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Abstract
Artificial Intelligence (AI) technologies affect many facets of our daily lives.

AI systems help us manage our shopping lists, type emails faster, and answer our
curious search queries. However, current AI systems have limited agency in the
world – i.e., they lack the embodied sensory experience of the world that is often
referred as embodied AI. Hopefully, in the near future, embodied AI systems will
allow autonomous vehicles to mobilize the visually impaired in our communities,
enable robots in providing company for our elderly, and facilitate virtual agents in
cooperatively teaching our children complex concepts in mixed reality settings. The
imminent manifestation of embodied AI in the physical world necessitates research
that models the interaction between natural language and physical referents. This
technical challenge has been dubbed ‘language grounding’ and is the central focus of
this thesis.

In studying language grounding, we identify and define three core challenges, and
then describe novel methods, analyses, and experiments that to attempt to address
each in turn. First, we address spatial grounding with the goal of linking language
mentions of objects with their spatial locations in the world. We study this problem
in the context of a fully-observable representation of the world. Second, we study the
problem of sequential grounding, where observations of the world are partial (e.g.,
restricted to a limited field-of-view) and unfold over time as a result of the actions
of the system. Partial observation makes language grounding more challenging,
increasing the difficulty of accurate interpretation – e.g., an utterance may refer to
something not currently in the view of the system. Third, we tackle the problem of
imbuing agents with the same types of prior knowledge that humans assume and rely
upon to disambiguate linguistic utterances when communicating. Human speakers
tend to vastly underspecify spatial information when communicating with others as
they omit many details that they expect the listener to know already. This poses a
technical challenge for language grounding: how do our agents leverage general and
situated prior knowledge of the world? In this thesis, we present contributions in
the form of methods, resources, and tools to strengthen our understanding of these
technical challenges and to make progress towards their eventual solutions.
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Chapter 1

Introduction

Let us imagine a language . The language is meant to serve
for communication between a builder A and an assistant B.
A is building with building-stones; there are blocks, pillars,
slabs and beams. B has to pass the stones, and that in the
order in which A needs them. For this purpose they use a
language consisting of the words 'block', 'pillar', 'slab',
'beam'. A calls them out; –B brings the stone which he has
learnt to bring at such-and-such a call. – Conceive this as a
complete primitive language.

Ludwig Wittgenstein,Philosophical Investigations

Arti�cial Intelligence (AI) systems have permeated our daily lives over the past decade. We
now use voice-activated devices to manage our calendars, playlists, compose emails, or query
our favorite restaurants' business hours. Although AI systems can handle these complex tasks,
they arestaticdevices that operate withlimited knowledge about their environment. They are
static in the sense that they do not move around or change the location of other objects. Their
knowledge of the environment around them is limited, using mostly text or speech as input. The
next generation of AI systems, namelyembodied AI, will require new capabilities to surpass
these static AI systems. An embodied AI system exists in a physical (or virtual) environment. It
perceivesmulti-modal sensory stimuli– e.g. visual input in the form of point clouds of a LIDAR,
RGB, infrared or depth input of a camera, and the speech signal. These embodied AI systems are
often capable ofactingon the environment, either by moving through it or moving things in it.

These new embodied AI systems are likely to become a part of our daily lives, just like
their older static counterparts. For instance, we have seen great advances in the capabilities
of autonomous vehicles for transportation and logistics. In the future, robots could be useful
assistants in the household, helping the elderly take care of daily chores. We might use drones
to pick up and deliver packages, or even record our memorable experiences from above. Virtual
agents might assist in teaching children about geography or biology. One common denominator in
all these use cases of embodied AI is the need to communicate with humans about the environment
– e.g., giving directions, or referring to a speci�c physical objects.

The central question this thesis considers ishow can we better enable AI systems to
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Figure 1.1: An illustration for a complex task for an embodied AI system given four instructions.
Colored dashed lines show desired trajectory for the robot starting position(0) for the instruction in
the same color. Colored numbers in parentheses represent the expected endpoint for the instruction
in the same color.

naturally communicate while referring to the world and acting upon it? We focus on
language grounding, the process of linking units of language (i.e., words, phrases, sentences) to
actions of the system (i.e., moving in the world, changing perceptual �eld) and visual input (i.e.,
photographic sensory perception). To highlight the technical challenges involved in addressing this
process, we use the following scenario as a motivating example: An older person is communicating
with an AI robot to get assistance at home. This scenario is depicted in Figure 1.1. As a starting
point, the robot should be able to identify and localize mentioned objects (i.e.pills, night stand,
blue blanket, ottoman, some water, coffee table). Further, the robot needs to recognize how objects
are spatially related to each other (i.e.on top, on the left, lying on, on). In the �rst instruction(1),
the user does not mention the room to go to – instead, the robot must infer the room. In the second
instruction(2), the robot needs to have a spatial understanding of the environment it operates in –
i.e., when facing the nightstand, the ottoman would be behind it. The third instruction(3) also
does not mention the destination explicitly. The robot needs to decide where to get water after
leaving the room. One path leads to the kitchen, and the other leads to the bathroom; the robot
could reason, “would they use the phraseon the way backif the path leads to the kitchen?.” This
reasoning could eliminate an unnecessary visit to the bathroom.

Language grounding has many applications in various �elds such as robotics, autonomous
driving, and virtual reality. To study this important topic, we use three speci�c technical tasks, cor-
responding to each of the high-level challenges outlined above: referring expression recognition,
vision-and-language navigation, and remote object localization. The goal of referring expressions
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is to unambiguously target one speci�c object in the world. In the �rst instruction(1) of Figure 1.1,
the second sentence is an example of a referring expression which unambiguously describes the
pills. The goal of vision-and-language navigation is to help navigate an embodied AI system in
the world with natural language instructions to a target location. The �rst(1), third (3), and fourth
(4) instructions in Figure 1.1 are example instructions for the vision-and-language navigation task
such that the robot needs to visit bedroom, kitchen, and living room to complete the instruction.
Remote object localization combines the previous two tasks into one: given a high-level natural
language instruction sequence (e.g.(1)) the embodied AI system needs to navigate to a remote
location in the world and choose the correct object in that remote location.

All the technical challenges illustrated in this scenario are de�ned in the following section.
After describing these technical challenges, Section 8.1 provides an overview of the main contri-
butions.

1.1 Technical Challenges

This thesis aims to study language grounding – the linguistic phenomenon by which words are
linked to to the world. To better understand and model language grounding, we provide scaffolding
for this problem in the form of three core technical challenges, described below.

Spatial Grounding To properly link words with elements of the world, we �rst need to under-
stand the spatial relationships between objects in the world. Humans naturally take advantage of
the spatial structure of the world to unambiguously refer to a speci�c object. As an example, let
us revisit the �rst instruction(1) mentioned in Figure 1.1. First, to complete this instruction, the
system needs to identify all objects mentioned in the text, i.e.,pills, nightstand, bed. But how can
these pieces of text be grounded to objects detected in visual input? Also, how are all mentioned
objects related to each other? Next, the system needs to identify spatial structures between objects,
i.e., on top on the left. These spatial structures are cross-object relationships that tie each of
objects mentions to one another. How can an AI system model cross-object relationships as part
of the language grounding process? Given the complexity of this problem, let us start with a
scenario where the AI system has access to all the visual information upfront. We do this by
studying language grounding in the context of a static visual �eld – i.e., a single image – using
the task of image-based referring expression recognition.

We de�ne two main research questions within this challenge:

Q1.1 First, we want to better understand how recent neural network architectures perform the
task of language grounding: How much of the world's spatial structure is explicitly integrated
into these recent models?

Q1.2 We are interested in building new models that explicitly learn to reason about the world's
spatial structure, including physical relationships between objects: How can we model cross-
object relationships while referring to the visual world?
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Sequential Grounding In real-world scenarios, people do not see the whole world at once but
instead explore it sequentially by re-orienting themselves or moving in the world. This challenge
is two-fold: First, grounding needs to be done using our current partial view (and potentially, with
the history of our previous observations). The partial view of the world will increase the level
of ambiguity between words and the world since the words may refer to something out-of-view.
For instance, for instruction two(2) in Figure 1.1, after completing the �rst instruction, the robot
faces the nightstand and does not see the ottoman and the blue blanket. Second, we need to
link words with the most accurate action to reach our goal (e.g., reaching a speci�c location in
the house) in addition to linking words to the world. The correct interpretation of the natural
language input depends on correct sequences of actions. There could bemany alternatives
when grounding natural language to actions and the world, but only a small fraction of action
sequences are intended by the user – or lead to the users intended outcome. For instance, in
the third instruction(3), the user's phrase“on your way back”make sense only when moving
from bedroom to kitchen on the way back to the living room but not moving from bedroom to
bathroom. In realistic scenarios, both cases need to be handled together (partial view and rel-
evance to the next action). To get a clearer understanding of both cases, we study them in two steps:

Q2.1 How do people express themselves when only partial views are available to them? What
are the de�ning characteristics of human language when referring to actions in a partially observed
world?

Q2.2 How can we build a computational model that can reason about and operate in a partially
observed environment?

Prior Knowledge for Grounding When communicating with other people, what is not said
can be nearly as informative as as what is said. According to Grice's maxim of quantity [70], we
prefer to be as informative as possible, but not more. In communicating with the embodied AI
systems, this maxim implies that we would prefer to tell the AI system just enough information.
We cannot give an extremely detailed description of how to complete a task or all the knowledge
about the world. Instead, we expect the AI system to have some prior knowledge about the
world. This phenomenon is sometimes referred to as common-sense knowledge. For instance, in
Figure 1.1, the user does not even specify the names of the rooms, based on our common sense we
can infer that. What kind of prior knowledge is relevant to interpreting language referring to the
world? We focus on two types of prior knowledge. (1) General knowledge refers to the generic
common-sense people have when referring to objects and locations (e.g., refrigerators are usually
in kitchens). (2) Situated knowledge refers to knowledge about things speci�c to the situation
(e.g., the ottoman being next to the bed in the example �gure, but it may very well be in living
room in a speci�c house). To study these two types of prior knowledge, we focus on knowledge
related to objects and their spatial locations, given their prominence in human language when
referring to the world.
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First, we study thegeneral a priori knowledge of objects, understanding generic knowledge
about objects, their properties, and more speci�cally, spatial locations of objects. For instance,
if we observe a table, we expect to see chairs around it, especially in a dining room. So, if we
are looking for chairs, we naturally look close to the table to �nd them. This kind of generic
knowledge is often referred to as common-sense. While humans accumulate this knowledge over
long periods of time, can we build methods to help AI systems to start learning as well? To make
this tractable, we focus on speci�c knowledge about objects and their locations.

Second, we studysituated knowledgewhich is the understandings speci�c to the current
environment – i.e., which objects appear in the environment and in what spatial con�guration.
When a person gives directions in their own house, they are likely to take advantage of knowledge
about the speci�c layout of the house. While giving instructions to someone else, they would
imagine moving around in the speci�c environment and use this knowledge to simplify instructions.
To interpret such instruction, the AI system needs to ground language to the environment that has
not been described explicitly.

To see how these two types of prior knowledge work together, let us revisit instructions in
Figure 1.1. The �rst instruction(1) “Could you bring my pills? They should be on top of the
nightstand on the left of the bed?” does not mention which room to go. A general knowledge
like “nightstand are likely to appear in bedrooms” gives us a hint about the human's intention.
On the other hand, the situated knowledge is aboutaligning our understandingof this speci�c
bedroom and how objects are located speci�cally in this bedroom. Let us look at the second
instruction “Then turn around and pick up the blue blanket lying on the ottoman.” In this example,
humanassumesthat the robot is looking at the nightstand after completing the �rst instruction
(1) andknow that the ottoman is behind the robot. Based on their understanding of the bedroom
(i.e., situated knowledge), they use the phrase“turn around.” Using all this prior knowledge is a
seamless process for humans, but how can an embodied AI system learn this general and situated
knowledge? Our research questions are then:

Q3.1 How can an AI system acquire generic knowledge about the spatial properties of objects
and take advantage of it when grounding language to the world?

Q3.2 How can an AI system use situated knowledge speci�c to its current environment when
interpreting language input?

The following section gives an overview of this thesis's contributions to address the technical
challenges described in this section.

1.2 Thesis Contributions

• The Role of Language in Language Grounding.We �rst build an understanding on how
state of the art systems use language for the referring expression recognition (Q1.1) by
presenting a detailed empirical analyses of the state-of-the-art systems. The goal of this task
is to identify the object in an image referred to by a natural language expression. We �nd
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strong evidence that even sophisticated and linguistically motivated models for this task
may ignore the important properties of language instead relying on shallow correlations
introduced by unintended biases in the data selection and annotation process. This work
was published at NAACL 2018 and described in Chapter 2.

• Modeling Cross-Object Relationships.We introduce GroundNet to address cross-object
relationships for spatial grounding (Q1.2). GroundNet is an approach for building neural
networks for referring expression recognition tasks based on the input referring expressions'
syntactic structure. We show that GroundNet's syntax-based approach aids the localization
of all object mentions and all relationships between mentioned objects. This study was
published at AAAI 2018 and is explained in Chapter 3.

• A Novel Benchmark For Referring Expression Recognition in 360° Images.We build a
benchmark with all challenging characteristics of the sequential grounding to studyQ2.1
in more depth. Our dataset is the �rst large-scale language grounding benchmark that has
�ne-grained alignments between partial observations of a 3D image, expert actions, and
natural language instructions. This work was presented at ACL 2020 and is described in
Chapter 4.

• Reasoning About Alternatives for Vision-and-Language Navigation.We introduce a
pragmatic reasoning model based on the Rational Speech Act. The model can reason about
alternative interpretations of natural language input for a sequential grounding task (Q2.2).
Our work is the �rst application of the pragmatic reasoning in a photo-realistic vision-and-
language environment. This work was published at NeuRIPS 2018 and is explained in
Chapter 5,

• General Knowledge of Objects for Referring Expression Recognition in Partially-
Observed Scenes.We introduce HOLM, Hallucinating Objects with Language Models,
to address the challenge of partial observability to studyQ3.1. HOLM uses large pre-
trained language models (LMs) to infer object hallucinations for the unobserved part of the
environment. This work will appear at ACL 2022 and is described in Chapter 6.

• Situated Knowledge for Remote Embodied Visual Referring Expression.We introduce
OSMaN, Object-based Simple Map Navigator for remote object localization to studyQ3.2.
OSMAN has the situated knowledge of objects, their locations, and how these locations are
connected to each other. OSMAN uses this knowledge for navigating to a target location
and predicting a target object. This work is described in Chapter 7.

Next in Chapter 2, we start exploring research questions regarding the spatial grounding.
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Chapter 2

The Role of Language in Language
Grounding

Science, my boy, is made up of mistakes, but they are
mistakes which it is useful to make, because they lead little
by little to the truth.

Jules Verne

Spatial referring expressions are part of our social life (“Please drop me at the blue house next
to the red mailbox.”) and also part of professional interactions (“Could you pass the small scalpel
to the right of the forceps?”). These natural language expressions are uttered to locate an object in
the visual world uniquely. We understand such expressions by identifying mentioned objects and
resolve described spatial relationships between objects using their visual input. However, how do
machines operationalize such a process? This chapter aims to understand how state-of-the-art
neural network models address the referring expression recognition task. We do this by probing
the performance of models by perturbing their natural language input. We presented the work
described in this chapter in the following publication:

• Volkan Cirik, Taylor Berg-Kirkpatrick, and Louis-Philippe Morency, “Visual Referring
Expression Recognition: What Do Systems Actually Learn?”, In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2 (Short Papers), ACL, pp. 781-787,
2018.

The code for reproducing experiments in this chapter is publicly available on Github1.

1https://github.com/volkancirik/neural-sieves-refexp
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2.1 Overview

There has been increasing interest in modeling natural language in the context of a visual ground-
ing. Several benchmark datasets have recently been introduced for describing a visual scene with
natural language [32], describing or localizing speci�c objects in a scene [105, 146], answering
natural language questions about the scenes [13], and performing visually grounded dialogue
[46]. Here, we focus on referring expression recognition (RER) – the task of identifying the
object in an image that is referred to by a natural language expression produced by a human
[41, 93, 97, 105, 146, 160, 183, 239].

Recent work on RER has sought to make progress by introducing models that are better
capable of reasoning about linguistic structure [93, 160] – however, since most of the state-of-
the-art systems involve complex neural parameterizations, what these models actually learn has
been dif�cult to interpret. This is concerning because several post-hoc analyses of related tasks
[1, 49, 67, 99, 243] have revealed that some positive results are actually driven by super�cial biases
in datasets or shallow correlations without deeper visual or linguistic understanding. Evidently, it
is hard to be completely sure if a model is performing well for the right reasons.

To increase our understanding of how RER systems function, we present several analyses
inspired by approaches that probe systems with perturbed inputs [102] and employ simple models
to exploit and reveal biases in datasets [26]. First, we investigate whether systems that were
designed to incorporate linguistic structure actually require it and make use of it. To test this,
we perform perturbation experiments on the input referring expressions. Surprisingly, we �nd
that models are robust to shuf�ing the word order and limiting the word categories to nouns and
adjectives. Second, we attempt to reveal shallower correlations that systems might instead be
leveraging to do well on this task. We build two simple systems called Neural Sieves: one that
completelyignoresthe input referring expression and another that only predicts the category of
the referred object from the input expression. Again, surprisingly, both sieves are able to identify
the correct object with surprising precision in top-2 and top-3 predictions. When these two
simple systems are combined, the resulting system achieves precisions of 84.2% and 95.3% for
top-2 and top-3 predictions, respectively. These results suggest that to make meaningful progress
on grounded language tasks, we need to pay careful attention to what and how our models are
learning, and whether our datasets contain exploitable bias.

Figure 2.1: Overview of Neural Sieves. Sieve I �lters object types having multiple instances.
Sieve II �lters objects of one category mentioned in referring expression. Objects of the same
category have the same color frames. Best seen in color.
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2.2 Analysis by Perturbation

In this section, we analyze how the state-of-the-art referring expression recognition systems
utilize linguistic structure. We conduct experiments with perturbed referring expressions where
various aspects of the linguistic structure are obscured. We perform three types of analyses: the
�rst one studying syntactic structure (Section 2.2.2), the second one focusing on the importance
of word categories (Section 2.2.3), and the �nal one analyzing potential biases in the dataset
(Section 2.2.4).

2.2.1 Analysis Methodology

To perform our analysis, we take two state-of-the-art systems CNN+LSTM-MIL [160] and
CMN [93] and train them from scratch with perturbed referring expressions. We note that
the perturbation experiments explained in next subsections are performed on all train and test
instances. All experiments are done on the standard train/test splits for the Google-Ref dataset
[146]. Systems are evaluated using the precision@k metric, the fraction of test instances for
which the target object is contained in the model's top-k predictions. We provide further details of
our experimental methodology in Section 2.3.1.

2.2.2 Syntactic Analysis by Permuting Word Order

In English, the word order is important for correctly understanding the syntactic structure of
a sentence. Both models we analyze use Recurrent Neural Networks (RNN) [53] with Long
Short-Term Memory (LSTM) cells [84]. Previous studies have shown that recurrent architectures
can perform well on tasks where word order and syntax are important: for example, tagging [123],
parsing [205], and machine translation [16]. We seek to determine whether recurrent models for
RER depend on syntactic structure.
Premise 1:Randomly permuting the word order of an English referring expression will obscure
its syntactic structure.
We train CMN and CNN+LSTM-MIL with shuf�ed referring expressions as input and evaluate
their performance.

Model No Perturbation Shuf�ed �

CMN .705 .675 -.030
LSTM+CNN-MIL .684 .630 -.054

Table 2.1: Results for Shuf�ing Word Order for Referring Expressions.� is the difference
between no perturbation and shuf�ed version of the same system.

Table 2.1 shows accuracies for models with and without shuf�ed referring expressions. The
column with� shows the difference in accuracy compared to the best performing model without
shuf�ing. The drop in accuracy is surprisingly low. Thus, we conclude that these models do not
strongly depend on the syntactic structure of the input expression and may instead leverage other,
shallower, correlations.
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2.2.3 Lexical Analysis by Discarding Words

Following the analysis presented in Section 2.2.2, we are curious to study what other aspects
of the input referring expression may be essential for the state-of-the-art performance. If the
syntactic structure is largely unimportant, it may be that spatial relationships can be ignored.
Spatial relationships between objects are usually represented by prepositional phrases and verb
phrases. In contrast, simple descriptors (e.g. green) and object types (e.g. table) are most often
represented by adjectives and nouns, respectively. By discarding all words in the input that are
not nouns or adjectives, we hope to test whether spatial relationships are actually important to the
state-of-the-art models. Notably, both systems we test were speci�cally designed to model object
relationships.
Premise 2: Keeping only nouns and adjectives from the input expression will obscure the
relationships between objects that the referring expression describes.

Table 2.2 shows accuracies resulting from training and testing these models on only the nouns
and adjectives in the input expression. Our �rst observation is that the accuracies of models drop
the most when we discard the nouns (the rightmost column in Table 2.2). This is reasonable since

Models Noun & Adj (� ) Noun (� ) Adj (� )

CMN .687 (-.018) .642 (-.063) .585 (-.120)
LSTM+CNN-MIL .644 (-.040) .597 (-.087) .533 (-.151)

Table 2.2: Results with discarded word categories. Numbers in parentheses are� , the difference
between the best performing version of the original model.

nouns de�ne the types of the objects referred to in the expression. Without nouns, it is extremely
dif�cult to identify which objects are being described. Second, although both systems we analyze
model the relationship between objects, discarding verbs and prepositions, which are essential in
determining the relationship among objects, does not drastically reduce their performance (the
second column in Table 2.2). This may indicate the superior performance of these systems does
not speci�cally come from their modeling approach for object relationships.

2.2.4 Bias Analysis by Discarding Referring Expressions

Goyal et al.[67] show that some language and vision datasets have exploitable biases. Could
there be a dataset bias that is exploited by the models for RER?
Premise 3: Discarding the referring expression entirely and keeping only the input image creates
a de�cient prediction problem: achieving high performance on this task indicates dataset bias.

We train CMN by removing all referring expressions from train and test sets. We call this
model “image-only” since it ignores the referring expression and will only use the input image.
We compare the CMN “image-only” model with the state-of-the-art con�guration of CMN and
a random baseline. Table 2.3 shows precision@k results. The “image-only” model is able to
surpass the random baseline by a large margin. This result indicates that the dataset is biased,
likely as a result of the data selection and annotation process. During the construction of the
dataset, Mao et al.[146] annotate an object box only if there are at least 2 to 4 objects of the
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Model P@1 P@2 P@3 P@4 P@5

CMN .705 .926 .979 .993 .998
CMN “image-only” .411 .731 .885 .948 .977
Random Baseline .204 .403 .557 .669 .750

Table 2.3: Results with discarded referring expressions. Surprisingly, the top-2 prediction (73.1%)
of the “image-only” model is better than the top prediction of the state-of-the-art (70.5%).

same type in the image. Thus, only a subset of object categories ever appears as targets because
some object types rarely occur multiple times in an image. In fact, out of 90 object categories in
MSCOCO, 43 of the object categories are selected as the target objects less than 1% of the time
they occur in images. This potentially explains the relative high performance of the “image-only”
system.

2.2.5 Discussion

The previous analyses indicate that exploiting bias in the data selection process and leveraging
shallow linguistic correlations with the input expression may go a long way towards achieving high
performance on this dataset. First, it may be possible to simplify the decision of picking an object
to a much smaller set of candidates without even considering the referring expression. Second,
because removing all words except for nouns and adjectives only marginally hurt performance
for the systems tested, it may be possible to further reduce the set of candidates by focusing
only on simple properties like the category of the target object rather than its relations with the
environment or with adjacent objects.

2.3 Neural Sieves

We introduce a simple pipeline of neural networks, Neural Sieves, that attempt to reduce the set of
candidate objects down to a much smaller set that still contains the target object given an image, a
set of objects, and the referring expression describing one of the objects.

Sieve I: Filtering Unlikely Objects. Inspired by the results from Section 2.2.4, we design an
“image-only” model as the �rst sieve for �lteringunlikelyobjects. For example in Figure 2.1, Sieve
I �lters out the backpack and the bench from the list of bounding boxes since there is only one
instance of these object types. We use a similar parameterization of one of the baselines (CMNLOC )
proposed by Hu et al.[93] for Sieve I and train it by only providing spatial and visual features
for the boxes, ignoring the referring expression. More speci�cally, for visual featuresr vis of a
bounding box of an object, we use Faster-RCNN [181]. We use 5-dimensional vectors for spatial
featuresr spat = [ xmin

WV
; ymin

H V
; xmax

WV
; ymax

WV
; A r

A V
] whereA r is the size and[xmin ; ymin ; xmax ; ymax ] are

coordinates for bounding boxr andAV , WV , HV are the area, the width, and the height of the
input imageV. These two representations are concatenated asr vis;spat = [ r vis r spat ] for a bounding
box r .
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We parameterize Sieve I with a list of bounding boxesR as the input with a parameter set� I

as follows:
sI = W score

I r vis;spat (2.1)

f I (R; � I ) = sof tmax (sI ) (2.2)

Each bounding box is scored using a matrixW score
I . Scores for all bounding boxes are then fed

to softmax to get a probability distribution over boxes. The learned parameter� I is the scoring
matrixW score

I .

Sieve II: Filtering Based on Objects Categories After �ltering unlikelyobjects based only
on the image, the second step is to determine which object category to keep as a candidate for
prediction, �ltering out the other categories. For instance, in Figure 2.1, only instances of suitcases
are left as candidates after determining which type of object the input expression is talking about.
To perform this step, Sieve II takes the list of object candidates from Sieve I and keeps objects
having the same object category as the referred object. Unlike Sieve I, Sieve II uses the referring
expression to �lter bounding boxes of objects. We again use the baseline model ofCMNLOC from
the previous work [93] for the parametrization of Sieve II with a minor modi�cation: instead of
predicting the referred object, we make a binary decision for each box of whether the object in the
box is the same category as the target object.

More speci�cally, we parameterize Sieve II as follows:
r̂ vis;spat = W vis;spat

II r vis;spat (2.3)

zII = r̂ vis;spat � f att (T) (2.4)

ẑII = zII = jj zII jj 2 (2.5)

sII = W score
II ẑs2 (2.6)

f II (T; R; � II ) = sigmoid(sII ) (2.7)

We encode the referring expressionT into an embedding withf att (T) which uses an attention
mechanism [16] on top of a 2-layer bidirectional LSTM [188].

We project bounding box featuresr vis;spat to the same dimension as the embedding of referring
expression (Eq 2.3). Text and box representations are element-wise multiplied to getzII as a
joint representation of the text and bounding box (Eq 2.4). We L2-normalize to produceẑII

(Eq 2.5, 2.6). Box scoressII are calculated with a linear projection of the joint representation
(Eq 2.6) and fed to the sigmoid function for a binary prediction for each box. The learned
parameters� II areW vis;spat

II ,W score
II , and parameters of the encoding modulef att .

2.3.1 Filtering Experiments

We are interested in determining how accurate these simple neural sieves can be. High accuracy
here would give a possible explanation for the high performance of more complex models.

Dataset. For our experiments, we use Google-Ref [146] which is one of the standard benchmarks
for referring expression recognition. It consists of around 26K images with 104K annotations. We
use their Ground-Truth evaluation setup where the ground truth bounding box annotations from
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Model precision@k Accuracy

CMN 1 .705
CMN 2 .926
CMN 3 .979

LSTM+CNN-MIL 1 .684
LSTM+CNN-MIL 2 .907
LSTM+CNN-MIL 3 .972

Neural Sieve I 1 .401
Neural Sieve I 2 .712
Neural Sieve I 3 .866

Neural Sieve I + II 1 .488
Neural Sieve I + II 2 .842
Neural Sieve I + II 3 .953

Table 2.4: Precision@k accuracy for Neural Sieves and state-of-the-art systems. Note that even
without using the referring expression, Sieve I is able to reduce the number of candidate boxes
to 3 for 86.6% of the instances. When we further predict the type of objects with Sieve II, the
number of candidate boxes is reduced to 2 for 84.2% of the instances.

MSCOCO [127] are provided to the system as a part of the input. We used the split provided by
Nagaraja et al.[160] where splits have disjoint sets of images. We use precision@k for evaluating
the performance of models.

Implementation Details. To train our models, we used stochastic gradient descent for 6 epochs
with an initial learning rate of 0.01 and multiplied by 0.4 after each epoch. Word embeddings
were initialized using GloVe [169] and �netuned during training. We extracted features for
bounding boxes using the fc7 layer output of Faster-RCNN VGG-16 network [181] pre-trained
on MSCOCO dataset [127]. Hyperparameters such as hidden layer size of LSTM networks were
picked based on the best validation score. For perturbation experiments, we did not perform
any grid search for hyperparameters. We used hyperparameters of the previously reported best
performing model in the literature.

Baseline Models. We compare Neural Sieves to the state-of-the-art models from the literature.
LSTM + CNN - MIL Nagaraja et al.[160] scoretarget object-context objectpairs using LSTMs
for processing the referring expression and CNN features for bounding boxes. The pair with the
highest score is predicted as the referred object. They use Multi-Instance Learning for training the
model.CMN [93] is a neural module network with a tuple of object-relationship-subject nodes.
The text encoding of tuples is calculated with a two-layer bi-directional LSTM and an attention
mechanism [16] over the referring expression.
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2.3.2 Results

Table 2.4 shows the precision scores. The referred object is in the top-2 candidates selected
by Sieve I 71.2% of the time and in the top-3 predictions 86.6% of the time. Combining both
sieves into a pipeline, these numbers further increase to 84.2% for top-2 predictions and to 95.3%
for top-3 predictions. Considering the simplicity of Neural Sieve approach, these are surprising
results: two simple neural network systems, the �rst one ignoring the referring expression, the
second predicting only object type, are able to reduce the number of candidate boxes down to 2
on 84.2% of instances.

2.4 Related Work

Referring expression recognition and generation is a well studied problem in intelligent user
interfaces [23], human-robot interaction [24, 55, 227], and situated dialogue [107]. Kazemzadeh
et al. [105] and Mao et al.[146] introduce two benchmark datasets for referring expression
recognition. Several models that leverage linguistic structure have been proposed. Nagaraja et al.
[160] propose a model where the target and supporting objects (i.e. objects that are mentioned
in order to disambiguate the target object) are identi�ed and scored jointly. The resulting model
is able to localize supporting objects without direct supervision. Hu et al.[93] introduce a
compositional approach for the RER task. They assume that the referring expression can be
decomposed into a triplet consisting of the target object, the supporting object, and their spatial
relationship. This structured model achieves state-of-the-art accuracy on the Google-Ref dataset.
Cirik et al. [41] propose a type of neural modular network [12] where the computation graph is
de�ned in terms of a constituency parse of the input referring expression.

Previous studies on other tasks have found that the state-of-the-art systems may be successful
for reasons different than originally assumed. For example, Chen et al.[27] show that a simple
logistic regression baseline with carefully de�ned features can achieve competitive results for
reading comprehension on CNN/Daily Mail datasets [82], indicating that more sophisticated
models may be learning relatively simple correlations. Similarly, Gururangan et al.[72] reveal
bias in a dataset for semantic inference by demonstrating a simple model that achieves competitive
resultswithout looking at the premise.

2.5 Conclusion

We have analyzed two RER systems by variously perturbing aspects of the input referring
expressions: shuf�ing, removing word categories, and �nally, by removing the referring expression
entirely. Based on this analysis, we proposed a pipeline of simple neural sieves that captures
many of the easy correlations in the standard dataset. Our results suggest that careful analysis is
important both while constructing new datasets and while constructing new models for grounded
language tasks. The techniques used here may be applied more generally to other tasks to give
better insight into what our models are learning and whether our datasets contain exploitable
bias.
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Chapter 3

Modeling Cross-Object
Relationships

Syntax, my lad. It has been restored to the highest place in
the republic.

John Steinbeck

In this chapter, we further study spatial grounding in the referring expression recognition task.
We build a computational model that explicitly reasons the spatial structure of objects. The work
described in this chapter �rst appeared in the following publication:

• Volkan Cirik, Taylor Berg-Kirkpatrick, and Louis-Philippe Morency, “Using Syntax To
Ground Referring Expressions In Natural Images”, In Proceedings of the AAAI Conference
on Arti�cial Intelligence, vol. 32, no. 1. 2018.

The code for reproducing experiments in this chapter is publicly available on Github1.

1https://github.com/volkancirik/groundnet
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3.1 Introduction

Spatial referring expressions are part of our everyday social life (“Please drop me at the blue
house next to the red mailbox.”) and also part of professional interactions (“Could you pass the
small scalpel to the right of the forceps?”). These natural language expressions are designed to
uniquely locate an object in the visual world. The process of grounding referring expressions into
visual scenes involves many intermediate challenges. As a �rst step, we want to locate all the
objects mentioned in the expression. While one of these mentions refers to the target object, the
other mentions (i.e. supporting object mentions) are also important because they were included
by the author of the referring expression in order to disambiguate the target. In fact, [70] argued
that supporting objects will only be mentioned when they arenecessaryfor disambiguation. As
a second step, we want to identify the spatial relationships between these objects. Is the target
to the left of the supporting object? Is it beneath it? To make effective use of an identi�ed
supporting object, we must understand how this object is related to the target. And �nally, for
many natural referring expressions, the process is recursive: a supporting object may itself be
identi�ed by a relationship with another supporting object. As a result, models that reason about
referring expressions must respect this hierarchy, processing sub-expressions before attacking
larger expressions. Modeling this compositionality is critical to designing recognition systems
that behave in an interpretable way and can justify their decisions.

In this chapter, we introduce GroundNet, the �rst dynamic neural architecture for referring
expression recognition that takes full advantage of syntactic compositionality. Past approaches,
such as the Compositional Neural Network (CMN) model [93], have relied on limited syntactic
information in processing referring expressions – for example, CMN tracks a single supporting
object – but have not modeled linguistic recursion and therefore is incapable of tracking multiple
supporting objects. As shown in Figure 1, our GroundNet framework relies on a syntactic parse of
the input referring expression to dynamically create a computation graph that re�ects the recursive
hierarchy of the input expression. As a result, our approach tracks intermediate localization
decisions of all supporting objects. Following the approach of [11, 12], this computation graph is
translated into a neural architecture that keeps interpretable information at each step of the way,
as can be seen in Figure 3.1d.

We additionally introduce a new set of annotations that specify the correct locations of
supporting objects in a portion of the standard benchmark dataset, GoogleRef [146] to evaluate the
interpretability of models for referring expression recognition. Using these additional annotations,
our empirical evaluations demonstrate that GoundNet substantially outperforms the state-of-the-art
at intermediate predictions of the supporting objects, yet maintains comparable accuracy at target
object localization. These results demonstrate that syntactic compositionality can be successfully
used to improve interpretability in neural models of language and vision.

3.2 GroundNet

In this section, we explain the motivation of GroundNet, how we generate the computation graph
for GroundNet, and �nally detail the neural modules that we use for computing the localization
the referring expressions.
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(a) An example referring expression from our vali-
dation set“half of a sandwich on the right side of a
plate nearest a coffee mug”. Orange boxes are region
candidates and green box is the referred bounding
box.

(b) The parse tree for the referring expression in (a)

(c) Computation graph for the parse tree in (b)

(d) Grounding of objects in (a) with the computation
graph in (c). The more visible objects have higher
probabilities. Note that the model is able to ground
supporting objects like the coffee mug.

Figure 3.1: An Overview of GroundNet. An referring expression (a) is �rst parsed (b). Then, the
computation graph of neural modules is generated using the parse tree (c). Each node localizes
objects present in the image (d).

3.2.1 Motivation

A referring expression disambiguates a target object using the object's discriminative features
such as color, size, texture etc., and their relative position to othersupportingobjects. Figure 3.1a
shows a canonical example from our task w one half of a sandwich is referred by “half of a
sandwich on the right side of a plate nearest a coffee mug”. Here the sandwich is disambiguated
using relative clauses (e.g. “the right side of” , “nearest”) and thesupportingobjects (e.g “plate”,
“coffee mug”). We observe that there is a correspondence between the linguistic compositional
structure (i.e. the parse tree) of the referring expression and the process of resolving a referring
expression. In Figure 3.1b, we see that the target object and supporting objects have a noun phrase
(NP) on the parse tree of the referring expression. Also, the relative positioning of objects in
the image (e.g. being on the right, or near) correspond to prepositional phrases (PP) on the tree.
We design GroundNet based on this observation to localize the target object by modeling the
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compositional nature of the language. The compositionality principle states that the meaning of a
constituent is a function of (i) its building blocks and (ii) the recursive rules to combine them. In
our case, the building blocks for the GroundNet is grounding of objects i.e. the probability of how
likely an object is for word phrases. The combining rules are de�ned by the parse tree describing
what these objects are and how they are related to each other.

GroundNet models the processing of a referring expression in a computation graph (see
Figure 3.1c) based on the parse tree of the referring expression (see Figure 3.1b). Nodes of the
computation graph have 3 different types aiming to capture the necessary computations for local-
izing the target object.Locate nodes ground a noun phrase (“half sandwich”, “plate”,“coffee
mug”), i.e. pointing how likely that a given noun phrase refers to an object present in the image.
For example, in Figure 3.1d,Locate node of the phrase “half sandwich” outputs higher proba-
bilities for both halves of sandwiches compared to other objects. Prepositional phrases (“on right
side”,“nearest”) correspond toRelate nodes in the computation tree.Relate nodes calculate
how likely objects are related to the grounding of objects with given prepositional phrase. For
instance, in Figure 3.1c, theRelate node of “nearest” computes how likely the objects are
related to the grounding of “coffee mug” with the relation “nearest”. We convert the phrases
coming from branches in the parse tree toIntersect nodes. It simply intersects two sets of
groundings so that objects that have high likelihood in both branches will have high probabilities
for the output (see the root node in Figure 3.1d). Since each node of this computation graph
outputs a grounding for its subgraph, GroundNet is interpretable as a whole. At each node, we can
visualize how model's multiple predictions for objects propagates through the computation graph.

In following sections, we detail how we generate the computation graph and the neural
modules used in GroundNet.

3.2.2 Generating a Computation Graph

GroundNet processes the referring expression with a computation graph (Figure 3.1c) based on to
the parse tree (Figure 3.1b) of the referring expression. First, we parse the referring expression
with Stanford Parser [145]. Then, we generate the computation graph (see Figure 3.1b, 3.1c for
an example) for a parse tree with a recursive algorithm (see Algorithm 1).

Algorithm 1: Generate Computation Tree

1: procedureGenerateComputationTree(tree)
2: left NP =FindNP(tree.left)
3: right NP =FindNP(tree.right)
4: if left NP == ”” then

return (Locate tree.text)
5: Relate = FindPP(tree, [left NP, right NP])
6: left cg =GenerateComputationTree(left NP)
7: right cg =GenerateComputationTree(right NP)
8: return (Intersect (left cg) (Relate right cg))
9: end procedure

Above, the functionFindNP�nds the noun-phrase with the largest word span of given root
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node for left and right branches (line 2, 3). If the tree does not have an NP subtree, it returns a
Locate node (line 4).

FindPPextracts the words between noun-phrases to model the relationship between them
and returns aRelate node (line 5). For both left and right branches of the parse tree, the same
algorithm is recursively called (lines 6, 7). Finally, the sub-computation graphs of left and right
branches are merged (line 8) into anIntersect node.

Each node in the computation graph is decorated with the phraseT using the text span, i.e.
constituents, of the corresponding parse tree node. We �lter out the function words such as
determiners `a` and `the`. For instance, theLocate on the left in Figure 3.1c has the span
of words “half sandwich” from the corresponding noun phrase “the half of a sandwich” in
Figure 3.1b.

In the following section, we explain the set of neural modules that we design for performing
the localization of the referring expression on a composed computation graph.

3.2.3 Neural Modules

We operationalize the computational graph for a referring expression into an end-to-end neural
architecture by designing neural modules that represent each node of our graph. First, let us
introduce the notation for referring expression task. For each referring expression,(I; R; X ) are
inputs whereI is an image,R is the set of bounding boxesr i of objects present in the imageI ,
andX is a referring expression disambiguating a target object in bounding boxr � . Our aim is to
predictr � processing the referring expression in a computational graph with neural modules. In
addition to(I; R; X ), neural modules use the output of other neural modules and the text spanT
of the computation node.

We detail parameterization of neural modules in following subsections and visualize them in
Figure 3.2 for clarity.

Attend

This module induces a text representation forLocate andRelate nodes. It takes the words
f wi g

jT j
i =1 and embeds them to a word vectorf ei g

jT j
i =1 . A 2-layer bidirectional LSTM network [188]

processes embedded words. Both forward and backward layer representations are concatenated
for both layers into a single hidden representation for each word as follows:

hi = [ h(1;fw )
i h(1;bw)

i h(2;fw )
i h(2;bw)

i ] (3.1)

The attention weights are computed with a linear projection usingW a:

ai =
exp(W ahi )

P jT j
i =1 exp(W ahi )

(3.2)

The output ofAttend is the weighted average of word vectorsei where the weights are attentions
ai .

f a(T; � a) =
jT jX

i =1

ai ei (3.3)
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Figure 3.2: Illustrations of GroundNet's neural modules. Upper left shows an example referring
expression and the input forRelate node (upper right, highlighted in red) of a small section of a
computation tree. Modules take inputs from module's text spanT, the set of bounding boxesR,
and output probabilities of other nodespi . Best seen in color.

The learned parameters� a of this module are the parameters of 2-layer bidirectional LSTM and
scoring matrixW a.

Locate

This module predicts which object is referred to for a text span, i.e. noun phrase, in the referring
expression. It computes the probability distribution over bounding boxes using the output of
Attend and feature representations of bounding boxes. For instance in Figure 3.1c,Locate
node with input “half sandwich” localizes objects by scoring each bounding box.Locate node
does so by scoring how well the text span “half sandwich” matches the content of each bounding
box.

To represent a bounding boxr , we use spatial and visual features. First, visual featuresr vis

for the bounding box are extracted using a convolutional neural network [181]. Second, spatial
features represent position and size of the bounding box. We have 5-dimensional vectors for spatial
featuresr spat = [ xmin

WI
; ymin

H I
; xmax

WI
; ymax

WI
; Sr

SI
] whereSr is the size and[xmin ; ymin ; xmax ; ymax ] are

coordinates for bounding boxr andSI , WI , H I are area, width, and the height of the input image
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I . These two representations are concatenated asr vis;spat = [ r vis r spat ] for a bounding boxr .
We follow the previous work [93] for parametrization ofLocate .

r̂ vis;spat = W loc
vis;spat r vis;spat (3.4)

zloc = r̂ vis;spat � f a(T) (3.5)

ẑloc = zloc= jj zloc jj 2 (3.6)

sloc = W loc
scoreẑloc (3.7)

ploc = sof tmax (sloc) (3.8)

f loc(T; R; � loc) = ploc (3.9)

First, r vis;spat is projected to the same dimension as the text representation coming from the
Attend (Eq 3.4). Text and box representations are element-wise multiplied to getzloc for a joint
representation of the text and bounding box. We normalize with L2-norm intoẑloc (Eq 3.5, 3.6).
Localization scoresloc is calculated with a linear projection of the joint representation (Eq 3.7).
Localization scores are fed to softmax to form a probability distributionploc over boxes. The
learned parameters� loc of this module are the matricesW loc

vis;spat andW loc
score.

Relate

predicts how likely an objectrelatesto the other objects with some relation described by the node's
text span. For instance, the relation “nearest” in Figure 3.1d holds for half-sandwich pairs, and a
half-sandwich and coffee mug pair. Since the incomingLocate node toRelate outputs a high
probability for the coffee mug, only objects near to coffee mug have a high probability. GroundNet
does so by �rst computing a relationship score matrix for boxes and multiplying the scoring
matrix with the grounding input. We do not de�ne a set of relationships forRelate , instead,
model learns how objects relate to each other using module's text representation. Speci�cally, this
module computes a relationship score matrixSrel of sizeR � R consisting of scores for boxi and
j as follows:

r̂ i;j = W rel
spatr i;j (3.10)

zrel = r̂ i;j � f a(T) (3.11)

ẑloc = zrel = jj zrel jj 2 (3.12)

Srel [i; j ] = W rel
scoreẑrel (3.13)

prel = Srel p (3.14)

f rel (T; R; p; � rel ) = prel (3.15)

Above, spatial representations of boxes are concatenated asr i;j = [ r i;spat ; r j;spat ] and projected
into the same dimension as text representation (Eq 3.10). Similar toLocate , text and box
representations are fused with element-wise multiplication and L2-normalization (Eq 3.11, 3.12),
then box pair is scored linearly (Eq 3.13).

Finally, the probability distributionprel over bounding boxes is calculated asprel = Srel ploc.
The learned parameters� rel of this module are the matricesW rel

spat andW rel
score.
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Intersect

This module combines groundings coming from two branches of the computation graph by simply
multiplying object probabilities and normalizing it to form a probability distribution. In the
following section, we explain our experimental setup.

3.3 Experiments

Now, we detail our experimental setup. In our experiments, we are interested in following research
questions:

• (RQ1) How successful models are incorporating the syntax and how important the dynamic
and modular computation in exploiting the syntactic information?

• (RQ2) What are the accuracies of models for supporting objects and how these accuracies
change depending on the syntactic information?

Now, we explain datasets used for our experiments.

Referring Expression Dataset. We use the standard Google-Ref [146] benchmark for our
experiments. Google-Ref is a dataset consisting of around 26K images with 104K annotations.
We use ”Ground-Truth” evaluation setting where the ground truth bounding box annotations from
MSCOCO [127] are used.

Supporting Objects Dataset. We also investigate the performances of models in terms of
interpretability. We measure the interpretability of a model by its accuracy on both target and
supporting objects. To this end, we introduce a new set of annotations on Google-Ref dataset.
First, we run a pilot study on MTurk where all bounding boxes and the referring expression
present to annotators2. Our in-house annotator has an agreement of 0.75 - a standard metric in
word alignment literature [68, 164] with three turkers on a small validation set of 50 instances.
Overall, our annotator labeled 2400 instances – but only 1023 had at least one supporting object
bounding box.

We remind that the training data does not have any annotations for supporting objects. Models
should be able to predict supporting objects using only target object supervision and text input.
We should emphasize that our work is the �rst to report quantitative results on supporting object
for the referring expression task and we will release our annotation for future studies. Next, we
provide details of our implementation.

Implementation Details. We trained GroundNet with backpropagation. We used stochastic
gradient descent for 6 epochs with and initial learning rate of 0.01 and multiplied by 0.4 after each
epoch. Word embeddings were initialized with GloVe [169] and �netuned during training. We
extracted features for bounding boxes using fc7 layer output of Faster-RCNN VGG-16 network
[181] pre-trained on MSCOCO dataset [127]. Hidden layer size of LSTM networks was searched
over the range off 64,128,...,1024g and picked based on best validation split which is 2,5% of

2We did not provide the parse trees to not bias the annotators.
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Model Syntax Dynamic Computation Modularity Object Relationship Supporting(%) Accurac(%)

LSTM+CNN - MMI 60.7
LSTM+CNN - MMI+visdif X 64.0
LSTM+CNN - MIL X 15.0 67.3
CMN X X 11.1 69.7

Recursive NN X X 51.5
CMN-syntax guided X X X 53.5

GroundNet X X X X 60.6 65.7
GroundNet-syntax-guidedLocate X X X X 60.0 66.7
GroundNet-free-form X X X X 10.6 68.9

Table 3.1: The accuracy of models with the support of syntax, dynamic computation, modularity,
relationship modeling, and supporting object predictions. Our model is the �rst syntax-based
model with successful results and achieves the best results in supporting object localization.

training data separated from training split. Following the previous work [93], we used of�cial
validation split as the test. We initialized all parameters of the model with Xavier initialization
[64] and used weight decay rate of 0.0005 as regularization. We implemented our model using
PyTorch3 and plan to release our code for public use. Next, we explain models used in our
experiments.

Baseline Models. We compare GroundNet to the recent models from the literature.Recur-
siveNN [197] uses the recursive structure of syntactic parses of sentences to retrieve images
described by the input sentence. The text representation of a referring expression is recursively
calculated following the parse tree of the referring expression. The text representation at root
node is jointly scored with bounding box representations and the highest scoring box is predicted.
LSTM + CNN - MMI [146] uses LSTMs processing the referring expression and CNN for
extracting features for bounding boxes and the whole image. Model is trained with Maximum
Mutual Information training.LSTM + CNN - MMI+visdif [239] introduce contextual features for
a bounding box by calculating differences between visual features for object pairs.LSTM + CNN
- MIL 4 [160] scores object-supporting object pairs. The pair with the highest score is predicted.
They use Multi Instance Learning for training the model.CMN5 [93] is a neural module network
with a tuple of object-relationship-subject nodes. The text representation of tuples are calculated
with an attention mechanism [16] over the referring expression. We also report results forCMN -
syntax guidedwhen a parse tree is used for extracting the object-relationship-subject tuples.

GroundNet with varying level of syntax. We investigate the effect of the syntax varying
the level of use of the syntactic structure for GroundNet.GroundNet is the original model
presented in the previous section where each node in computation graph uses the node's text span
for Attend . ForGroundNet-syntax-guidedLocate model,Locate nodes use the node's

3https://pytorch.org
4Originally the authors use a new test split, whereas, we report results for the standard split of the dataset for this

model.
5We report results for our reimplementation of this model where we did hyperparameter search the same as our

model.
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text span as an input to theAttend module. Whereas forRelate nodes can use all referring
expression for inducing the text representation. ForGroundNet-free-form model, BothLocate
andRelate nodes use all of the referring expression as the input toAttend . Next, we explain
our evaluation metrics used in our experiments.

Evaluation. To evaluate models for referring expression task we use the standard metric of
accuracy. For evaluation of supporting objects, when there are multiple supporting objects, we
consider a supporting object prediction as accurate only if at least one supporting object is correctly
classi�ed. To evaluate approaches modeling the supporting objects we use following methods.
For LSTN+CNN-MIL, we use the context object of the maximum scoring target-context object
pair as the supporting object. For CMN, we use the object with the maximum object score of a
subject-relation-object tuple as the prediction for the supporting object. For GroundNet, we use
the object with maximum probability as a prediction for intermediate nodes in the computation
graph. In the following section, we discuss results of our experiments.

3.4 Results

We presented overall results in Table 3.1 for the compared models. We now discuss columns of
the Table 3.1.

(RQ1) Syntax, Dynamic Computation, and Modularity. GroundNet variations achieve the
best results among syntax-based models. “Recursive NN” homogeneously processes the referring
expression throughout the parse tree structure. On the other hand, GroundNet modularly parame-
terizes multi-modal processing of localization and relationships. “CMN - syntax guided” has a
�xed computation graph of a subject-relation-object tuple, whereas, GroundNet has a dynamic
computation graph for each instance, thus, a varying number of computation nodes are induced.
When compared to other syntax-based approaches, GroundNet results show that a dynamicand
modular architecture is essential to achieve competitive results with a syntax-based approach.

(RQ2) Syntax for Supporting Objects. Our model achieves the highest accuracy on localizing
the supporting objects when its modules are guided by syntax. “LSTM+CNN-MIL” and CMN
does not exploit the syntax of the referring expression and poorly perform in localizing supporting
objects. When we relax the syntactic guidance of GroundNet by letting all modules to attend to all
of the referring expression, “GroundNet-free-form” also performs poorly on localizing supporting
objects. These results suggest that leveraging syntax is essential in localizing supporting objects
and there might be a tradeoff between being interpretable and being accurate for models. We
qualitatively show a couple of instances from test set GroundNet and CMN in Figure 3.3. As an
example, for the �rst instance, both GroundNet and CMN successfully predict the target object.
GroundNet is able to localize both supporting objects (i.e. the girl and the disc) mentioned in the
referring expression, whereas, CMN fails to localize the supporting objects. Next, we review the
previous work related to GroundNet.
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3.5 Related Work

Grounding Referential Expressions. The most of the recent work [61, 97, 146, 160, 183, 239]
addresses grounding referential expression task with a �xed computation graph. In earlier studies
[61, 97, 146, 183], the bounding boxes are scored based on their CNN and spatial features along
with features for the whole image. Since each box is scored in isolation, these methods ignore the
object relationships. More recent studies [93, 160, 239] show that modeling relationship between
objects improves the accuracy of models. GroundNet has a dynamic computation graph and
models the relationship between objects.

Modular Neural Architectures. Neural Module Networks (NMN) [11, 12] is a general frame-
work for modeling compositionality of language using neural modules. A computation graph with
neural modules as nodes is generated based on a parse tree of the input text. GroundNet shares the
principles of this framework. We design GroundNet for referring expression task restricting each
node grounded in the input image which keeps network interpretable throughout the computation.

Compositional Neural Network (CMN) [93] is also an instant of NMN aiming to remove
language parser from the generation of computation graph by inducing text representations to
localization and relationship modules using an attention mechanism. Their computation graph is
�xed to the subject-relation-subject tuple but the input is dynamically constructed for modules.
Our model, on the other hand, can handle multiple relationships mentioned in referring expressions
(see the �rst row of Figure 3.3).

Syntax for Vision. Golland et al.[65] introduce a game-theoretic model successfully leverages
syntax for grounding reference expressions for synthetic scenes. [39] use the visual context
for solving prepositional phrase attachment resolution (PPAR) for sentences describing a scene.
Unlike our model, their model relies on multiple parse trees and multiple segmentations of an
image coming from a black-box image segmenter. Our model can also be extended to address
PPAR setting where we only need to ground-truth object annotations for roots of multiple parse
trees for the input sentences. [220] introduce a model localizing phrases in sentences that describe
an image. However, their model relies on the annotation of phrase-object pairs. GroundNet only
uses target object annotations and there is no supervision for supporting objects. [230] aim to
address localization of phrases on region masks. Similar to our approach, they do not rely on
ground-truth masks during training. However, unlike GroundNet, their model does not model
relationship between objects.

3.6 Conclusion

In this chapter, we present GroundNet, a compositional neural module network designed for the
task of grounding referring expressions. We also introduce a new auxiliary task and an annotation
for localizing the supporting objects.

Our experiments on a standard benchmark show that GroundNet is the �rst model that
successfully incorporates syntactic information for the referring expression task. This syntactic
information helps GroundNet achieve state-of-the-art results in localizing supporting objects.
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Our results show that recent models are unsuccessful at localizing supporting objects. This
suggests that current solutions to referring expression task come with an interpretability-accuracy
trade-off. Our approach substantially improves supporting object localization, while maintaining
high accuracy, thus representing a new and more desirable point along the trade-off trajectory.
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