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Abstract— This paper presents an approach for learning
environmental knowledge from task-based human-robot dialog.
Previous approaches to dialog use domain knowledge to con-
strain the types of language people are likely to use. In contrast,
by introducing a joint probabilistic model over speech, the
resulting semantic parse and the mapping from each element of
the parse to a physical entity in the building (e.g., grounding),
our approach is flexible to the ways that untrained people
interact with robots, is robust to speech to text errors and
is able to learn referring expressions for physical locations in a
map (e.g., to create a semantic map). Our approach has been
evaluated by having untrained people interact with a service
robot. Starting with an empty semantic map, our approach is
able ask 50% fewer questions than a baseline approach, thereby
enabling more effective and intuitive human robot dialog.

I. I NTRODUCTION

As robots move out of the lab and into the real world,
it is critical that humans will be able to specify complex
task requirements in an intuitive and flexible way. In this
paper, we enable untrained people to instruct robots via
dialog, which is challenging for several reasons. First text
to speech results are inherently noisy and are prone to
errors due to out-of-domain speech input (e.g., “Kristina”
vs. “Christina”). Second, human speech is highly-variable
(“the kitchen” vs “the kitchenette”). Finally, the mapping
from the natural language expression of locations and ob-
jects onto new environments is unknown. Instead of pre-
supposing that the robot has access to a large repository
of environmental knowledge to understand the commands
received, our approach interactively learns by executing robot
tasks. For example, when the robot is in a new environment
and someone says, “Go to the kitchen.” our approach is
able to learn that “go to” refers to the GoTo task and that
“the kitchen” refers to a set of locations in the environment.
After learning, the robot is able to execute natural language
commands, as in Figure (1).

We address these issues by developing a dialog system
that is able to learn interactively from people. Our dia-
log system is aimed at capturing environmental knowledge
from untrained users. There are three main components: a
probabilistic model that connects speech to the locations in
the physical environment, a dialog system which acquires
knowledge that the robot does not know a priori, and a
knowledge base which stores the acquired knowledge.
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(a)

Commands

- Go to the bridge.

- Go to the lab.

- Bring me to the elevator.

- Go to Christina’s office.

- Take me to the meeting
room.

(b)

Fig. 1: In (a) is CoBot, a mobile service robot and the test
platform used in our experiments. In (b) are examples of
commands that our approach is able to successfully follow.

The probabilistic model parses the speech to text candi-
dates to an intermediate meaning representation (parsing)
and maps elements in the intermediate representation to
aspects of the physical environment (grounding). The parse
consists of linguistic constituents, including actions, people,
and locations. The grounding consists of locations in the
physical environment (e.g., places where people want the
robot to go). When the mapping to the physical environment
is unknown, the dialog system initiates an interaction with
the person to acquire the knowledge necessary to achieve
the task. The results of the interaction are stored in the
knowledge base that is used for future interactions with
people. When the mapping to a physical location is known,
then the robot executes the corresponding action.

To evaluate our approach, a dialog system was developed
for a mobile service robot [1], [2], enabling it to be com-
manded to move anywhere in three floors of a large office
building. The aim of these experiments was two-fold. First,
we show that as people give commands, the robot is able
to learn the environmental knowledge necessary to interact
with untrained people. As a result, the robot needs to ask
fewer questions to understand new commands correctly. Over
both actions and locations, our approach reduces the required
questions in half, compared with a baseline approach which
asks about the action and the destination. Second, we have
demonstrated that the robot is able to learn meaningful
referring expressions for the locations where it was sent. We
have found that, although the system will sometimes infer
the wrong location (e.g., there are multiple “Tom’s offices”



in the environment), a person is able to correct the behavior
of the robot, resulting in a system that is able to consistently
understand task-constrained speech as given from untrained
users.

II. RELATED WORK

This paper builds off of recent work in semantic mapping
and grounded language acquisition. Typically, semantic maps
(maps with the location and type of objects in them) are
created without interacting with people. Visual and laser
features are used to classify the type of location or the
scene type using classification algorithms, such as AdaBoost
[3]–[6]. Smoothing may be applied (e.g., a Hidden Markov
Model / Voronoi Random Fields) to make the final classifi-
cation more robust [3], [6]. Visual semantic mapping is often
cast as either visual place categorization or object recognition
[7]. Sometimes the aim is to provide anchoring of high-
level semantic elements that are grounded in perception [4].
Unlike these approaches, we focus on learning a semantic
map directly from human-robot dialog.

When humans are involved in semantic mapping the aim is
to build asharedrepresentation between the robot and human
via human-augmented mapping (HAM). This is sometimes
done using a tangible user interface in conjunction with
speech [8] or just with speech alone [9]. Our approach moves
beyond this work by taking into account the uncertainty of
the speech, parsing and grounding jointly, being robust to
errors in speech recognition and words and phrases that are
previously unseen.

Beginning with SHRDLU [10], many systems have ex-
ploited the compositional structure of language to statically
generate a plan corresponding to a natural language com-
mand [11]–[16]. Although our work is more narrow in the
scope of semantic parses presented in this paper (e.g., a sin-
gle task), our approach is less restrictive since any untrained
person can interact with the robot and teach it about actions
and locations, enabling the robot interpret arbitrary language
about the task. Our work focuses on task-based dialog and
specifically on the GoTo task, complementing other work
that has focused on dialog specific to a task [17]–[24].

III. A PPROACH

In this section, we present an approach to human-robot
dialog in the presence of speech to text errors and the high-
variability that comes from untrained human users. Figure
(2a) shows an example of a dialog between the robot and a
user that our system is able to understand. Figure (2b) shows
the information that the robot has extracted and stored. Even
with just a task that has the robot go from place to place
in the environment (theGoTo task), our approach is able to
learn referring expressions for actions and locations.

The main components of our approach are 1) a probabilis-
tic model that is able to interpret natural language commands
for service tasks, 2) a knowledge base that represents the
mapping from referring expressions to locations and actions
3) a dialog system that is able to add facts to the knowledge

base after interacting with people. Each of the following
sections describes these components of our approach.

A. Probabilistic Model

We model the problem of understanding natural language
as inference in joint probabilistic model over the groundings
Γ, a parseP and speechS, given access to a (potentially
empty) knowledge baseKB:

argmax
Γ,P,S

p(Γ, P, S|KB) (1)

The probabilistic model is composed of three components:
1) a speech to text model that provides multiple speech
to text candidates 2) a parsing model that that is able to
extract the high-level structure of the command and 3) a
grounding model that maps the referring expressions from
the components of a parse (e.g., action, location, person) to
actions that the robot can execute and places where the robot
can go. Formally, this becomes:

p(Γ, P, S|KB) = p(Γ|P,KB)× p(P |S)× p(S) (2)

We describe the parsing model, the knowledge base and
the grounding model the following sections. The speech
model is obtained from a recognizer able capable of under-
standing free-form speech1.

1) Parsing Model: Given natural language text from the
speech recognizer, the system parses it into a semantic
representation (frames), which consist of an action and a
variable number of arguments. The arguments can be among
three different types, including actions, people and locations.
Actions include the referring expressions for actions thatthe
robot can execute such as “go to,” “bring me”, and “let’s go”.
Locations include referring expressions like “Rashid Audi-
torium” or “the lab”, people include “Tom” or “Joydeep”,
times include “now” or “at 2PM” and messages include “hi”
or “I’m running a few minutes late” (e.g., from “Tell Tom
that I’m running a few minutes late.”). An example of a parse
can be seen in Figure 3b.

If li ∈ {action, location, person} is the label of theith
word in the natural language command and there areN

words si in the command, then the parsing model is rep-
resented as a linear function of weightsw and featuresφ:

p(P |S) , p(l1 . . . lN |s1 . . . sK) (3)

=
1

Z
exp

(

N
∑

i

w · φ(li, si−1, si, si+1)

)

(4)

To extract a frame, such as f =
{a = “go to”, e1 = “the kitchen”} (where a is the action
and e1 is the first argument to that action), the system
greedily groups the labels together for “go” and “to” into
an action. The same happens for “the” and “kitchen”, which
are both labeled as a location and are passed to the frame as
an argument. The model is learned as a conditional random
field (CRF); we use gradient descent (LBFGS) to optimize

1The Google speech recognizer was used for our experiments.



USER: Go to the bridge.
COBOT: Where is ‘the bridge’?
USER: 7300
COBOT: Am I going to ‘room 7300’?
USER: Yes

(a) Unknown Location

USER: Bring me to the bridge.
COBOT: Should I go to this location?
USER: Yes.

(b) Unknown action

locationGroundsTo(‘the bridge’,7300)

(c) Location Predicate

actionGroundsTo(‘bring me to’,GoTo)

(d) Action Predicate

Fig. 2: Sample dialogs when the robot has not seen the action or location referring expressions. In (a/b) are turns in the
dialog. In (c) is the fact that is added from the dialog in (a).In (d) is the fact added from the dialog from (b). In both cases
the robot would execute the corresponding action after the dialog completes.

the parametersw2. The featuresφ are binary features and
include the part of speech tags for the current, next and
previous word as well as the current, next and previous
word in the natural language command.

2) Grounding Model:Given a parse of the natural lan-
guage command and a knowledge base, the grounding model
produces a distribution over the groundings of the referring
expressions for location, person or action in the command.
This grounding happens by using the knowledge base to pro-
vide correct coupling between natural language expressions
and task the robot should execute or the location the robot
should go to. To learn this model, we rewrite it using Bayes
rule:

p(Γ|P ;KB) =
p(P |Γ;KB)× p(Γ;KB)

∑

P p(P |Γ;KB)× p(Γ;KB)
(5)

The prior over groundingsp(Γ;KB) is computed by
looking at the counts of each element ofΓ in the knowledge
base (the category predicates). The other termp(P |Γ;KB)
is computed by grounding referring expressions for actions,
locations, people and objects (the relation predicates). Since
our mobile robot can only move to places, we approximated
the grounding of people and objects as being at a particular
location in the environment. We make the assumption that
the natural language command is well-approximated by a se-
quence of frames. Thus, iffi is a frame, then the probability
of a parseP given the groundingsΓ can be written as:

p(P |Γ;KB) =
∏

i

p(fi|Γ;KB) (6)

Each framefi consists of an actiona and its arguments
e, which are grounded separately, such that:

p(f |Γ) = p(a|Γ,KB)× p(e|Γ;KB) (7)

To compute the first term, the model assumes access to a
knowledge base (Section III-B) that contains predicates and
frequency counts. Assuming access to agroundsTopredicate
(does the first argument ground to the second argument) and
a correspondingcount, then for a groundingγ ∈ Γ the first

2We used CRF++ to perform this optimization

term can be computed as:

p(a|γ;KB) =
groundsTo(a, γ).count

∑

i groundsTo(ai, γ).count
(8)

In Equation 8,a is a multinomial random variable that ranges
over the possible referring expressions in the knowledge
base andγ ranges over the possible groundings in the
environment.

To compute the second term in Equation (7), ifei,j is
a multinomial random variable over theith element of the
parse and referring expressionj and further thatk(i) is
the realized referring expression for theith element in the
semantic parse, then we can write the probability of the
argumentse given a groundingγ as:

p(e|γ;KB) =

∑

i groundsTo(ei,k(i), γ).count
∑

i,j groundsTo(ei,j, γ).count
(9)

B. Knowledge Base

To maintain and re-use knowledge that the robot ac-
quires as a part of the dialogs that has with humans, we
define a knowledge base that consists of categories and
relations. Categories are single argument predicates, which
include action(X), location(X) and person(X), corre-
sponding to the labels that are extracted by the parser.
Argument types have corresponding relations that deter-
mine when a referring expression (argument)X corresponds
to a groundingY : groundsTo(X,Y ). For person, loca-
tion and action referring expressions, there are the cor-
respondingpersonGroundsTo, locationGroundsTo and
actionGroundsTo predicates.

To each relation instance in the knowledge base, a number
is attached to keep track of how many times the specific argu-
ments of the relation have been correctly grounded together;
in the rest of the paper we will refer to this number using a
dotted notation such aslocationGroundsTo(X,Y ).count
or simply as count. Some examples in our knowledge
base include person(‘Tom’), location(‘kitchen’) and
locationGroundsTo(‘kitchen’ , 7602).

There are multiple ways for facts to get added to the
knowledge base. First, a fact may be added when a user
explicitly confirms the name of an action or an argument



go to Christina’s office
go to Kristina’s office
goto christina office

(a) Speech recognition results

[go to]action [Christina]person [office]location

[go to]action [Kristina]person [office]location

[goto]action [christina office]location

(b) Parses

actionGroundsTo(‘go to’, GoTo);2
actionGroundsTo(‘goto’, GoTo);1

(c) Initial knowledge base

actionGroundsTo(‘go to’, GoTo);4
actionGroundsTo(‘goto’, GoTo);2
personGroundsTo(‘Christina’, 7008);1
personGroundsTo(‘Kristina’, 7008);1
locationGroundsTo(‘office’, 7008);2
locationGroundsTo(‘christina’ office,
7008);1

(d) Updated knowledge base

Fig. 3: (a) Top three results of the speech recognizer. (b) Parses for each of the top three speech recognition results. For the
first element, “go to” is parsed as an action, “Christina” is parsed as a person and “office” is parsed as a location (c) The
initial knowledge base for stateA, which contains two facts; “go to” and “goto” refer to the GoTo action. (d) The updated
knowledge base for stateA. “Christina” and “Kristina” are added as candidate people and “christina office” is a candidate
location for room 7008.

(e.g., location, object). Second, the knowledge base may be
updated when a user confirms that a task should be executed
in response to a natural language command.

In either case, since the action is confirmed, the knowledge
base is updated by adding new category and relation pred-
icates or updating the counts of ones already presents. For
each of the parsed actions and arguments, a corresponding
category predicate is added to the knowledge base (e.g.,
if “go to” is parsed as an action, thenaction(‘go to’) is
added). For each of the parsed actions or predicates, the
correspondinggroundsTo(X, Y)relations are either added to
the knowledge base and initialized to a count of 1 or, if
already present, their counts are incremented by one. An
example of this can be seen in Figure (3).

C. Human-robot dialog for task execution

In order to execute tasks, the robot performs dialog with
people to fill in unknown components of the plan, as in
Figure (2). Given a natural language command, which is
parsed into a sequence of frames, the dialog with humans will
proceed by filling in gaps in the knowledge of the robot. If
any part of the frame is missing the robot will ask a question.
If there is no action, then it will ask the person to say the
action and ground it to an action that the robot can execute. If
there is no argument, then the robot will ask for an argument
according to the action template defining the command (e.g.,
for the “go to” action, it will ask for the location argument).
In the case where the frame template is filled, but there is
no grounding for either the action or the arguments, then
the system will ask for the grounding of these components.
For the action field, the robot will ask for the grounding
to one of the actions (e.g., “go to” or “bring object”). For
the location field, the robot will ask for the grounding to a
room number in the building. At the end of the dialog, for
safety reasons, the robot always asks for confirmation before
executing an action. At this stage the robot will execute the
action corresponding to the command.

In order to give a better insight on how the algorithm mod-

ifies the knowledge base after each interaction we describe
a simple but meaningful example. We assume that only one
parse is available for each speech interpretation and we will
focus on the grounding relations leaving the categories aside.
In this example the user gives the following command:“go
to Christina’s office”; Figure (3a) shows the results of the
speech recognizer while Figure (3b) shows the parse of each
of them.

The initial knowledge of the robot, collected from previous
interactions, is shown in Figure (3c). The algorithm queries
the knowledge base for possible groundings of actions and
parameters of the three transcriptions returned by the speech
recognizer. The query returns the same results for the action,
but nothing for the parameters; therefore, the robot asks
the user to spell the room number of its destination. The
user spells “7008” and, after asking for confirmation, the
algorithm updates the knowledge base to:

• actionGroundsTo(‘go to’, GoTo); 4
• actionGroundsTo(‘goto’, GoTo); 2
Second, the following relations are added to the knowledge

base:
• locationGroundsTo(‘office’, 7008); 2
• locationGroundsTo(‘christina office’, 7008); 1
• personGroundsTo(‘Cristina’, 7008); 1
• personGroundsTo(‘Kristina’, 7008); 1
This example illustrates an important aspect of the algo-

rithm. Once a grounding is retrieved, all high probability
speech interpretations are added to the knowledge base.
Doing this allows us to generalize over different plausible
speech results. In this way we also allows other reason-
able groundings into the knowledge base, such aslocation-
GroundsTo(‘christina office’, 7008). This is done in order to
cope with the uncertainty in the speech recognizer, which
might provide multiple reasonable interpretations.

IV. RESULTS

Our approach is evaluated in two ways. First, we show
that the robot can learn the meaning of natural language



(a) Action-related question (b) Location-related question (c) Total number of question

Fig. 4: Comparison between our approach and the two baselineproposed (using the cumulative number of question grouped
by user). The graphs are cumulative (e.g., the knowledge base resulting from subject 1 is used to interact with subject 2)
(a) shows the number of questions required to understand theaction parameter across subjects and over time. (b) shows
the number of questions required to understand the locationparameter across subjects over time. (c) shows the number of
questions required to understand all parameters and execute the task.

commands from dialog. Second, we show that using our
algorithm the robot learns a reasonable referring expression
across multiple groundings, by aggregating results in the
knowledge base.

A. Learning from dialog

To evaluate our approach, we asked 9 different people to
give a mobile service robot a command to go to destinations
in a real-world environment. The robot had the capability of
going anywhere across three floors of an office building [1],
[2]. Although the task was fixed (e.g., going to a destination),
people could use whatever language was natural to them. The
subjects ranged between an age of 21 and 54 and were both
native and non-native English speakers, which made the task
more challenging. We provided each person with the same
map of the seventh floor of our building. Six locations were
marked on the map and we asked the people to give the robot
commands to go to the marked destinations. Since the people
had different degrees of familiarity with the building, themap
was also annotated with room numbers. The aim was to test
the ability of our algorithm to learn the referring expressions
for different groundings through dialog, therefore the initial
knowledge base was empty. After each person interacted with
the robot, the knowledge was aggregated and used as starting
point for the following participants.

We compared our algorithm with two different baseline.
The first baseline, called theTask Baseline, enables the
robot to execute the task without learning any semantic
information about the environment. Although less natural
than the proposed approach since the person must explicitly
define the room number and action, only two questions are
required before the robot can execute the task. The second
baseline proposed, calledLearning Baseline, tries to execute
the assigned task while learning semantic knowledge about
the environment. However, this baseline does not use this
knowledge about the environment for the dialog. In this case,
people can use whatever language they like for the locations,
but the robot will always ask three questions.

Figure (4) shows the results of this experiment. On the

Fig. 5: The semantic map after interacting with all nine sub-
jects. Plotted on the map are the most frequently occurring
referring expressions for each location.

horizontal axis there are the nine people who interacted with
the robot and on the vertical axis are the cumulative number
of questions asked over all sessions. For example, session
9 includes the knowledge base acquired from sessions 1-
8, and the vertical axis corresponds to all of the questions
asked during those previous sessions as well as the current
session. Figure (4a) shows results for the action parameter.
Specifically, we have shown that the number of questions
asked for actions stops increasing after the first few inter-
actions. This happens because there is limited diversity in
the ways that a person can command the robot to perform a
task. Out of 54 instructions, only three different verbs were
used to command the robot to go to a place (go to, bring me,
take me). Figure (4a) additionally shows how our approach
performs better then both baselines since, on average, after
a few examples, the robot will stop asking the person about
whether it should execute the GoTo task.

Figure (4b) shows how frequently the robot had to



ask about the location or person argument of the parse.
Specifically, the vertical axis corresponds to the number
of questions required to retrieve the correct grounding for
referring expressions of locations and persons. The number
of questions asked about this argument is greater because
people refer to the same location in many different ways
and therefore the algorithm needs more examples to learn
the correct grounding. In this case, in the worst case, our
approach must ask two questions of a person, whereas the
Task Baselinemust ask only one (note, however, that the task
baseline is less intuitive than our approach). Nevertheless,
as the number of the interactions increases, the algorithm
learns how people address different places and the number
of questions needed decreases. When the seventh person has
interacted with the robot our approach started to outperform
both of the baselines. Figure (4c) shows the aggregation of
the grounding of all action and argument parameters, which
shows that the overall system always performs better than
both baselines.

B. Learning referring expressions

We also wanted to evaluate how well our system learned
referring expressions for people and locations across multiple
people who were not primed to speak in particular way. In
order to perform this experiment, we evaluated the referring
expressions (and their corresponding grounding) from the
previous experiment. Looking at the most common referring
expressions, we found that for five out of the six locations,
the robot had learned a suitable expression such as“the
soccer lab” or “conference room”, while for the last one
the two most common referring expression are“Christina”
and “Office” . These two labels come from the expression
“Christina’s Office” and were correctly understood by the
parser in order to represent the fact that the room is an
office and that we are likely to find Christina in it. We have
also plotted the resulting most frequent referring expressions
on a semantic map in Figure (5). Using these referring
expressions, Figure 1 shows commands that our CoBot robot
is able to successfully follow.

V. CONCLUSIONS

In this paper, we have presented a dialog system which
is able to learn environmental knowledge from task-based
human-robot dialog. We have defined a joint probabilistic
model that consists of a speech model, a parsing model
and a grounding model. Further, we have shown how this
model can be used as a part of a dialog system to learn
the correct interpretations of referring expressions involving
actions, locations and people by adding new facts to its
knowledge-base. The experiments show that our approach is
a more effective interface and is able to reduce the number of
questions asked by the robot by 50% compared to a baseline
approach.
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