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Abstract— This paper presents an approach for learning
environmental knowledge from task-based human-robot diabg.
Previous approaches to dialog use domain knowledge to con-
strain the types of language people are likely to use. In cordst,
by introducing a joint probabilistic model over speech, the
resulting semantic parse and the mapping from each elementfo
the parse to a physical entity in the building (e.g., groundag),
our approach is flexible to the ways that untrained people
interact with robots, is robust to speech to text errors and
is able to learn referring expressions for physical locatias in a
map (e.g., to create a semantic map). Our approach has been
evaluated by having untrained people interact with a servie
robot. Starting with an empty semantic map, our approach is
able ask 50% fewer questions than a baseline approach, therg
enabling more effective and intuitive human robot dialog.

Commands
- Go to the bridge.

- Go to the lab.
- Bring me to the elevator.
- Go to Christina’s office.

- Take me to the meeting
room.

(b)

Fig. 1: In (a) is CoBot, a mobile service robot and the test

As robots move out of the lab and into the real worldplatform used in our experiments. In (b) are examples of
it is critical that humans will be able to specify complexcommands that our approach is able to successfully follow.
task requirements in an intuitive and flexible way. In this

paper, we enable untrained people to instruct robots via
dialog, which is challenging for several reasons. First tex

to speech results are inherently noisy and are prone t tes 1 it diat ; tati .
errors due to out-of-domain speech input (e.g., “Kristina ates to an intermediate meaning representation (parsing)

vs. “Christina”). Second, human speech is highly—variablglnd maps elementg in th? intermediate re_presentation to
(“the kitchen” vs “the kitchenette”). Finally, the mapping aspects of the physical environment (grounding). The parse

from the natural language expression of locations and 0Bpnsists of linguistic constituents, including actionspple,

jects onto new environments is unknown. Instead of prealnd locations. The grounding consists of locations in the

supposing that the robot has access to a large reposit(?ggst'ial envg\(;gmetr;]t g, _plactesthwhehre pe(l)ple _Want th?
of environmental knowledge to understand the comman ot to go). €n the mapping 1o ne physical environmen

received, our approach interactively learns by executihgt IS unknown,tthe d|a_logtf]ystkem |?|t(;ates an |nteractt|on V;/]'.th
tasks. For example, when the robot is in a new environme € person fo acquire Ihe knowledge necessary to acnieve

and someone says, “Go to the kitchen.” our approach e task. The results of the interaction are stored in the
able to learn that “glo to” refers to the GloTo task and tha nowledge base that is used for future interactions with

“the kitchen” refers to a set of locations in the environmentpeOple' When the mapping 10 a physical location is known,

After learning, the robot is able to execute natural Ian@uag[hen the robot executes the corr_espondmg action.
commands, as in Figure (1). To evaluate our approach, a dialog system was developed

We address these issues by developing a dialog systd@f @ mobile service robot [1], [2], enabling it to be com-
that is able to learn interactively from people. Our diaManded to move anywhere in three floors of a large office
log system is aimed at capturing environmental knowledg&ilding. The aim of these experiments was two-fold. First,
from untrained users. There are three main components*¥¢ Show that as people give commands, the robot is able
probabilistic model that connects speech to the locations [© !€arn the environmental knowledge necessary to interact

the physical environment, a dialog system which acquiré@ith untrain_ed people. As a result, the robot needs to ask
knowledge that the robot does not know a priori, and fewer questions to understand new commands correctly. Over

knowledge base which stores the acquired knowledge. both allctior?s and locations, our_approach _reduces the Eﬂhu_ir
guestions in half, compared with a baseline approach which
1 Thomas Kollar (tkollar@cmu.edu) and Manuela Veloso@SKS about the action and the destination. Second, we have
(mmv@cs.cmu.edu) are with the Computer Science Deparin@arhegie demonstrated that the robot is able to learn meaningful
Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA. referring expressions for the locations where it was seet. W
Vittorio Perera (vittorio.perera@gmail.com) and Danielardi h f d th Ith h th m . inf
(daniele.nardi@dis.uniromal.it) are with Department ofrputer, Control ave found t at.' although the system W' somet|me§ inrér
and Management Engineering Sapienza, University of RomeyeRItaly ~ the wrong location (e.g., there are multiple “Tom’s offices”

I. INTRODUCTION

The probabilistic model parses the speech to text candi-



in the environment), a person is able to correct the behavibase after interacting with people. Each of the following
of the robot, resulting in a system that is able to consistentsections describes these components of our approach.
understand task-constrained speech as given from undraine o
users. A. Probabilistic Model
We model the problem of understanding natural language
Il. RELATED WORK as inference in joint probabilistic model over the groumsin

This paper builds off of recent work in semantic mappinJ' a parseP and speectt, given access to a (potentially

and grounded language acquisition. Typically, semantipsmaempty) knowledge bas# B:
(maps with the location and type of objects in them) are argmax p(T, P, S|KB) (1)
created without interacting with people. Visual and laser T,P,S

features are !‘Sed to -cllasgn‘y the t[ype of location or the The probabilistic model is composed of three components:
scene type using classification algorithms, such as AdaBo% a speech to text model that provides multiple speech

[3]-{6]. Smooth_ing may be _applied (e.9. a Hid_den Mark_o_\fo text candidates 2) a parsing model that that is able to
Model / Voronoi Random Fields) to make the final classifi, tact the high-level structure of the command and 3) a

cation m(_)rhe rok_Just |[3]|’ [6]. Visual §em_ant|c m;pplng_ IS bfte grounding model that maps the referring expressions from
cast as either visual place categorization or object reiiogn 4, components of a parse (e.g., action, location, person) t

|[7]' lSometlm_es Ithe aim LS to prowdedar(\jchonng of ,h'gh' ctions that the robot can execute and places where the robot
evel semantic elements that are grounded in perception [4], | go. Formally, this becomes:

Unlike these approaches, we focus on learning a semantic

map directly from human-robot dialog. p(I', P,S|KB) = p(T'|P,KB) x p(P|S) x p(S) (2)
When humans are involved in semantic mapping the aim is . .

to build asharedrepresentation between the robot and human Ve describe the parsing model, the knowledge base and

via human-augmented mapping (HAM). This is sometimet’® grqundmg model the foIIow!ng sections. The speech

done using a tangible user interface in conjunction witf0del is obtained from Z recognizer able capable of under-

speech [8] or just with speech alone [9]. Our approach mov&anding free-form spee h

beyond this work by taking into account the uncertainty of 1) Parsing Model: Given natural language text from the

the speech, parsing and grounding jointly, being robust ©P€ech recognizer, the system parses it into a semantic

errors in speech recognition and words and phrases that &p@resentation (frames), which consist of an action and a
previously unseen. variable number of arguments. The arguments can be among

Beginning with SHRDLU [10], many systems have exthree different types, including actions, people and locet

ploited the compositional structure of language to stéica Actions include the referrin“g expr"e:ssi.ons fof, actior:s t,hat Y
generate a plan corresponding to a natural language COFIq-bOt can gxecute such as 'go to, b.r|ng me ,“and Igts 90
mand [11]-[16]. Although our work is more narrow in theLO(_:""t'?nS |‘|“10Iude f’eferrmg e_xpressmins l'lfe FiaSh'd Au”d|
scope of semantic parses presented in this paper (e.g- a $ffium” or “the lab”, people include "Tom" or “Joydeep”,
gle task), our approach is less restrictive since any urechi UMes include “now” or “at 2PM” and messages include “hi
person can interact with the robot and teach it about actioffs ! m running a few mmutes Iate" (e.g., from “Tell Tom
and locations, enabling the robot interpret arbitrary leage that 'm running a.few minutes late.”). An example of a parse
about the task. Our work focuses on task-based dialog ahRg" be seen n F|gure_3b. i .
specifically on the GoTo task, complementing other work T i € {actionlocationperson is the label of theith

that has focused on dialog specific to a task [17]-[24]. Word in the natural language command and there fre
words s; in the command, then the parsing model is rep-

1. A PPROACH resented as a linear function of weightsand features:
In this section, we present an approach to human-robot  p(P|S) £ p(l1...Ix|s1...5K) )
dialog in the presence of speech to text errors and the high- 1 N
variability that comes from untrained human users. Figure =7 P <Zw ~@(li, si-1, 84, 5i+1)> (4)
(2a) shows an example of a dialog between the robot and a i

user that our system is able to understand. Figure (2b) showsrg  extract a frame, such as f —

the information that the robot has extracted and storedn Ev% = “go 107, e; = “the kitchen’} (where a is the action

with just a task that has the robot go from place to placgng ¢, is the first argument to that action), the system

in the environment (th&oTotask), our approach is able to greedily groups the labels together for “go” and “to” into
learn referring expressions for actions and locations. an action. The same happens for “the” and “kitchen”, which

~ The main components of our approach are 1) a probabiligre hoth labeled as a location and are passed to the frame as
tic model that is able to interpret natural language commangn argument. The model is learned as a conditional random

for service tasks, 2) a knowledge base that represents @l (CRF); we use gradient descent (LBFGS) to optimize
mapping from referring expressions to locations and astion

3) a dialog system that is able to add facts to the knowledge!The Google speech recognizer was used for our experiments.



USER: Go to the bridge. USER. Bring ne to the bridge.

COBOT: Where is ‘the bridge' ? COBOT: Should | go to this location?

USER: 7300 USER: Yes.

COBOT: Am | going to ‘room 7300 ?

USER: Yes
(a) Unknown Location (b) Unknown action

| ocati onGroundsTo(‘the bridge’, 7300) | |acti onG oundsTo(‘ bring ne to', GoTo)
(c) Location Predicate (d) Action Predicate

Fig. 2: Sample dialogs when the robot has not seen the actidocation referring expressions. In (a/b) are turns in the
dialog. In (c) is the fact that is added from the dialog in (a)(d) is the fact added from the dialog from (b). In both cases
the robot would execute the corresponding action after thlmgl completes.

the parameters?. The featuresp are binary features and term can be computed as:
include the part of speech tags for the current, next and
. . groundsTo(a,y).count
previous word as well as the current, next and previous p(aly; KB) = (8)
word in the natural language command. 2_; groundsTo(as, ).count
2) Grounding Model: Given a parse of the natural lan- In Equation 84 is a multinomial random variable that ranges
guage command and a knowledge base, the grounding modger the possible referring expressions in the knowledge
produces a distribution over the groundings of the refgrrinbase andy ranges over the possible groundings in the
expressions for location, person or action in the commandnvironment.
This grounding happens by using the knowledge base to pro-To compute the second term in Equation (7).eif; is
vide correct coupling between natural language expressioa multinomial random variable over théh element of the
and task the robot should execute or the location the robparse and referring expressignand further thatk(i) is
should go to. To learn this model, we rewrite it using Bayethe realized referring expression for thth element in the
rule: semantic parse, then we can write the probability of the
p(P|T;KB) x p(T: KB) arguments: given a groundingy as:

p(F|P§ KB) = ZPp(P|F; KB) X p(r; KB) (5)

B >_; groundsTo(e; k), ).count

.KB) = 9
plely; KB) Zi,j groundsTo(e; j,v).count ®)

The prior over grounding®(T';KB) is computed by
looking at the counts of each elementlofn the knowledge
base (the category predicates). The other tp(i|T"; KB)
is computed by grounding referring expressions for actions To maintain and re-use knowledge that the robot ac-
locations, people and objects (the relation predicatéafeS quires as a part of the dialogs that has with humans, we
our mobhile robot can only move to places, we approximatedefine a knowledge base that consists of categories and
the grounding of people and objects as being at a particuleglations. Categories are single argument predicatesshwhi
location in the environment. We make the assumption tha&tclude action(X), location(X) and person(X), corre-
the natural language command is well-approximated by a seponding to the labels that are extracted by the parser.
guence of frames. Thus, ff is a frame, then the probability Argument types have corresponding relations that deter-

B. Knowledge Base

of a parseP given the grounding$ can be written as: mine when a referring expression (argumeXitforresponds
to a groundingY: groundsTo(X,Y). For person, loca-

p(P|T';KB) :Hp(filF; KB) (6) tion and action referring expressions, there are the cor-
i respondingpersonGroundsTo, locationGroundsTo and

actionGroundsTo predicates.
To each relation instance in the knowledge base, a number
is attached to keep track of how many times the specific argu-
p(fIT) = p(a|l', KB) x p(e|I'; KB) (7) ments of the relation have been correctly grounded together
in the rest of the paper we will refer to this number using a
To compute the first term, the model assumes access t@atted notation such a®cationGroundsTo(X,Y).count
knowledge base (Section I1I-B) that contains predicatek aror simply as count Some examples in our knowledge
frequency counts. Assuming access tgraundsTapredicate base include person(‘Tom’), location(‘kitchen’) and
(does the first argument ground to the second argument) alationGroundsTo(* kitchen’, 7602).
a correspondingount, then for a grounding € T the first There are multiple ways for facts to get added to the
knowledge base. First, a fact may be added when a user
2\We used CRF++ to perform this optimization explicitly confirms the name of an action or an argument

Each framef; consists of an actiom and its arguments
e, which are grounded separately, such that:



go to Christina's office [ 90 t O] action [Christinal person [Of fice] iocation

go to Kristina' s office [ 90 t O] action [Kristinalperson [OfficCe] iocation
goto christina office [ got 0] action [Christina office]iscation
(a) Speech recognition results (b) Parses
acti onGoundsTo(‘go to', GoTo); 2 acti onG oundsTo(‘go to', GoTo); 4
acti onGroundsTo(‘goto’, GoTo);1 actionG oundsTo(‘goto’, GoTo); 2

personG oundsTo(*‘ Christina', 7008);1
personG oundsTo(‘Kristina, 7008);1

| ocati onGroundsTo(‘ of fice', 7008);2

| ocati onGroundsTo(‘ christina office,
7008); 1

(c) Initial knowledge base (d) Updated knowledge base

Fig. 3: (a) Top three results of the speech recognizer. (lgeRdor each of the top three speech recognition resultshieo
first element, “go to” is parsed as an action, “Christina” @&ged as a person and “office” is parsed as a location (c) The
initial knowledge base for statd, which contains two facts; “go to” and “goto” refer to the Goaction. (d) The updated
knowledge base for staté. “Christina” and “Kristina” are added as candidate peopld &hristina office” is a candidate
location for room 7008.

(e.g., location, object). Second, the knowledge base may bies the knowledge base after each interaction we describe
updated when a user confirms that a task should be executedimple but meaningful example. We assume that only one
in response to a natural language command. parse is available for each speech interpretation and we wil
In either case, since the action is confirmed, the knowleddecus on the grounding relations leaving the categorieteasi
base is updated by adding new category and relation prelthis example the user gives the following commafyt
icates or updating the counts of ones already presents. RorChristina’s office’; Figure (3a) shows the results of the
each of the parsed actions and arguments, a correspondgpgech recognizer while Figure (3b) shows the parse of each
category predicate is added to the knowledge base (e.gf,them.
if “go to” is parsed as an action, themction(‘go to’) is The initial knowledge of the robot, collected from previous
added). For each of the parsed actions or predicates, tinderactions, is shown in Figure (3c). The algorithm guerie
correspondingyroundsTo(X, Y)elations are either added to the knowledge base for possible groundings of actions and
the knowledge base and initialized to a count of 1 or, iparameters of the three transcriptions returned by thechpee
already present, their counts are incremented by one. Aacognizer. The query returns the same results for theractio

example of this can be seen in Figure (3). but nothing for the parameters; therefore, the robot asks
_ _ the user to spell the room number of its destination. The
C. Human-robot dialog for task execution user spells “7008” and, after asking for confirmation, the

In order to execute tasks, the robot performs dialog witRlgorithm updates the knowledge base to:
people to fill in unknown components of the plan, as in « actionGroundsTggo to’, GoTo); 4
Figure (2). Given a natural language command, which is « actionGroundsTggoto’, GoTo); 2
parsed into a sequence of frames, the dialog with humans will Second, the following relations are added to the knowledge
proceed by filling in gaps in the knowledge of the robot. Itbase:
any part of the frame is missing the robot will ask a question. , |ocationGroundsTgoffice’, 7008); 2
If there is no action, then it will ask the person to say the , |ocationGroundsT@christina office’, 7008); 1
action and ground it to an action that the robot can execlite. | , personGroundsT¢Cristina’, 7008); 1
there is no argument, then the robot will ask for an argument, personGroundsTKristina’, 7008); 1
according to the action template defining the command (e.9., This example llustrates an important aspect of the algo-
for the “go to” action, it will ask for the location argument) ithm. Once a grounding is retrieved, all high probability
In the case where the frame template is filled, but there igyeach interpretations are added to the knowledge base.
no grounding for either the action or the arguments, thefging this allows us to generalize over different plausible
the system will ask for the grounding of these component§peech results. In this way we also allows other reason-
For the action field, the robot will ask for the groundinggpe groundings into the knowledge base, suctoaation-
to one of the actions (e.g., “go to” or "bring object’). FOr groyundsT¢christina office’, 7008). This is done in order to

the location field, the robot will ask for the grounding t0 acgpe with the uncertainty in the speech recognizer, which
room number in the building. At the end of the dialog, formight provide multiple reasonable interpretations.
safety reasons, the robot always asks for confirmation befor

executing an action. At this stage the robot will execute the IV. RESULTS
action corresponding to the command. Our approach is evaluated in two ways. First, we show
In order to give a better insight on how the algorithm modthat the robot can learn the meaning of natural language
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Fig. 4: Comparison between our approach and the two bagmloposed (using the cumulative number of question grouped
by user). The graphs are cumulative (e.g., the knowledge kesilting from subject 1 is used to interact with subject 2)
(a) shows the number of questions required to understanddtien parameter across subjects and over time. (b) shows
the number of questions required to understand the locgidwameter across subjects over time. (¢) shows the number of
guestions required to understand all parameters and exdoaitask.

commands from dialog. Second, we show that using our
algorithm the robot learns a reasonable referring exprassi

across multiple groundings, by aggregating results in the
knowledge base.

the lab
the robot soccer lab

A. Learning from dialog

the bridge
room 7300

the elevator

To evaluate our approach, we asked 9 different people to the el
give a mobile service robot a command to go to destinations
in a real-world environment. The robot had the capability of
going anywhere across three floors of an office building [1],
[2]. Although the task was fixed (e.g., going to a destingtion
people could use whatever language was natural to them. The
subjects ranged between an age of 21 and 54 and were both
native and non-native English speakers, which made the task
more challenging. We provided each person with the same
map of the seventh floor of our building. Six locations were
marked on the map and we asked the people to give the robot
commands to go to the marked destinations. Since the people ] ) ] ) ]
had different degrees of familiarity with the building, thwap Flg. 5: The semantic map after interacting with all nine su_b—
was also annotated with room numbers. The aim was to tdSEtS- Plotted on the map are the most frequently occurring
the ability of our algorithm to learn the referring express  '€ferring expressions for each location.
for different groundings through dialog, therefore thei@i horizontal axis there are the nine people who interacteld wit
knowledge base was empty. After each person interacted withe robot and on the vertical axis are the cumulative number
the robot, the knowledge was aggregated and used as startifgquestions asked over all sessions. For example, session
point for the following participants. 9 includes the knowledge base acquired from sessions 1-

We compared our algorithm with two different baseline8, and the vertical axis corresponds to all of the questions
The first baseline, called th&ask Baseling enables the asked during those previous sessions as well as the current
robot to execute the task without learning any semantigession. Figure (4a) shows results for the action parameter
information about the environment. Although less naturdbpecifically, we have shown that the number of questions
than the proposed approach since the person must explicilgked for actions stops increasing after the first few inter-
define the room number and action, only two questions aeetions. This happens because there is limited diversity in
required before the robot can execute the task. The secaotid ways that a person can command the robot to perform a
baseline proposed, callégarning Baselingtries to execute task. Out of 54 instructions, only three different verbs ever
the assigned task while learning semantic knowledge aboused to command the robot to go to a plage {o, bring me,
the environment. However, this baseline does not use thiske m¢. Figure (4a) additionally shows how our approach
knowledge about the environment for the dialog. In this cas@erforms better then both baselines since, on average, afte
people can use whatever language they like for the locatiors few examples, the robot will stop asking the person about
but the robot will always ask three questions. whether it should execute the GoTo task.

Figure (4) shows the results of this experiment. On the Figure (4b) shows how frequently the robot had to

the room of the
coral meeting
the meeting
room

the conference
room




ask about the location or person argument of the pars&218932. The views and conclusions contained in this doc-

Specifically, the vertical axis corresponds to the numbarmment are those of the authors only. We would also like

of questions required to retrieve the correct grounding fao acknowledge Robin Soetens for his contributions to later

referring expressions of locations and persons. The numbegrsions of this system.

of questions asked about this argument is greater because

people refer to the same location in many different ways

and therefore the algorithm needs more examples to learid] S. Rosenthal, J. Biswas, and M. Veloso, “An Effective NMetRobot

; ; ; Through Symbiotic Human-Robot Interaction,” MAMAS 2010.

the correct grounding. In thls.case' in the worst case, ou J. Biswas, B. Coltin, and M. Veloso, “Corrective Gradidkefinement

approach must ask two questions of a person, whereas theé o; Mobile Robot Localization.” inROS 2011.

Task Baselinenust ask only one (note, however, that the task[3] A. Rottmann, O. Martinez Mozos, C. Stachniss, and W.gaud,
; ; ; it “Place classification of indoor environments with mobil&ats using

baseline is less |ntU|t|v_e than our a_\pproach). Nevertlsel_es boosting.” inAAAI, 2005,

as the number of the |nterac_t|0ns increases, the algonthrpu C. Galindo, A. Saffiotti. S. Coradeschi, and P. Buschkilulti-

learns how people address different places and the number hierarchical semantic maps for mobile robotics,”IROS 2005.

of questions needed decreases. When the seventh person IsE: Brunskill T. Kollar, and N. Roy, “Topological mapmnusing

int ted with the robot our approach started to outperfor spectral clustering and classiication,” IROS 2007.

interac ) i pp p ) [6] S.Friedman, H. Pasula, and D. Fox, “Voronoi random fietddracting

both of the baselines. Figure (4c) shows the aggregation of  the topological structure of indoor environments via pléaiseling,”

the grounding of all action and argument parameters, which_ i JCAI, 2007.

7] J. Wu, H. I. Christensen, and J. M. Rehg, “Visual placesgatization:
shows that the overall system always performs better thaH Problem. dataset, and algorithm.” IROS 2009,
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