HARDNESS OF SOLVING SPARSE OVERDETERMINED LINEAR SYSTEMS:
A 3-QUERY PCP OVER INTEGERS
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ABSTRACT. A classic result due to Hastad established that for every constant € > 0, given an
overdetermined system of linear equations over a finite field F; where each equation depends on
exactly 3 variables and at least a fraction (1 —¢) of the equations can be satisfied, it is NP-hard to
satisfy even a fraction (% + 5) of the equations.

In this work, we prove the analog of Hastad’s result for equations over the integers (as well as
the reals). Formally, we prove that for every e,6 > 0, given a system of linear equations with
integer coefficients where each equation is on 3 variables, it is NP-hard to distinguish between the
following two cases: (i) There is an assignment of integer values to the variables that satisfies at
least a fraction (1 — ¢) of the equations, and (ii) No assignment even of real values to the variables
satisfies more than a fraction § of the equations.

1. INTRODUCTION

Solving a system of linear equations over the rationals or reals is a fundamental algorithmic task
arising in numerous applications. It is possible to tell in polynomial time, by Gaussian elimination,
if a given system admits a solution, and if so to find one. However, Gaussian elimination is not
robust against noise, and given an overdetermined system of equations, of which say only 99%
of the equations are simultaneously satisfiable, no efficient algorithm for finding a good solution
satisfying a good fraction (say 50%) of equations is known. Indeed, it was recently shown that, for
any constant € > 0, given a (1 — ¢)-satisfiable linear system over the rationals, it is NP-hard to
find an assignment to the variables that satisfies even a fraction e of the equations [9, [8]. A similar
hardness result over large finite fields was established in a classic paper by Hastad [11].

This work is motivated by the complexity of solving sparse overdetermined linear systems, where
each equation is on a small constant number of variables. (The result in [9] applies to linear systems
where each equation has a constant c¢(e) number of variables where ¢(¢) — oo as ¢ — 0, and we are
interested in the case when each equation has at most an absolute constant, say 3, variables.)

The theory of probabilistically checkable proofs (PCP) has led to immense progress in under-
standing the approximability of constraint systems where each constraint is local and depends only
on a fixed constant number of variables. A celebrated hardness result due to Hastad [11] shows that
for every constant € > 0, given a (1 — ¢)-satisfiable system of linear equations over a finite field F,
where each equation depends on at most 3 variables, it is NP-hard to satisfy more than a fraction
(% + 5) of the equations. Underlying this result is a 3-query PCP verifier that queries 3 symbols
from purported codewords of the “long code” (a code first defined and considered in [4]) and checks
a linear constraint on them, and a tight estimate of the soundness of such a verifier using Fourier

analysis. The method of designing long-code based PCP verifiers with tests that closely parallel
the underlying constraint in the optimization problem of interest (3-variable linear equations in
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the above case), and analyzing their performance using Fourier analysis has been highly influential
since (for instance, see Khot’s survey [12]).

In this work, we prove the analog of Hastad’s 3-variable linear equations result for equations
over the integers (as well as the reals). Formally, we prove that for every ,0 > 0, given a system
of linear equations with integer coefficients where each equation is on 3 variables, it is NP-hard
to distinguish between the following two cases: (i) There is an assignment of integer values to the
variables that satisfies at least a fraction (1 — ¢) of the equations, and (ii) No assignment even of
real values to the variables satisfies more than a fraction § of the equations.

We stress that there seems to be no easy reduction from the problem of solving linear equations
over finite fields to solving equations over the real numbers. It is straightforward to obtain a
hardness result over integers from the hardness result of Hastad [11] over finite fields. Specifically,
for every mod p equation of the form x 4+ y — z = ¢ mod p, introduce an auxiliary variable w
and an equation x 4+ y — z — pw = c¢ over integers. However this reduction yields hardness of linear
systems with 4 variables per equation instead of 3. More importantly, this reduction does not yield
any hardness for linear systems over real numbers.

Obtaining a hardness of approximation result for linear systems with very few variables per
constraint was mentioned as an open question in [§]. The result for general linear equations was
obtained via a simple reduction from Label Cover in [9], and via a natural tensoring based approach
to amplify the gap in [§]. Obtaining a result for 3-variable equations seems harder, and our proof
is based on Fourier analysis of a long code based PCP over integers (hence our title for the paper).
In Section [2, we present an overview of our proof technique highlighting some of the key challenges
in the integers case, our technical contributions to address them, and connections to derandomized
linearity testing.

1.1. Previous related results. For sparse linear equations over integers, in fact with at most
2 variables per equation, it is shown in [2] (via a reduction from vertex cover on bounded degree
graphs) that for some absolute constants py < p1 < 1, it is NP-hard to tell if such a system is
at least pi-satisfiable or at most po-satisfiable. By boosting this gap using a natural “product”
construction, strong hardness results have been shown for the problem (called MAX-SATISFY in
the literature) of approximating the number of satisfied equations in an overdetermined system of
(not necessarily sparse) linear equations over the rationals [2, [7]. In [7], it is shown that unless
NP c BPP, for every € > 0, MAX-SATISFY cannot be approximated within a ratio of n'~¢ where
n is the number of equations in the system. (On the algorithmic side, the best approximation
algorithm for the problem, due to Halldorsson [10], achieves ratio O(n/logn).)

However, the product construction destroys the sparsity of the original system, and also reduces
the completeness to about p’f for a k-fold product. Consequently, even without the sparsity require-
ment, these results do not yield any hardness for near-satisfiable instances where an assignment
satisfying a (1 —¢) fraction of the equations is promised to exist (for an arbitrarily small parameter
e > 0). For such near-satisfiable instances, a result showing NP-hardness of satisfying even an &
fraction of the equations was obtained only recently in [9] [§].

For the complementary objective of minimizing the number of unsatisfied equations, a problem
called MIN-UNSATISFY, hardness of approximation within ratio 9log' " n fo; any constant € > 0 is

shown in [2] (see also [1]).
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2. PROOF OVERVIEW

Our proof follows along the lines of Hastad’s result for 3-variable linear equations over prime
fields F,. We give a 3-query PCP verifier that reads 3 appropriately chosen locations of the proof
(each of whose entry holds an integer in some finite range) and checks a linear equation on them.
The starting point is an instance of Label Cover over a fixed alphabet ¥ consisting of a bipartite
graph and projection constraints m. : ¥ — ¥ on the edges e; the projection constraint on edge
(u,v) imposes the condition 7, ,)(¢£(v)) = £(u) where £(w) is the label assigned to vertex w. The
verifier checks satisfiability of the Label cover instance by picking a random edge (u,v) of the Label
Cover graph and then checking that the labels assigned to the endpoints of that edge satisfy the
projection constraint. To aid the verifier to perform the latter check in a query-efficient way, the
prover is expected to write down the integer long code encodings (in some large finite range) of all
the vertex labels. The verifier picks one location x, with probability P(x) for some distribution P,
from the supposed long code A of u’s label, and two locations y, y’ with probability P’(y) according
to distribution P’, from the suppose long code B of v’s label. (Here y/ = y + x is determined
once x,y are picked — in the actual test, as in Hastad’s test [I1], a small noise according to some
distribution is added to y + x to get ', and this is crucial. However, for the following description
let us pretend that 3/ is determined once x,y are picked.) The verifier then checks that the values
A(x), B(y) and B(y') obey a linear constraint.

Let M be a large enough integer such that the total mass of distributions P and P’ outside a
cube of dimension M is tiny. Now any test of the above form that works for integers must also
work modulo all large enough primes (that are much bigger than the range in which we allow the
long code values to lie). In particular, picking p large enough compared to M, we will have a
3-query long code test modulo p that only queries a negligible fraction of the domain IE‘E of the
long code. Therefore, our results imply a highly derandomized version of Hastad’s test (though
our target soundness ¢ is necessarily much larger than 1/p). In particular, we obtain a test whose
total randomness used depends only on the soundness and the dimension, and is independent of
the domain size.

Technically, the difficulty imposed by this manifests itself in trying to extend the “decoding”
procedure where the tables A and B are used to produce a small list of candidate labels for u
and v. Hastad’s decoding procedure uses the large Fourier coefficients of A to decode a small
list of labels for u. The Fourier transform Ap of A with respect to the distribution P can have
many large coefficients since P is very far from uniform. In fact, the sum of squares of the Fourier
coefficients grows exponentially in the dimension (size of the alphabet). A key technical lemma we
show (Lemma implies that the Fourier spectrum Ap cannot have many large coefficients that
are “far-away” from each other. Here the notion of two Fourier coefficients being “far-away” refers
to the natural [, metric between the corresponding linear functions being large. We then show how
this can be exploited to decode a small set of labels for u from A (Claim . A “folding” property
of the long code ensures that the set of decoded labels is in fact nonempty (Lemma [5.3)). The
property of the distribution P needed to show that A has few large pairwise far-away coefficients
is an (e, )-concentration property, namely > P(x)e ™% < ¢ for all ||w||e > 2md. Essentially for
an (g,0)-concentrated distribution P, most of its weight is concentrated around the origin in the
Fourier domain.

We are certainly not the first to attempt a derandomization of PCP tests. In particular, we want
to point out the work of Ben-Sasson, Sudan, Vadhan, and Wigderson [5] who studied derandomized
versions of the BLR linearity test [6] and the low-degree tests underlying PCP constructions. Their
derandomized BLR test (for the field Fq) picks a triple (z,y,4’ = y 4+ x) of locations to query



where y is uniformly distributed on the whole domain IF|22|, but z is distributed uniformly on a
much smaller subset S of the domain — the only requirement is that .S is e-biased, which means
that for all nonzero w € {0, 7}, the Fourier coefficient |71S‘| D opeg € ¥ <e. In our terminology,

this means that the distribution on z is (g, 1/2)-concentrated. However this derandomization is
inadequate for our case, since y ranges over the entire domain.

It is our hope that ideas from this work might perhaps be useful to reduce the size of long code
based PCPs. This could enable giving such PCP constructions for much larger values of parameters,
and in turn lead to some improved hardness of approximation results.

3. OUR RESULTS

We begin with formal definitions of the problems for which we obtain hardness results. The
problem MAX3LINz consists of finding an assignment that satisfies maximum number of a set of
linear equations over integers, each of which has 3 variables. Formally

Definition 3.1. For constants c,s satisfying 0 < s < ¢ < 1, define MAX3LINz(c, s) to be the
following Promise problem : The input consists of a multiset of linear equations over variables
{z1,29...,2,} with each equation consisting of at most 3 variables. The problem is to distinguish
between the following two cases:

e There is an integer assignment that satisfies at least a fraction c of the equations.
e FEuvery integer assignment satisfies less than a fraction s of the equations.

MAX3LINRg (¢, s) is the corresponding problem over real numbers instead of integers.

The hardness results in this paper are obtained by reductions from the Label Cover problem
defined below.

Definition 3.2. An instance of LABELCOVER(c, s) represented as I' = (U, V, E, 3,11), consists of
a bipartite graph over node sets U,V with the edges E between them, such that all nodes in U are
of the same degree. Also part of the instance is a set of labels X3, and a set of mappings we : ¥ — X
for each edge e € E. An assignment I' of labels to vertices is said to satisfy an edge e = (u,v)
where u € U and v € V, if m.(A(v)) = A(u). The problem is to distinguish between the following
two cases:

e There exists an assignment I' that satisfies at least a fraction c of the edge constraints 11
e Fvery assignment satisfies less than a fraction s of the constraints in II.

The following strong hardness result for the label cover problem is the starting point for our
reductions.

Proposition 3.3. [13, 3] There exists an absolute constant v > 0 such that for all large enough R,
the gap problem LABELCOVER(1, %) is NP-hard, where R = |X| is the size of the alphabet.
In this paper, we prove the following hardness result for MAX3LINz,

Theorem 3.4 (Main). For all constants €,6 > 0 the problem MAX3LINz(1 — ¢,) is NP-hard.
Further it is N P-hard even when all the equations are of the form x; +x; = xj, + ¢ for some integer
constants c.

It is easy to see that the above result implies a similar hardness result for MAX3LINg. The
details of the reduction from MAX3LINz are as follows:
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Theorem 3.5. For all constants €,5 > 0, the problem MAX3LINg(1 — ¢€,9) is N P-hard.

Proof. Let T be an instance of MAX3LINz(1—e¢, g) with the additional restriction that all equations
are of the form x; + x; = x, + ¢ for some integer constants c. View this system of equations, as
equations over R to obtain a MAX3LINR(1 — €, J) instance.

In the completeness case, there is an integer assignment that satisfies at least (1 — ¢) fraction of
the equations. Clearly the same assignment is also a real assignment that satisfies at least (1 —¢)
fraction of the equations.

Suppose there is a real assignment Ar that satisfies more than § fraction of the equations.
Obtain an integer assignment Az as follows: For each variable x;, Az(x;) is randomly assigned
either [Agr(z;)] or |Ar(x;)|. For every equation x; + x; = x) + ¢ that is satisfied by Ar we have

Ar(zi) + AR(xj) — Ar(zg) =c

Since c is an integer, there exists at least one rounding (either ceiling or floor) of Agr(z;), Ar(z;), Ar(2k)
such that the above equation continues to hold after rounding. With two choices for each Agr(z;),
there are 8 possible ways to round the 3 variables. Hence with probability at least % the equation
still holds after rounding. So the expected number of equations satisfied by the rounded solution
Ay is at least %. O]

4. ANALYTIC MACHINERY

4.1. Fourier Preliminaries. Let [, denote the prime field with p elements. Here we recall the
definition of Fourier transform and a few useful identities. For a function A : ]Fﬁ — C, define the

function A(w) as follows:

~ 1 .
Aw) = 5 Y Al
zeFF
Hence A(w) is a function defined over [0, 27]%. Let Sy, =10, 2?”, ce %, ce W}. The values
of A(w) on the finite set Sf is the Fourier transform of the function A on Fﬁ. Throughout the
analysis, we will only be using these Fourier coefficients, i.e., the values of A(w) on Sf‘. The Fourier
coefficients satisfy the following identities:

Inverse Transform:

A(z) = Zfl(w)ewx
weSE

Parseval’s identity:

;RZ\AW = Y JAw)?

R R
z€F, wESy

Although we will be applying Fourier Transform over a large prime field [F, it is instructive to
think of the Fourier transform A(w) as a function over the continuous domain [0, 27]f. Operations
like addition, subtraction, multiplication by scalars, of elements in [0, 27]® are all done modulo 27.
For instance, if w’ = 3w then the i coordinate of ' is given by w! = 3w; mod 2. For 0 € [0, 27]
we will use [|0[|2x to denote min(f, 27 —6). For any w € [0, 2n]7 define [|w||oo = max;eqr gy [|will2r
This defines a metric on [0, 27]® given by d(w,w’) = ||w — W' for any two w,w’.
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We shall denote by Z, the set of non negative integers. For a general probability distribution P
on Zf, and a function A : Zf — C, we define

(1) Ap(w) = QCEP[A(QE)G’”‘”]

The numbers Ap(w) can be thought of as the Fourier coefficients of A with respect to the distri-
bution P. Notice that, if A were a function on F Ilf, and P was the uniform distribution over IF;,%,
Ap(w) would reduce to the traditional definition of Fourier coefficient of A.

4.2. (g,6)-concentrated distributions. Let 1 denote the constant function on Z% which is always
equal to 1. The notion of an (g, d)-concentrated distribution is defined as follows:

Definition 4.1. Fore,d > 0, a probability distribution P on Zf is said to be (e, 0)-concentrated if
11p(w)| < e for all |w||eo = 276.

Intuitively a probability distribution is (e, §)-concentrated if its Fourier transform is concentrated
around the origin. In what follows, we will derive some results on the distribution of large Fourier
coefficients Ap(w) in [0, 27)® if an arbitrary function A, and an (g, §)-concentrated distributions P.
Let ((Z%) denote the vector space of all functions from Z% to C such that Ez@Zﬁ |A(2)|? < oo .

Let vy - vy = erzf v1(z)v2(7) denote the natural inner product for two functions vy, v in fo(Z%).

Lemma 4.2. Let P be a (g,6)-concentrated probability distribution. For any wi,ws € [0,27]F such
that ||wi — walleo = 278 the functions vi(z) = /P(x)e™'® and vo(z) = /P(x)e™?* are nearly
orthogonal, i.e., vy - v < €.

Proof. We have

v1 Uy = erZE VP(x)er®, /P(x)eiw2t
= ip((.dQ —wy)<e¢

where the last inequality follows from ||w; —w2||ec = 279 and the fact that P is (e, §)-concentrated.
O

Let A : Fﬁ — C be a function that is bounded, say |A(x)| = 1 for all . By Parseval’s identity,
the sum of squares of Fourier coefficients fl(w) is 1. In particular, this implies that not more than
5% of the Fourier coefficients can be more than €. Now, consider a function A : Zf — C satisfying
|A(z)| =1 for all . The Fourier coefficients Ap(w) do not satisfy the Parseval’s identity. In fact,

the sum of the squares of Fourier coefficients could be exponentially large in R, thus giving us no
bound on the number of large Fourier coefficients.

However, the following lemma asserts that there cannot be many large Fourier coefficients that
are all far from each other. Specifically, although there could be exponentially many w for which
Ap(w) is large, they are all clustered together in to very few clusters.

Lemma 4.3 (Few far-away Fourier coefficients). For 0 < ¢ < %,5 > 0, let P be a (£°,9)-
concentrated probability distribution. Let A : Z% — C be a function such that |A(z)| = 1 for
all v € ZB. Let Q@ = {wM,w® .. w®} c [0,27]" be a set such that [|w") — w0 > 276 and
|Ap(wON| > € for all §,5'. Then |Q| < 3.



Proof. On the contrary, let us say there exists a set  such that || > a% By deleting some

elements from the set, we can assume k = || = 6% Consider functions v(x) = /P(x)A(z)

vj(x) = P(m) wha for all 1 < j ]Q| Observe that all of them are unit vectors in fo(Z%).
Since v - v; = Ap(w¥)) we have |v - v]| . Further using lemmaﬁ, we know |v; - v;/| < 5. Now
consider

k k k

o= "(-v)ul* = P+ ()P —2> (v-v))?
i=j j=1 j=1
2 > (vvp) (v vy) (v ;)

15/ <j<k

< 1—/{:524—2(];)55

Substituting k = 8%, v — Zle(v -v;)vj|? <1 -3+ 18 < 0, a contradiction. Hence we must have
0 < 3. O

4.3. An explicit (g,)-concentrated distribution. It can be shown that the uniform distribu-
tion over the cube [M]® is (g, d)-concentrated for a sufficiently large integer M. However we will
use the exponential probability distribution to simplify some of the calculations. Formally, define
a probability distribution P on Zf as :

(2) P(z) = 767021@1“ for some ¢ > 0 and y = (1 — e )%

The constant ~ in the above definition is the correct normalization constant to ensure that P is a
distribution. In showing that P has the desired properties, we will use the following fact:

Fact 4.4. For ¢ > 0 and w € [0,27] the following inequality holds |1 — e=¢~%| > 2Z=||w||o,.

Proof. We have |1 — e ™| > [e7¢ — e 7| > e |1 —e ™| > e “|2sin %|. Using the fact that
|sind] > 2 for 6 € [0, 3], we conclude

2e7 ¢ . 2e~ ¢

|1 — e_c_i“’\ > | min(w, 27 —w)| = - l|lwl|2x

O

Lemma 4.5. For all constants £,6 > 0 and 0 < ¢ < In (1 + 4d¢), the distribution P defined in
Equation (@ is (g, 0)-concentrated.

Proof. Let w € [0,27]® be such that |w|le = 276. In particular, let jo be an index such that
min(wj,, 2m — wj,) > 2m0.
Z P(l,)e—iww

ZGZR
_ 1—6 RHE:ecwje iw;x;
j=1z;=0
R _
Spife——
l_e—c sz
J=1
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However from Fact [L.4] we know

1) > 2 g o
Substituting in the expression for 1p(w) we get

R
3 _ [(L—e)| (1 —e)] (I—e)| e -1
tplw)l = ( Il @ —ecwf)y> Aoy S 45— 4

]:17‘7¢]0

which is less than ¢ for ¢ < In (1 + 4d¢). O

5. LABEL COVER TEST

The reduction from label cover proceeds along the lines of [I1]. We will present the reduction as
a PCP system for label cover which makes linear tests on three proof locations. The connection to
MAX3LIN7 will be immediate. Towards this, we define a long code over integers as follows:

Definition 5.1. The long code for labeli € {1,..., R} consists of the function F; : ZE — Z defined
by Fi(x) = x; for all z € ZE.

5.1. Folding. Denote by ZOR C Zf the set of all points in Zf with the one of its coordinates equal
to zero.

Definition 5.2. A I-folded long code is a function F'; : ZE — 7 defined by Fl(x) = x;. More
generally, a function a : Zf — Z is a 1-folded function if a(x + 1) = a(z) + 1.

Given a I-folded long code F';, it is possible to retrieve the value of the full long code at any
location x. This is achieved by expressing = € Zf as © = xg + t1 where zg € Zé%, and then using
F(z) = F/(z¢) +t. By using I-folded long codes, the reduction ensures that all functions under
consideration are I-folded functions.

If a 1-folded function a is linear, then clearly it must be of the form a(z) = S°% | a;z; where

Zf;l a; = 1. The following lemma asserts that the significant Fourier coefficients w corresponding
to an arbitrary I-folded function a also approximately satisfy Zf; qwi = 1.

Lemma 5.3 (Folding lemma). Let a : ZE — 7Z be a function such that a(x + 1) = a(z) + 1 for all
. 2mka(x)

T € Zf. Let A(x) =€ » . Forallé >0 andc < %ln (1 —|—452) the following holds : for all
w € 0,271 with [|lw - T — 22E 3 > 276

[Ap(w)] <6

Proof. Recall that ZOR C Zf denotes the set of all points in Zf with the one of its coordinates equal
to zero. For every x € Zﬁ, there exists unique xg € Zéz, t € Z such that = zo + t1. By definition
of P we have P(z) = P(z0)e . Hence picking = with probability P(z) is the same as:

e Pick xg € Z§ with probability P(zq) = 372, P(xq + t1)
e Pick ¢ with probability p(t) = (1 — e~¢R)e Rt
8



Decompose the expression for A p(w) as follows:

Ap(w) = B [A(z)e 7]
zeP
= B E[A(z+tD)e @@t
roe P tED
However since a(xg + 1) = a(x) 4+ 1, we know A(zg + t1) = A(x ) . Substituting we get
~ . mkt
Ap(w) = E [A(zg)e ™™ E [e2p e ﬂ]
J)()E]S tep
Now to compute
E [e%ye—iwtf} ‘ _ . —cR ie th it M—w-f)l
tep
_ G- efcR)!
- ’1 _ e—cR—I—iA‘

where A = 2%’“ —w- 1. By our assumption ||Aljox > 278, hence using fact we get

]

| E[ezzktefzwtl” |(1—€

—= <4
tep S de~cRjg] T

for all ¢ < & In (1 +46%). Since [A(z)| =1 for all 2, we know |E$0€15[A(:B0)e*i‘”'$0]| < 1. Together

2kt —iw~tf]

27k
with the bound on | Escple » e |, this implies the required result. O

5.2. Verifier. As defined above, long codes are infinite objects that cannot be written down.
Throughout this article, we will be dealing with functions and long codes that are truncated by
restricting the domain from Zf to [M] for some large M. However for the purposes of analysis,
it is convenient to ignore the truncation and assume that the values of the function on the entire
domain Zf are available. As we shall see later, this truncation can be carried out since the verifier
queries the values outside a sufficiently large box [M]" with very low probability.

Let I' = (U,V, E, X, 1I) be an instance of Label Cover with |X| = R. Let us assume that labels
are indexed by {1,..., R}. Given an assignment A to the instance I', the corresponding PCP proof
is supposed to consist of the I-folded long codes of the labels assigned to each of the vertices in
U U V. For instance if A is an assignment then for every vertex u € U UV the proof supposedly
contains the 1-folded long code F’ A(u)-

Recall that given a T-folded long code F';, it is possible to retrieve the value of the full long
code at any location z. The same holds for any I-folded function. Henceforth, we shall describe
the verifier as having access to the full unfolded function (the purported long code) encoding the
labels. Clearly the linear tests of the verifier on the full function can be converted to linear tests
on the I-folded version.

Given a function 7 : [R] — [R] and a vector z € Z% define z om € Z% as (x 0 7); = 2. Let
P and P’ be exponential decay probability distributions over Zf whose parameters will be chosen
later. Intuitively, the distribution P will be chosen to be a sufficiently slowly decaying exponential
distribution, while the distribution P’ decays at a much slower rate than P. The verifier is described
below:



3-Query PCP Verifier

(1) Pick arandom edge e = (u,v) € E. Let a : Z} — Z and b : ZI — Z be the functions
which are the purported long codes corresponding to vertices u, v respectively.
(2) Pick a random z € Z with the distribution P, a random y € Zf with the distri-
bution P’
(3) Generate a noise vector p € Zf from the following distribution : Each coordinate
Wi is chosen
e 0 with probability (1 —¢).
e Chosen uniformly at random from {1,...,m} with probability e.
(4) Accept if the following equation holds

a(zx) =blrom+y+pu) —bly)

For technical reasons, we will need the following simple lemmas in the soundness analysis.

Lemma 5.4. The total weight of the distribution P outside the set [N]® (on the set Z& — [N]®) is
less than & for N > %lné R

S(1—e=0)R
Proof. We have
R
S rw < XY P
zeZR—[N]E i=1a; =N

_ Rech

S (1—eo)E
which is less than § for N > %ln ﬁ. O

;?H)l;na 5.5. For all M >0, ¢ < g—]\‘}[ . for allx € [M),y € Z the following is true : P(z+y) >
y)/4

Proof. Clearly we have

1

P(IL'—i— y) e_CZixi > e ¢RM 5 =

P(y)

N

O

5.3. Noise Stability. Notice that in Step (3), the 3-query PCP verifier generates a noise vector
w. Finally, instead of querying the location b(z o m + y), the verifier queries the value of a nearby
location b(z o m+y + ).

Introducing noise into the locations queried by the verifier is a powerful recurring theme in
dictatorship (long code) tests and PCP constructions ever since its use in Hastad [I1]. Roughly
speaking, using this technique, the verifier can ensure that the function being queried does not
depend on too many coordinates. Specifically, if the function b was a long code then b(xom+y+pu) =
b(x o7+ y) with high probability over the choice of the noise vector p. On the other hand, if b is a
linear function depending on too many coordinates, then the noise p would affect the value, thus
reducing the probability of success.

Denote by @ the distribution on Zf of the noise vector p. That is each coordinate of y is chosen
independently to be 0 with probability (1 —¢) and a uniformly random element in {1,...,m} with
probability . Along the lines of Hastad [II], we need to bound the contribution of the Fourier
coefficients of b corresponding to linear forms depending on many coordinates. However, in our
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setting, the coefficients of the linear forms are not discrete. Thus, we say a linear function depends
on many coordinates if it has more than C' (defined below in Lemma [5.6)) large enough coefficients.
The following lemma will be used in the soundness analysis to bound the contribution of the Fourier
coeflicients corresponding to these linear functions:

Lemma 5.6. For alle; > 0,0 < 6 < 1 and constants m = (5—11], C = [logl_% e1] the following is

true: For all w € [0,27]% with more than C coordinates w; satisfying ||lwill2r = 2701,
o) < e

Proof. Let S denote the set of indices j € {1,..., R} such that ||w;|l2x > 2761. Then by definition
|S| > C

loW) = | ) Q@)e ™
erf
R c m
_ iw;-0 < iwjt
= H[(l—s)e i +mZe J]
7j=1 t=1
R iw; (m+1) iw;
e |e™d —e
< — — -
i mn]
J:
€ 2
< loef——
[ [t-e+ S

jes
By definition of S, |lwj||2x > 276; for j € S. Hence using Fact with ¢ = 0 we get

o) < H(1 et 27;51)
jES

which for m > 1/6; and C > log;_. /5 €1 is at most

(-5 =05 <o

jeSs

6. PROOF OF MAIN THEOREM [3.4]

In this section, we will present the proof of Theorem [3.4] Towards this, we first describe the
parameters for the verifier in section [5

Choose an integer m > RTQ. Choose a c less than both + In(1 + 46%) and In(1 +4(g)5%). Denote

by P the exponential decay probability distribution with parameter c. In particular, P is ((§)5, %)—
concentrated. Let N be the integer obtained from Lemma such that weight of P outside [N]?
is less than §. Let ¢ be a real number less than R(]I\I;fm). Let P’ denote the exponential probability

distribution with parameter ¢'.

Completeness : Suppose A is an assignment that satisfies all the edge constraints II. The
corresponding long code assignment is accepted by the verifier with probability at least 1 — . For
an edge e = (u,v) € E, the verifier rejects the long code assignment only if p 44,y # 0. It is clear
from the choice of p that this happens with probability exactly 1 — €.

11



Soundness : Suppose the verifier accepts with probability greater than 199. Let x“’(zx,y, u) be
the indicator variable that is 1 if the test on edge e = (u,v) succeeds with random choices z,y, p.
Then we can write the probability of acceptance of the test as follows:

Prtest accepts| = E

u,v

> P(x)P’(y)Q(u)x“”(w,y,u)] > 196

x’y?
nezl

Notice that the support of the distribution p is {0, 1,...m}f. Further from Lemma [5.4] the total
weight of the distribution P outside [N]® is less than §. Hence we can truncate the summation
over z and conclude

> P(x)P'(y)Q(1) X" (z, y, u)] > 186

z€[N]R, pe[m)?
yEZf

u,v

where [N]® C Z defined as [N]® = {0,1,..., N}®. Clearly for x € [N]¥,u € [m]® the vector
zom+pu € [N +m]f. Recall that the distribution P’ is chosen to be sufficiently slowly decaying in
comparison to P(z) and Q(u). That is by Lemman 5|for all y € Z, 2z € [N +m]® we have P'(y +

2) > P (y) . In particular, P’ (y+m OTuy + 1) = (y) , or equivalently 21/ P'(y + x o Ty + ) P'(y) =
P'(y). Henceforth we will use 3/ to denote y + a: O My + [

Using this inequality in the expression for probability of acceptance we get:

E Z )/ P'(y)P'(y)Q(u (z,vy, ,u)] 94
" Lee[NIR peim) P
yEZf

For a prime p define x;%(z,y, ) to be 1 if a(z) + b(y) — b(z o7+ y + ) = 0 mod p and zero
otherwise. Clearly x;,"(z,y, ) = xX"(z,y, ) for all integers z,y, u. Replacing x** by x,” we get:

E Z x)\/ P (y)P'(y")Q (1 (x,y,p1)| =99
“Y LoeNIE pelm] P
yGZf

The prime p can be chosen to be sufficiently large so that truncating the summation over y to
[p]R does not alter the probability value significantly. Further, by picking p sufficiently large, it
is possible to ensure that the total weight of the distributions P, P’, ) outside [%’]R is less than ¢.
Hence computing y' = y + 2 0 my, + g modulo p is same as computing y’ over integers for all but a
d fraction of (x,y, u). In particular, we can conclude

(3) E > PP )P () QU)X (z,y, 1) | = 86

’ Ty,
yelp)

where ' = y + x o Ty, + i is computed modulo p. Notice that the parameter p is an artifact in the
analysis, and is chosen to be sufficiently large compared to all other parameters. It is instructive
to think of p as tending to infinity while all other parameters are fixed.

12



Now we fix an edge e = (u,v) and analyze the probability that the test succeeds. Let 7w denote
the projection constraint on the edge e. The following is an arithmetization for x;"

p—1 i
uv (o - _ E 6 la(z)+b(y)—b(zom+y+p)]
) )
Xp ( Yy M) .

where 3 = e%. Now we define the following notation:
Az) = B@) B(z) = B)
AF(@) = P(2)g"®) B(x) = /P'(x) ")

Substituting the above expressions in we get:

(4) Z @ B (y)B*(y/)| > 85 .

k O 17H7
ye[p]®

Given an w € [0,27]® and a function 7 : [R] — [R], the vector m(w) € [0,27]¥ is defined by
(m(w))i = 2_jen—1(;) wj- The expression inside the expectation in (4) is similar to the one obtained in
[11], and using a standard computation over I}, it can be written in terms of the Fourier coefficients.
For the sake of completeness, we include the details below. The expression within the expectation

in is equal to

p—1
EZ Z Q(u Z Ak oW1 Z Bk (wo)e o2y Z Bk: (w3)eiws: (wom+y+p)

p k=0 x’M’R w1€SR UJQESR w3€SR
yE(p]

p—1
:;Z > AF(w;)BF(wy) BF (ws) D Quyein Y eilrmmlws))m N pilwamwn)y

k=0 w1 w2 w3eSE nelpl B z€[p]R y€[p) B
Since w1, ws, w3 € S’Ilf, we have
E etwrmm@s))e — () unless wy = 7(ws)
z€[p] R
Z el@2=ws)y  — () unless wy = w3

yElp]

Using these relations in the expression, and renaming w3 to be w we get

,ZZ (RAk; )) <pR

kOeSR

B ) [ 3 Qe

peplF

Recall that for Q(u) = 0 for all u ¢ [m]¥, hence for p > m we have > uelplR Qp)e ™ H = 1g(w).
Therefore we have

(5) S3 B | Y (RIBRW)R) pRAkr @) igw)|| > 88
k=0 """ |weSE
13



From Parseval’s identity we have,

(6) Pty BRI = Y VP @B <1

weSE z€[p|R

Further we have |[pRA¥(w)|, [1g(w)| <1 for all w. Hence for all k
> (pRIBHw)R) [p Ak (r(w)ig(w)| < 1
wesk

The inequality asserts that the average of p such terms is larger than 8). By an averaging
argument, there exists 2dp < k < p(1 — 2§) such that

E |2 (nBH@P) [pRAkE@)iow)|| > 49

u,v
wesk

Fix some such k for the rest of the argument. Observe that

PPAK(r(W) = Y Pla)Af(a)e

z€[p]"

By Definition |1} the Fourier coefficient A% (m(w)) with respect to distribution P is given by

Apr() = 3 Pla)Af(z)e ™)

zeZf
For sufficiently large choice of the prime p, we have
[P AR(r(w)) — Ab(m(w)) <3
Substituting Pl Ak (m(w)) by A’I%(ﬂ(w)) and using equation |§| we get

™ B | Y (pBH@)P) [Abr@)iow)|| >3

u,v
weSE

6.1. Restricting to “sparse” Fourier coefficients. The expectation above looks similar to
the expression that is used to derive labels in Hastad’s work on 3-variable linear equations modulo
2. This latter expression is of the form } 4 |B (ﬂ)ﬂflm(ﬁﬂ summed over all § of small size — see
[11] for details. Along the lines of [11], we will use the Fourier coefficients in the above expression
to obtain a decoding of labels to the vertices u,v. Roughly speaking, Hastad’s decoding proceeds
as follows:

For each vertex v € UUV, sample a sparse Fourier coefficient w from an appropriate
distribution, and sample uniformly random non-zero coordinate of w. Assign to
vertex v the label corresponding to the coordinate.

The Fourier coefficients w in our case do not take discrete values. Although for the purposes of
analysis we have used w in a discrete set Sf, recall that p is chosen to be sufficiently large compared
to every other parameter including R. In fact, it is instructive to think of p — oo while all other
parameters stay fixed.

In the continous setting, the notion of a sparse Fourier coefficient w needs to be redefined.
Specifically, a sparse Fourier coefficient w would have a few large coordinates w;, while the remaining
coordinates are small in absolute value. To this end, we define two subsets 21,29 C SI])% as follows:
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e O : set of w such that ||w - 1||ax > 278. In other words, for every w € € there is at least
one large coordinate, i.e, a coordinate w; with ||w;|2r = QLR‘S.
e () : subset of w which have very few large coordinates. In particular, for all w € 2y at

most C' of its coordinates satisfy ||w;||2r > QRLQ‘S. (Here C' is the constant from Lemma )

Here Q1 N Q9 would be the set of sparse Fourier coefficients for our purpose.

Firstly, we will bound the contribution of Fourier coefficients with no large coordinate using
Lemma This corresponds to bounding the contribution of trivial Fourier coefficient in [11].
27 (20p)

Notice that w -1 = m(w) - 1. Hence for w ¢ Qy, ||7(w)-1— 2%”% 2 [2m6 — =7 [l2r = 276, From

Lemma H and choice of distribution P, ]A’I%(W(w)ﬂ < ¢ when ||r(w) -1 — %H% > 276. This
implies that |A% (7 (w))| < § for all w ¢ Q.

U,V

E | Y (p7BHw)?) |Ab(r()iow)|| > 20
w 1

To bound the contribution of Fourier coefficients with too many large coordinates, we will use

the noise p introduced by the verifier. More precisely, we have |1g(w)| < 6 for all w ¢ Qs from

Lemma [5.6] Therefore,

(8) Bl Y Qﬁ@umﬁﬂAyﬂww > 6

’ weN1N2

We will next see how one can decode labels satisfying many Label Cover constraints based on .

6.2. Decoding Label Sets. For w € [0,27]" and § > 0, let Ls(w) C [R] denote the subset of
indices w; such that ||w;||2r = 274.

For every vertex v € V with the corresponding Fourier transform ﬁk, define P, to be the
distribution obtained by normalizing p®|B*(w)|?. Since . gr pT|B¥(w)|? < 1, P, = 7p’t|BF(w)|?
p
for some v > 1. For a vertex u € U with the corresponding Fourier transform A’I%, define the set
Q4 of significant frequencies as follows:

. 5
(9) QA:{weQﬂnb;\Aywﬂ>Z}.

Define the set L(u) as follows:

(10) me:LJng.

wEN A

Intuitively L(u) is the set of all large coordinates of those w for which the Fourier coefficient | A% (w)|
is large. The decoding algorithm proceeds as follows:

e For v € V, pick aw € S’f with probability P,. Assign a label uniformly at random from
L s (w) if it is nonempty, else assign a random label.
R

e For every vertex u € U, assign a label uniformly at random from L(u) if it is nonempty,
else assign a random label.

Every Fourier coefficient w € €4 is sparse in that it at most C' large coordinates. A trivial bound
on the size of L(u) is given by C - |Q24|. In Hastad’s work [11], this bound suffices since the size
of Q4 is bounded using Parseval’s identity. The main technical challenge in our setting is that
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>, |45 (@)]?, the sum of squared Fourier coefficients with respect to the distribution P, could be
very large. In particular, bounding this sum by Parseval’s we get

(At l)” <3P

When P(z) is uniform, i.e., P(x) = 1/p® for every x, this bound equals 1, but the bound could be
exponentially larger in R for distributions P that are very non-uniform (as in our case). Thus the
obvious extension of Hastad’s argument will lead to a list size bound that is too large to be useful
as a decoding strategy.

Although the size of 24 could be exponentially large, Lemma [4.3| shows that the large Fourier
coefficients are all clustered in to a few clusters. Using this property, we obtain the following bound
on the size of L(u).

Claim 6.1. For every vertex u € U, the cardinality of the set L(u) is at most 4(?—20.

2w

Proof. Recall that by definition, every w € {2 has at most C' coordinates w; satisfying ||wi|l2r = Tz

Hence for all w € Q1 N Q9 each of the sets Ls (w) and L s (w) have a cardinality of at most C.
R 2R

Suppose the assertion of the claim is false. We will inductively produce a large set of distant
w, for all of which A (w) is large. This will contradict the Lemma since the distribution P is
concentrated.

Construct the set ' C 14 iteratively as follows: To start with pick an w e Q. After t > 1
steps, let Ly = Ul_, L 2 (w (l)) Since each L 5 has at most C elements, the cardinality of L; is at
2R

most C' - t. Since L(u ) > 4?9, when ¢ < 52 we have |L(u)| > |L|. In particular, there exists some
w1 e Q4 such that the set L5 (w®*1)) — L; is nonempty. Let us assume j € Ls (WD) — L.
R

For any 1 < i < ¢, the distance Hw — Wt > Hw (t+1) wj(.i)ng. Since j € L%(w(t“)) — Ly, we
have ij Hgﬂ > 2% and Hw HQW < Z%. Hence the distance [[w® — w(tD]|| is at least 252
By iterating the above process, it is possible to construct a set Y C Q4 with cardinality at least
52 such that for all w®, W) € ', [|w® — W > %. This will contradict Lemma since P
is a ((2)5 , %)—concentrated. O

6.3. Soundness analysis wrap-up using the label sets. By an averaging argument applied to
@) at least for a fraction 2 of the edges the following inequality holds:

2
> (BHP) [4b )] > 3

weN1NNa

We refer to these edges (u,v) as good edges. Consider a good edge e = (u,v). On choosing

w over the probability distribution P,(w) with probability at least g we have |AK (my,(w))] = g
and w € Q1 N Q. Since w € O we have ||7(w) - 1]|2x = 270. Consequently, there have to be
large coordinates of 7(w), i.e., there must exist i € [R] such that ||[7(w)]i|l2r = 2—?{5. Suppose
i€ L%(ﬂ(w)) is a large coordinate of m(w) then there must be a large coordinate of w in 7=1(i),

ie., aj € m1(i) such that |wjl2x 2 .

Therefore with probability at least & the vertex v is assigned label j Further using Claim we
conclude that vertex u is assigned label ¢ with probability at least 480 The edge (u,v) is satisfied

when u is assigned ¢ and v is assigned j. Hence the edge e is satisfied with probability at least
16

Recall that w € €y has at most C' large coordinates.



g . % . % = %. Af there are at least a fraction g of good edges, the expected fraction of edges
)

satisfied is at least 57~ which is greater than % for large enough R.

We have thus shown that the 3-query PCP has completeness (1 —¢) and soundness at most 194.
The tests it makes are linear equations. Therefore, we immediately get that the promise problem
MAX3LIN; . 195 is NP-hard. Since ¢, > 0 are arbitrary, the proof of Theorem [3.4]is complete.
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