can use that C'is (1/2—p, O(p™?))-
list decodable together with the next-bit predictor to get a
next-element predictor for the values of p, as stated below.
This is implicit in [17] and is made explicit in Lemma 5 of
[11].

LEMMA 7. For every T C (d+m), we can find a set F of

at most 2™ functions f F;’“l — F?(p R such that for
every x that is y-frequent for T, there is a function f € F
such that the probability over a random choice of a €]FZ of
the event

f(pe(a=(m=1,0),....pa(a = (1,0))) 2 pula) (3)
is at least p.

Note that the number of such functions over Fy is in general

at least qqm_l, which is way too many. The above lemma
shows that a much smaller number O(2™) of functions al-
ways contains a good next-element predictors.

3.2.2 Reconstruction using the next-element predic-
tor

We can now assume that, for the ~-frequent element x
in question, we have at our disposal a good next-element
predictor f : F;”fl — qu<p %) with the property guaranteed
by Lemma 7. We should now make sure that we can use this
to reconstruct z. The reconstruction procedure R with
oracle access to f and input an advice string z works as
follows:

1. Pick a random line L C Fg (i.e. pick a € Fg and 3 €
F2\ {(0,0)} at random and set L = {a+t3 |t € F,})°

SFor the various steps to predict the value of new points, L
must not be parallel to the z axis, i.e. § should not be of
the form (¢,0). But this happens with probability at most
1/q which is o(1), so we implicitly assume this pathological
case does not occur.

2. Use z to take as advice the value of p, on the (m — 1)
predecessor lines L — (1,0),L — (2,0),--- ,L — (m —
1,0), each expressed as a degree (h — 1) univariate
polynomial in ¢ over F, given by its h coefficients in
Fq. /* This takes (m — 1)hlogq bits of advice */
Initialize L' = L.

3. Repeat the following for h steps to learn the values
of p on L and its (h — 1) “successors” L + (7,0) for
1<i<h-1.

(a) For each t € F,, use the next-element predictor
with already known values for p.(L'(t) — (5,0))
for 1 < j < m to get a list S; of O(p™2) elements
one of which is hopefully ps(L(t)).

(b) Find a list of at most O(p~2) univariate polyno-
mials Q over Fy of degree at most (h — 1) which
satisfy Q(t) € S for at least pq/2 values of t.”

(c) Use at most 3log(1/p) + O(1) bits of advice from
z to pick the correct polynomial p,|r from the
above list.

(d) Move onto the next line by setting L' « L’ +
(1,0).

4. From the predicted values for p,, interpolate to find
pe and thus z. If no such degree (h — 1) bivariate
polynomial exists, output a failure.

One of the key steps in the above is the list decoding step
where all the polynomials @ for which Q(t) € S; quite of-
ten are found. By a well-known combinatorial result (cf.
[12]), for the concerned choice of parameters (specifically
q = O(h/p")), the number of such polynomials is O(p™?)
(see [11] for an explicit calculation in this setting). More-
over, it is also known how to find the list of all such univari-
ate polynomials @ in time polynomial in ¢ — this lets us also
conclude that R can be has an efficient implementation.

LEMMA 8 (IMPLICIT IN [17]). Given an f which is a
good next-element predictor for x with the property guar-
anteed by Lemma 7, there is an advice string z of at most
(m —1)hlogq + 3hlog(1/p) + O(h) bits for which the above
reconstruction procedure R’ on input z outputs x with prob-
ability at least 1/2 over the coin tosses of R (i.e. the choice
of the random line L). Furthermore, given oracle access to
f, the procedure R can be implemented to run in time poly-
nomial in n1.

3.2.3 Obtaining a Decoding algorithm

We now indicate how the above reconstruction procedure
can be turned into a list decoding algorithm that outputs
every y-frequent x with high probability.

On input the distinguisher 7' C {0, 1}4T™:

Repeat the following steps for each of the at most 2™*!
next-element predictor functions f.

"The proof that the reconstruction procedure works from
[17] proceeds by showing that for a random choice of L,
owing to the pairwise independence of points on L', the next-
element predictor will work correctly for at least a fraction
p/2 of the points in L’ with high probability (around 1 —
O(1/q)). Hence this list decoding step will succeed in finding
De|L’ @S One of its solutions.

e For each possible input advice string z which is (m —
1)hlog g + 3hlog(1/p) + O(h) bits long, do the follow-
ing:

(a) Run the reconstruction procedure R 2n; times
with independent coin tosses, and let X be the
set of x’s reconstructed in the various iterations.

(b) Check whether each z € X is indeed y-frequent
for T, and if so output z.

Since an xo that y-frequent for T is output by R’ for some
choice of f on some input advice zg with probability 1/2,
except with probability 1/22"1, this xo will be output in
one of the 2n; runs of R on input zo. By a union bound,
the probability that the list output by the above algorithm
is exactly the list of all y-frequent elements for T is at least
(1—27"1).

3.2.4 Complexity analysis of decoding procedure

Since each run of RY can be completed in poly(n;) time,
the dominant component in the runtime ends up being the
time to go over all possible advice strings. The number of
different advice strings is 20(*(mlegat+loe(1/p)) (the number
of next-element predictors to try is much smaller than this).

Let us recall our setting of parameters: h = ©(,/;zh-),

m = O(log(1/e)), p = 2= = &, and ¢ = ©(h/p"). The
overall running time is thus 2°0(V71logn11oe(1/)) * which is
certainly 200YN) where N = 27 = Q(n1log'(1/¢)) (recall
the value of the seed length d from Theorem 5) is the block
length of the extractor viewed as a code. Therefore the
decoding time for the extractor and number of ~y-frequent

elements to be output are both 20(VN1egN),

Now combining this with Theorem 5 and Corollary 3,
gives us our main result of this section, namely Theorem 4.

4. CONSTRUCTION USING MULTIVARI-
ATE POLYNOMIALS

To improve the min-entropies for which their extractors
work below the y/n1 bound achieved by the above construc-
tion, Ta-Shma et al [17] also give a construction based on
D-variate polynomials which works for min-entropy about
n}/ P We restate their result in this setting below (this is
Theorem 3 in their paper):

THEOREM 9. [17] For every ni,m and D, there is an ex-
plicit family of strong (k,~y) extractors Eﬁf) i (1) x (d) —
(m) with k = Q(mP~'n}/Plogni), d < log n1+0(D? logm),
and y=1-— %.

The proof of the above theorem is deferred in the confer-
ence version of [17], but appears in the full version. We
sketch the basic proof idea in a manner which will hopefully
convince the reader that one can indeed obtain a decoding
algorithm from the proof of the extractor property in [17].
The input x € (n1) is viewed as a D-variate polynomial
ps of total degree at most h over F,. The parameters are

chosen so that (hED) log g > n1, so this is possible; specifi-

cally, h = D(n1/log h)l/D and ¢ is the smallest power of 2
larger than Q(m™>{4P=1}p) (the field size q is chosen large
enough compared to h so that the error probability of the re-
construction procedure works out to be small). The number

of output bits m will be chosen to satisfy 2™ = ©(D?/s). We
can then use this extractor in Lemma 1 with v = 1 — &,
¢ = 125 along with an explicit (2d,0(é),(,6)—expander,
to construct a code of rate Q(e/ log(DQ/s)o(Dz)) that is
(1 — ¢, 2")-list decodable for k as in Theorem 9.8

Now to the extractor definition itself. The random seed
y € (d) consists of three parts: a € IFqD, 1€{1,2,...,D—
1} = [D —1], j € [l] (where £ is the block length of a binary
linear code of dimension logg which is (1/2 — p, O(p™?))-
list decodable as in the previous section; we will set p =
7). The extractor EP) is defined as EP)(z; (a,i,5)) =
(C(pz(atei));Clpz(at2e:)); - - - Cpz(atme));) where e;
denotes the unit vector in m dimensions with 1 in the ¢'th
coordinate and 0’s elsewhere.

The Decoding Algorithm

The proof that this construction is an extractor again follows
the reconstruction paradigm which lets us turn it into a -
decoding algorithm, for v = 1 — ¢&. Let a distinguisher
T C (d+m) be given and the goal is to find all = which are -
frequent for T'. Since =y is very close to 1, a simple averaging
argument is used to show that for each i € [D — 1], if U*
denotes the uniform distribution on {(a,%,j) | a € IFqD, j €
[€]}, then Prob[U’ o EDP)(z,UY) e T] - QJ,LTJr‘d > 7/8. One
can then use Yao’s next-bit predictor argument to convert
T into a predictor T; for each i. Using arguments as in the
bivariate case, for each i € [D — 1], we can find a collection
Fi of at most O(2™) g-ary next-element predictor functions
satisfying a property similar to Lemma 7, with p = IGLm and
the vector (1,0) replaced by e;.

Below, we briefly describe how these next-element pre-
dictors are used in the reconstruction procedure. We only
sketch the basic ideas since the details can be found in [17].
However, we do highlight the length of the advice string re-
quired in reconstructing the v-frequent z’s as this is the main
factor that dictates the runtime of the decoding algorithm.

The approach is similar to what we did for the bivariate
case: we take as advice the value of p, on a small collection
of points in FqD and then use the next-element predictors
to deduce the value of p, on enough points to be able to
interpolate and determine p,, and thus also x.

Recall that for the bivariate case, we reconstructed p
by finding its values on a collection of “successive” lines.
This approach as such is not suitable for the D-variate case
since we will need to make about ¢” ! line prediction steps,
which is too many (the error probability for the procedure
R’ adds up for each step, and also we need advice to pick
the right polynomial at each Reed-Solomon list decoding
step which amounts to requiring a longer advice string than
before!). Instead the approach of [17] is to recursively pre-
dict the value along “cubes” of larger and larger dimen-
sion. We pick a line L at random and the goal is to pre-
dict the value on all of the D-dimensional affine subspace
L + span, {ei1,ea,...,ep_1} where span, refers to the fact
that the coefficients are all bounded by h (predicting the
value of p; on such a subcube suffices to identify it, and
thus z, uniquely).®

Once a line L is picked, for s = 0,1,2,...,D — 1, the

8This is why we did not fix v = 1/4 throughout the paper.
°In case L + span, {e1,ea,...,ep—1} is not D-dimensional,
which happens with negligible probability for a random line
L, the algorithm gives up and reports a decoding failure.

values of p, on the s + 1-dimensional affine subspace U =
L+span,{ei,...,es} are computed recursively as follows. If
s =0, U = L, and we determine p,|z, by just consulting the
advice string (this takes (h+ 1)log ¢ bits of advice since pz,
is a univariate degree h polynomial). If s > 1, we recursively
compute values on U, = L + res + span,{ei,e2,...,es-1}
for 0 <r < m — 2 (since L + res is also just another line).
Then for each u € U, for m — 1 < r < h — 1, we run the
next-element predictor from Fs for direction s using the al-
ready computed values for the (m — 1) predecessors of u
(i.e. the points u — es,u — 2es,...,u — (m — 1)es). We then
perform a “Reed-Muller list decoding step” using these pre-
dicted values to compute a small list of candidate s-variate
polynomials one of which is likely to compute the correct
value of p, on U,.'° As in the bivariate extractor from the
previous section, the advice string is used for purposes of
“tie-breaking” to determine the correct polynomial at each
of these intermediate list decoding steps. As before, the cru-
cial aspect is that the number of such candidate polynomials
is small and can also be found efficiently. This follows from
a known result on list decoding Reed-Muller codes, stated
below.

LEMMA 10 (FoLLows FROM [14]). For each u € Fg,
let Su C Fq be a set of size at most A. Then, provided
0 > 2y/hA/q, there are at most 4A/6 s-variate polynomials
p over Fy of total degree h such that p(u) € S, for at least
a fraction § of the points u. Moreover, there is a random-
ized algorithm that runs in time poly(¢°) and for any such
input collection of sets {Su}u@y;, outputs exactly the list of
all such polynomials p with overwhelming probability.

In analyzing the extractor, the above lemma is used with
A = O(p~?) (the number of outputs of the next-element pre-
dictors), and thus one only needs O(log(1/p)+1log(gq/h)) bits
of advice for each tie-breaking step. Given an advice string,
therefore, the reconstruction procedure is very efficient and
in fact can be implemented to run in polynomial time. One
can obtain a y-decoding algorithm from the reconstruction
procedure as in Section 3.2.3 by running through all the
choices for next-element predictor functions — there will be
20(mD) choices in all since one has to pick a function from
Fi for each of the directions e;, 1 <i < D — 1 — as well as
all choices of the advice strings.

Let us now argue about the number of advice bits needed
as that governs the running time of the decoding algorithm.
Unwinding the recursion, the number of different lines L’
for which we determine p, ./ using the advice string in the
computation of p, on all of L + span, {e1,...,ep—_1} equals
(m — 1)P~. Thus at most m”~*(h + 1)logq bits of ad-
vice are needed to figure out p, on all the lines needed to
kick-start the next-element prediction steps. The number of
Reed-Muller list decoding steps, say N, involved for predict-
ing p, on L + span,{e1,ez,...,es} satisfies the recurrence
Ny = (m —1)Ns—1+ (h —m+ 1) and Ng = 0. Therefore
we have Np_; < (m — 1D)P72(h —m +1) < mP~'h, and
thus the total number of advice bits needed to disambiguate
between candidate polynomials for all intermediate list de-
coding steps is at most O(m”~'h(log(1/p)+log(q/h))). Re-
calling that p = , the overall decoding time is thus
20<mD*1hlog<mq)>7

16m
which for the choice of parameters m =

10T Section 3, we had s = 1, so that each of the list decoding
steps was for univariate polynomials (Reed-Solomon codes).

log(D?/e)+0(1), h < ni/D, and g < m™>4P=1p < ny for

D-1_1/D
large enough n1, is at most 290" 1" 7 legm1) - Gince the
block length of the extractor EP) viewed as a code equals
N=mn .90(D?logm) _ nlme(DQ), the runtime of the decod-
ing procedure, expressed as a function of the block length of

the constructed code, is at most 9O(N'/Plog N)

Plugging in this extractor in Corollary 3 lets us conclude:

THEOREM 11. For every integer D > 2, for every e > 0,
there is a polynomial time constructible family of codes of
2 -1
rate Q(e/1ogP P (D? /e)) over an alphabet of size (1)))

such that every code in the family is (1 — ¢, 20N/ Plog N)y-

list decodable in randomized 9O(N!/P log N) time where N 1is
the block length of the code.

5. DISPERSERS AND ERASURE LIST DE-
CODABLE CODES

In this section we make explicit some simple facts that
connect dispersers, which are one-sided analogues of extrac-
tors, and list decoding from erasures. We recall that era-
sures are a noise model where a certain fraction of symbols
are adversarially erased (replaced with “blanks”, say) and
the remaining are received intact.

DEFINITION 6 (DISPERSERS). A function D : (n1) X
(d) — (m) is a strong (k,~)-disperser if for every X C
{0,1}™ of size at least 2%, at most a v fraction of points in
(d) x (m) have zero probability under Uy o D(X,Uy) where
Uq (resp. X) denotes the uniform distribution on (d) (resp.
X).

The requirement is weaker than the extraction property, and
dispersers exist with d = log(n — k) + log(1/7y) + O(1) and
entropy loss loglog(1/v) + O(1), both of which are better
than what is possible for extractors.

DEFINITION 7 (ERASURE LIST-DECODABILITY). A code
C C [q]" is said to be (p, L)-erasure list-decodable if for ev-
ery v € [q"""") and every set T C {1,2,...,n} of size
(1—p)n, we have |{c € C | ¢jr =r}| < L where fory € [q]",
YT € [q}m denotes the projection of y onto the coordinates
m T.

An interesting open problem in the area of list decoding,
mentioned for example in [6], is obtaining an explicit con-
struction of a family of (1 — ¢, L)-erasure list-decodable bi-
nary codes of rate (¢) (which is optimal up to constant
factors). The following lemma shows that explicit dispersers
with optimal seed length will imply such codes. It is some-
what interesting that though dispersers are more general
objects than erasure codes (just like extractors are more gen-
eral than list-decodable codes), there is no asymptotic loss
in rate due to their extra generality. In contrast, even op-
timal extractors, when interpreted as codes as in [16], give
only codes of rate O(¢?) which is worse than the optimal
O(e) rate.

LEMMA 12. Suppose D : (n1) x (d) — (m) is a strong
(k,~y)-disperser. Then the binary code C' : {0,1}™ — {0, 1}2d
defined as C(x); = D(w,4)1 for 1 <i < 2%, where D(z,i)1
denotes the first bit of the m-bit string D(x, 1), is (1—2, 2%)-
erasure list-decodable code. If the seed length of D is optimal

with d < logni +log(1/v)+O(1), then choosing v = /2, we
get a binary code C with rate Q(e) that is (1 —&,2%)-erasure
list-decodable.

Proof: Define N = 2% and let T = {t1,t2,...,tayn} be a
subset of {1,2,..., N} of size 2yN (with1 <t; <ta < -+ <
tayn < N), and let r € {0,1}*"N. Let z1,22,..., 2 be all
the messages in (n1) for which C(zs)r =1, 1 < s < M.
We need to show that M < 2%.

Define S C (d) x (m) as follows: S = {(i,a) | i ¢ T;a €
(m)}U{(tj,a) | 1 <j <2yN;a1 =r;}. Note that |S| =
(1 —27)24™ 4 2y.24.2m~1 = (1 —4)29t™ Now, for each
Zs, 1 < s < M, and each y € (d), we have D(zs,y) € S. By
the (k,~)-disperser property of D, it follows that M < 2k,
as desired. Finally, the rate of C' equals n1/ 2¢_and therefore
is Q(e) if d < logny + log(1/e) + O(1). |

6. CONCLUDING REMARKS

The obvious open question that our work highlights is
that of constructing better extractors with log n1+O(1) seed
length with error v = 1/2 (say), in particular those which
work for lower min-entropies (say n‘l’(l)). The improvements
to the TZS extractors by Shaltiel and Umans [11] definitely
gives hope for such a pursuit. Our interest in such extrac-
tors stems mainly from the quest for better list-decodable
codes which can then be constructed using the connection
presented in Lemma 1. Note however that extractors are
stronger objects than list-decodable codes and there may
well be simpler, less challenging ways to construct near-
optimal list-decodable codes. But even in such a case, some
of the techniques from the extractor world like next-element
predictors and advice based reconstruction could be useful
new additions to the toolkit of coding theory.

Acknowledgments

I would like to sincerely thank the STOC program com-
mittee and any anonymous reviewers for numerous useful
comments and for pointing me to the journal version of [16].

7. REFERENCES

[1] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor,
and Ronny Roth. Construction of asymptotically good
low-rate error-correcting codes through
pseudo-random graphs. IEEE Transactions on
Information Theory, 38:509-516, 1992.

[2] Noga Alon, Jeff Edmonds and Michael Luby. Linear
time erasure codes with nearly optimal recovery.
Proceedings of FOCS’95, pages 512-519.

[3] Venkatesan Guruswami. List Decoding of
Error-Correcting Codes. Ph.D thesis, Massachusetts
Institute of Technology, August 2001.

[4] Venkatesan Guruswami, Johan Hastad, Madhu Sudan,
and David Zuckerman. Combinatorial Bounds for List
Decoding. IEEE Transactions on Information Theory,
48(5):1021-1035, May 2002.

[5] Venkatesan Guruswami and Piotr Indyk.
Expander-based constructions of efficiently decodable
codes. Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science, October 2001,
pages 658-667.

[6] Venkatesan Guruswami and Piotr Indyk. Near-optimal
Linear-Time Codes for Unique Decoding and New
List-Decodable Codes Over Smaller Alphabets.
Proceedings of STOC 02, pages 812-821.

[7] Venkatesan Guruswami and Madhu Sudan. Improved
decoding of Reed-Solomon and algebraic-geometric
codes. IEEE Transactions on Information Theory,
45:1757-1767, 1999.

[8] Venkatesan Guruswami and Madhu Sudan. List
decoding algorithms for certain concatenated codes.
Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing, pages 181-190, 2000.

[9] Jaikumar Radhakrishnan and Amnon Ta-Shma.
Bounds for Dispersers, Extractors, and Depth-T'wo
Superconcentrators. SIAM Journal on Discrete
Mathematics, 13(1):2-24, 2000.

[10] Ronen Shaltiel. Recent Developments in Explicit
Constructions of Extractors. Bulletin of the EATCS,
77:67-95, 2002.

[11] Ronen Shaltiel and Christopher Umans. Simple
extractors for all min-entropies and a new
pseudo-random generator. Proceedings of the 42nd
Annual Symposium on Foundations of Computer
Science, October 2001, pages 648-657.

[12] Madhu Sudan. Decoding of Reed-Solomon codes
beyond the error-correction bound. Journal of
Complezity, 13(1):180-193, 1997.

[13] Madhu Sudan. List decoding: Algorithms and
applications. SIGACT News, 31:16-27, 2000.

[14] Madhu Sudan, Luca Trevisan, and Salil Vadhan.
Pseudorandom generators without the XOR lemma.
Journal of Computer and System Sciences, 62(2):
236-266, March 2001.

[15] Aravind Srinivasan and David Zuckerman. Computing
with Very Weak Random Sources. SIAM J. Comput.,
28(4): 1433-1459, 1999.

[16] Amnon Ta-Shma and David Zuckerman. Extractor
Codes. IEEE Transactions on Information Theory, to
appear. Preliminary version appears in the
Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing, pages 193-199, July 2001.

[17] Amnon Ta-Shma, David Zuckerman, and Shmuel
Safra. Extractors from Reed-Muller codes. Proceedings
of the 42nd Annual Symposium on Foundations of
Computer Science, October 2001, pages 638-647.

[18] Luca Trevisan. Extractors and pseudorandom
generators. Journal of the ACM, 48(4): 860-879, 2001.

[19] Christopher Umans. Hardness of Approximating %2
Minimization Problems. In Proceedings of the 40th
Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 465-474, 1999.

