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Abstract. Reconstructing 3D motion data is highly under-constrained
due to several common sources of data loss during measurement, such
as projection, occlusion, or miscorrespondence. We present a statistical
model of 3D motion data, based on the Kronecker structure of the spa-
tiotemporal covariance of natural motion, as a prior on 3D motion. This
prior is expressed as a matrix normal distribution, composed of separa-
ble and compact row and column covariances. We relate the marginals
of the distribution to the shape, trajectory, and shape-trajectory models
of prior art. When the marginal shape distribution is not available from
training data, we show how placing a hierarchical prior over shapes re-
sults in a convex MAP solution in terms of the trace-norm. The matrix
normal distribution, fit to a single sequence, outperforms state-of-the-art
methods at reconstructing 3D motion data in the presence of significant
data loss, while providing covariance estimates of the imputed points.
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1 Introduction

Dynamic 3D reconstruction is the problem of recovering the time-varying 3D
configuration of points from incomplete observations. The theoretical and prac-
tical challenges in this problem center on the issue of missing data. In theory,
dynamic 3D reconstruction is often an ill-posed problem because of projection
loss due to the imaging of 3D information to 2D. In practice, a number of
additional sources of missing data arise. First, occlusions, self-occlusions, and
imaging artifacts (such as motion blur) can cause detection loss where points
of interest are simply not detected in particular frames. Second, if points are
not re-associated to their earlier detection, the system may break one trajectory
into two separate trajectories, causing correspondence loss. While missing data
issues are present in static 3D reconstruction, they are of greater significance in
dynamic 3D reconstruction, as the observation system has only one opportunity
to directly measure information about the structure at a particular time instant.
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Thus, the question at the core of dynamic 3D reconstruction is what internal
model a system should refer to when there is insufficient information.

Ideally, a good model should capture all available correlations in the data—
spatial, temporal, and spatiotemporal—as these correlations allow us to reason
about the information that is missing. Because dynamic structure is high di-
mensional (e.g., 100 points over 120 frames is 36,000 degrees of freedom), the
number of possible correlations is very large (i.e., ∼648 million parameters), and
learning these correlations therefore requires a large quantity of samples, where
each sample is a full spatiotemporal sequence. For most applications, such large
numbers of sequences are not accessible. In this paper, we present a probabilis-
tic model of 3D data that captures most salient correlations and can still be
estimated from a few or even one sequence.

The correlations present in spatiotemporal sequences are primarily a result of
separable correlations across time and correlations across structure or shape [15,
1]. Our model represents these correlations as a matrix normal distribution
(MND) over dynamic structure, which translate into a Kronecker pattern in
the spatiotemporal covariance matrix. We show that this pattern is observed
empirically. Additionally, we show that analytical models of the trajectory co-
variance capture most of the covariance of natural motions. Because such an
analytical distribution over shape or structure is generally not available, we in-
stead place a prior over the shape covariance, and derive a convex MAP solution
to this problem in terms of the trace-norm. The model presented here applies
to any dynamic 3D reconstruction problem, including nonrigid structure from
motion, stereo, and multi-view dynamic 3D reconstruction.

Summary. In Sect. 4, we identify the Kronecker pattern in time-varying 3D
point cloud covariance matrices, and present a generative probabilistic model
based on the MND that explains this pattern. In Sect. 5, we establish a connec-
tion between MND and the trace-norm that leads to a convex MAP objective
for 3D reconstruction. In Sect. 7, we show how this model unifies a number of
shape and trajectory models, both probabilistic and algebraic, used in prior art.

2 Prior Art

The literature on reconstructing dynamic 3D structure is large and we focus
our review on methods that directly deal with issues of information loss (ei-
ther in the monocular or multi-camera case). There are largely two approaches:
physically-based approaches, where ill-posed systems are conditioned according
to a physically-grounded model, and statistically-based methods, where expected
statistical properties of the data are used to regularize the ill-posed system with-
out explicitly appealing to any physical grounding.

The earliest physically-based representation, in this context, was by Ter-
zopoulos et al. [31]; subsequent work [19] presented a physically-based approach
using nonlinear filtering over a superquadratic representation. Concurrently,
Pentland and Horowitz [23] presented an approach where a finite element model
described deformations in terms of a small number of free vibration modes,
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equivalent to a Kalman filter accounting for dynamics. Taylor et al. [30] revis-
ited the idea of using rigidity but at a local scale using a minimal configuration
orthographic reconstruction. Salzmann and Urtasun [26] described a number of
physically-based constraints on trajectories of points that could be applied via
convex priors. Investigation into statistically-based methods began with Tomasi
and Kanade’s rank 3 theorem [32], which established that image measurements of
a rigidly rotating 3D object lay in a three dimensional subspace. The associated
factorization algorithm was extended by Bregler et al. for nonrigid objects [8],
positing that a shape space spanned the set of possible shapes. Unlike the rigid
case, where the bilinear form could be solved using singular value decomposition
(SVD), this formulation had a trilinear form. Bregler et al. proposed a nested
SVD routine, which proved to be sensitive to initialization and missing data. A
series of subsequent papers investigated various constraints to better constrain
the solution or relax the optimization (a sample of major work includes [7, 38,
35, 13, 25]). Recently, Dai et al. [10] presented a method that uses a trace-norm
minimization to enforce a low rank shape space, and Garg et al. [14] showed that
the method can be applied to recover dense, non-rigid structure. Lee et al. [17]
formulated a normal distribution over shapes in a Procrustes aligned space.

In conjunction, trajectory space representations were proposed by Sidenbladh
et al. [27], which they referred to as eigenmotions. Akhter et al. [2] noted that,
in trajectory space, a predefined basis could be used, which reduced the trilin-
ear form to a bilinear form and allowed the use of SVD once again to recover
the nonrigid structure. Unfortunately, the solution was shown to be sensitive to
missing data and cases where the camera motion is smooth [21]. Park et al. [21]
used static background structure to estimate camera motion, reducing the opti-
mization into a linear system, and were able to handle missing data. Valmadre
and Lucey [34] presented various priors on trajectories in terms of 3D point
differentials, showing better noise performance.

A number of approaches have combined spatial and temporal constraints [23,
19, 20, 33, 15]. Torresani et al. [33] presented a probabilistic representation, using
probabilistic PCA within a linear dynamical system. The shape space and tra-
jectory space approach were combined by Gotardo and Martinez [15], and Lee
et al. [18] embedded the Procrustean distribution within a Markov process.

In contrast to prior work, our model describes an explicit parametric dis-
tribution over spatiotemporal data that allows us to define a spatiotemporal
covariance matrix relating any point in time to any other point in time. The
distribution can be estimated from a single sequence and used to calculate co-
variance estimates for missing data. As summarized in Table 1, we take a step
towards reconciling a number of recent statistically-based linear representations
in nonrigid structure from motion [8, 33, 20, 2, 15, 34, 10, 4].

3 Observation Model for Time-Varying 3D Point Clouds

The time-varying structure of a configuration of P 3D points across F frames
can be represented by a matrix X ∈ RF×3P . The row f corresponds to the
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3D shape in frame f , and is formed by the horizontal concatenation of points
Xf

p ∈ R1×3, denoting the p-th 3D point. We will denote by vec(X) the column-
major vectorization of the matrix X, and we will interchangeably use lowercase
bold letters to denote the vectorized matrices, i.e., x = vec(X).

In practice, due to missing data and camera projection, only a reduced set
of measurements of X are observed. We model observations linearly as

y = O vec(X) + ε, (1)

where y is a vector of observations of size nobs (the number of observations),
O ∈ Rnobs×3FP is the observation matrix, and ε is noise sampled from a normal
distribution. In the simplest case of fully observed data, O is an identity matrix
of size 3FP × 3FP . For entries x, y, or z that are missing, we would remove the
corresponding rows of the identity matrix, yielding a matrix Omiss containing a
subset of the rows.

The action of camera projection can also be modeled by O. For ease of
notation, let us briefly consider the row-major vectorization vecr(X). For this
arrangement, the effect of orthographic projection from a single camera can be
expressed as a matrix Oortho such that

y =

R1 ⊗ IP
. . .

RF ⊗ IP

 vecr(X) + ε, (2)

i.e., each of the P points is transformed by a camera matrix for frame f , equal
to Rf ∈ R2×3. A rearrangement of this matrix can be used with the column-
major vectorization vec(X). The case of a single camera observing the scene with
unknown rotations Rf is the problem of NRSfM. For multiview reconstruction,
several Oortho matrices can be stacked, one for each camera observing the scene.
If some of the projected points are missing, we can concatenate the effect of
the matrices: O = OmissOortho. In this paper, we assume that the observation
matrix O is known (e.g., via rigid SfM [11] or IMUs); simultaneous recovery of
the camera matrices (as in NRSfM) is not the focus of this paper.

Our objective is to estimate the most likely spatiotemporal structure X̂
given the observations y. Note, however, that nobs � 3FP , and the problem
minX σ

−2‖y−O vec(X)‖22 is therefore severely under constrained. We therefore
take a Bayesian approach to the estimation problem,

X̂ = argmax
X

p(X|y) ∝ p(y|X)p(X), (3)

where p(y|X) = N
(
O vec(X), σ2I

)
from Eq. (1). The goal is then to design

a prior p(X) that models the data well while remaining amenable to global
optimization.
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4 Spatiotemporal Prior for Time-Varying 3D Point
Clouds

We model the time-varying structure X ∈ RF×3P as the sum of a mean compo-
nent M and a residual non-rigid component Z,

X = M + Z. (4)

While this does not reduce the number of variables to estimate, this decompo-
sition will allow us to set sensible priors over the individual components.

Mean Component M. The purpose of the mean component is to capture the
rigid shape of the object and its translational motion. We model this component
as M = 1Fmshape +MtransPtrans, where the mean 3D shape is mshape ∈ R1×3P ,
and the mean 3D trajectory is Mtrans ∈ RF×3 (containing the per-frame trans-
lation of the object), where1 Ptrans = blkdiag(1T

P ; 1T
P ; 1T

P ) ∈ R3×3P .
We set a uniform prior over the mean shape: a priori, we do not have a pre-

ferred shape for objects. Because translational motion of objects that have mass
is necessarily smooth, we will choose a prior for the translational component that
encourages smooth motion of the object. We specify this prior using a complete
trajectory basis Θ ∈ RF×F , where Θ = Θ̃Wt with Θ̃ an orthonormal basis and
Wt a diagonal weighting matrix. The basis vectors and corresponding weights
in Wt are chosen such that smooth trajectories are more likely, resulting in a
covariance over trajectories Σ = ΘΘT that characterizes the prior distribution
over trajectories:

Mtrans ∼MN (0,Σ, I3), (5)

where MN denotes the Matrix Normal Distribution (MND) [12], with mean 0,
column covariance Σ (describing correlations across time), and row covariance
I3 (describing that there are no a priori correlations between the x, y, and z
components).

Residual Component Z. We model the residual non-rigid deformations of the
object as

Z = ΘCBT , (6)

where C ∈ RF×3P is a matrix of mixing coefficients, B ∈ R3P×3P is a complete
shape basis such that B = B̃Wb where B̃ is orthonormal and Wb a diagonal
weighting matrix. Additionally, we model the distribution over coefficients C
as c ∼ N (0, I). This corresponds to a probabilistic formulation of the bilinear
model of Akhter et al. [1], and results in a matrix normal distribution

Z ∼MN (0,Σ,∆), (7)

where ∆ = BBT is the row covariance (describing shape correlations) and
Σ = ΘΘT is the column covariance (describing trajectory correlations). Equiv-
alently, the distribution over dynamic 3D structure is multivariate normal with

1 1P denotes a column vector of ones of size P , and blkdiag produces a block diagonal
matrix.
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Trajectory
Covariance

Sample Covariance from Data Matrix Normal Covariance
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3P

3FP ⇥ 3FP 3FP ⇥ 3FP F ⇥ F

3P ⇥ 3P

Fig. 1. Human spatiotemporal point cloud data exhibits a Kronecker structured co-
variance matrix, allowing us to model the distribution over sequences as matrix normal.
(Left) The spatiotemporal covariance computed from 5402 vectorized sequences shows
a distinct block structure, highlighted in the inset. (Right) The corresponding covari-
ance of the matrix normal model, where the full (3FP ) × (3FP ) matrix is separable
into two smaller covariance matrices, the F × F trajectory (row) and 3P × 3P shape
(column) covariances respectively. Here, F = 30 frames and P = 16 points.

a Kronecker structured covariance matrix [3], with z = (B⊗Θ)c and,

z ∼ N (0,∆⊗Σ). (8)

Fig. 1 illustrates the intuition for choosing this prior over dynamic 3D struc-
ture: the spatiotemporal covariance matrix of natural motions is dominated by
a Kronecker product block pattern. This Kronecker pattern of the covariance is
precisely the one induced by the MND distribution.

This is a significant finding for the purposes of estimation because the MND
model allows us to parameterize the spatiotemporal covariance of a dynamic 3D
structure with far fewer free variables than are needed for a general, unstructured
covariance matrix. The number of covariance parameters in an MND distribu-
tion is approximately (3P )2/2 + (F )2/2, versus ∼(3FP )2/2 for a full covariance
matrix. Even for small values of F=30 frames and P=31 points, this results
in ∼5000 variables for the MND versus ∼3.9 million for a full spatiotemporal
covariance.

5 Convex MAP Reconstruction

Reconstructing the 3D shape of the object can now be formulated as finding the
most likely spatiotemporal configuration of points X given the image measure-
ments y under our new probabilistic parameterization for dynamic structures,

p(y|X)p(X) = p(y|M,Z)p(M,Z). (9)

We assume independence between the mean and non-rigid components, p(M,Z) =
p(M)p(Z), with each of the priors described by an MND as defined above. The
negative log-likelihood of the MND is quadratic, and inference under an MND
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prior can be posed as a least-squares problem:

argmax
M,Z

p(y|M,Z)p(M)p(Z) = argmin
M,Z

σ−2||y −O vec(M + Z)||2F

+ λ tr
[
Mtrans

TΣ−1Mtrans

]︸ ︷︷ ︸
− log(p(M))+c2

+ tr
[
∆−1ZTΣ−1Z

]︸ ︷︷ ︸
− log(p(Z))+c1

, (10)

where λ is a scaling factor related that depends on the variance of the object’s
translational motion.

Recall that the distribution over non-rigid structures is defined by the gener-
ative model Z = ΘCBT , where Θ and B parameterize the shape and trajectory
covariances. These covariances may depend on the object and are unknown a
priori, and therefore need to be estimated:

p(Θ,C,B,M|y) ∝ p(y|Θ,C,B,M)p(Θ|C,B)p(B|C)p(C)p(M). (11)

At this point, we have added optimization variables without reducing the number
of unknowns. The benefit of this seemingly more complex parameterization is
that we can set priors over the individual terms. The two priors that remain to
be specified are:

(1) p(Θ|C,B). Because the MND covariance is separable into shape and
trajectory covariances, we can make use of a generic analytical model for the
trajectory covariance Σ = ΘΘT . Consider the trajectory Xp ∈ RF×3 of a point
p. Minimizing the kinetic energy is equivalent to minimizing tr

[
XT

p DTDXp

]
,

where D is a first order difference matrix, which is proportional to the negative
log-likelihood of a Gaussian distribution over trajectories. Define G = DTD,
the second order difference matrix. It is known that G = Θ̃ΛΘ̃T , where Θ̃ is
the orthogonal DCT transform and Λ is a diagonal matrix (subject to boundary
conditions), and therefore Θ = Θ̃Λ−1/2 [29]. The term Θ is therefore known
and drops from the expression

argmax
M,C,B

p(y|Θ,C,B,M)p(B|C)p(C)p(M). (12)

(2) p(B|C). To obtain a convex solution, we assume that p(B|C) = p(B),
i.e., the distribution over shape covariance is independent of the particular shape
configurations observed in a given sequence. We choose a normal prior over the
entries of B (equivalently, a Wishart prior over ∆). This is computationally
convenient, but more importantly, the effect is similar to the traditional low-
rank shape assumption. Intuitively, the prior minimizes non-rigid deformations
by encouraging that the singular values of the shape covariance matrix should
decrease rapidly (see Sect. 6.1).

Using the specified priors and writing this optimization in terms of the com-
ponent negative log-likelihoods,

argmin
M,C,B

σ2||y −O vec(M + ΘCBT )||2F + ‖C‖2F + ‖B‖2F + λ‖Θ+Mtrans‖2F .

(13)
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Fig. 2. (Left) Empirical and predicted parameter distributions. (a) Top: the empirical
trajectory precision matrix. Below, the second order differences matrix predicted by
energy minimization. (b) Each plot corresponds to a coefficient Ci,j in the matrix C.
The red curve shows the predicted standard normal pdf, the histogram shows the em-
pirical distribution. (c) Distribution of singular values for empirical shape covariances
(black), compared to the predicted fall-off induced by p(B) (red). (Right) Inference of
missing data with known distribution parameters. Subscript tr indicates truncation.

This expression is bilinear in C and B. A change of variables suffices to trans-
form this bilinear equation into a convex problem using the matrix trace-norm
‖·‖∗. Using a result from [28], the trace-norm can also be written as ‖R‖∗ =

minU,V{ 12‖U‖
2
F + 1

2‖V‖
2
F } subject to R = UVT . With a change of variables

Θ+XPT
⊥ = CBT we have

argmax
X

p(X|y) = argmin
X

σ−2‖y−O vec(X)‖22+‖Θ+XP⊥‖∗+
λ√
P
‖Θ+XPT

trans‖
2

F ,

(14)
where P⊥ is a projection matrix that removes the per-frame translation com-
ponent (i.e., P⊥ = I − PT

trans(PtransP
T
trans)

−1Ptrans). Note that this is the in-
verse operation of PT

trans, which isolates the per-frame translation such that
XPT

trans = PMtrans. This objective lends itself to optimization by the Alter-
nating Direction Method of Multipliers (ADMM) [6], being decomposable into
readily solvable sub-problems (see supplementary materials for details), or as a
generalized trace-norm problem [5].

6 Results

6.1 Validation on Natural Motions

We validate the proposed distribution and the four components of our model by
computing statistics on a large set of natural motions. We use the CMU Motion
Capture database, where we subsample the data to retain point tracks for 15
joint locations on the body, yielding N = 5402 30-frame sub-sequences Xn which
we also align using Procrustes analysis and center around their mean shape.

I. Kronecker Covariance Structure. (Sect. 4) Fig. 1(left) shows the empirical
sample covariance matrix 1

N

∑
n vec(Xn) vec(Xn)T computed on the full set of

sequences. On the right, we show the covariance associated with the matrix
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normal distribution, i.e., ∆⊗Σ, where ∆ is computed2 as the covariance of the
rows ∆ = 1

NF

∑
n XT

nXn, and Σ = 1
vN3P

∑
n XnXT

n , with v = 1
3P tr(∆). Note

that this separable approximation captures most of the structure and energy in
the covariance using far fewer parameter than a full covariance matrix.
II. Analytical Trajectory Distribution. (Sect. 5) Fig. 2(a) shows that the
empirical precision matrix computed over trajectories (the inverse of the sample
covariance, Σ−1) closely resembles the regularizer predicted by energy minimiza-
tion. Most correlations in the data are captured by the analytical model.
III. Distribution of Coefficients. (Sect. 4) The matrix normal model assumes
a standard normal distribution over the latent coefficients, i.e., Ci,j∼N (0, 1).
Given a large set of natural motion sequences, we can verify the accuracy of this
assumption by fitting the model coefficients Cn ∈ RF×3P to each sequence Xn,
and plotting the resulting histogram of coefficient values. Fig. 2(b) shows that
the empirical distribution can be more spiked, closer to Laplacian or Cauchy.
IV. Hierarchical Prior on Shape Covariance. (Sect. 5) We sample shape
covariance matrices from the prior B∼MN (0, I3P , I3P ) and compute their sin-
gular values (SVs). Fig. 2(c) compares the energy fall-off in SVs from sampled
matrices to that of empirically computed covariance matrices. The plot shows
the mean SVs and ±3 standard deviations. The fall-off in the energy of the sin-
gular values by the induced prior on B is not as quick as that observed from
data, but this particular choice allows for a convex optimization. Finding priors
with faster fall-off but that still remain amenable to global minimization is an
interesting direction for future research.

6.2 Missing Data in Motion Capture

The objective of these experiments is to characterize the resilience of the model
to typical patterns of missing data encountered in dynamic reconstruction. We
decouple the problem of missing data from projection loss and reconstructibil-
ity [34] by studying inference on 3D observations (e.g., the output from a motion
capture system). The task is to infer the complete sequences from a reduced set
of 3D observations. We use the observation model Omiss as per Sect. 3.
Known Distribution Parameters. When 3D training data is available, we can
learn the parameters for MND distribution and perform inference with Eq. (10).
We compare with the models corresponding to probabilistic and truncated ver-
sions of shape, trajectory, and shape-trajectory distributions (summarized in
Table 1). Additionally, we evaluate against a probabilistic Principal Component
Analysis (PCA) model trained on the vectorized spatiotemporal sequences, i.e.,
y = Φ vec(X)+ε. We report mean 3D error in Figure 2. As a reference, the error
incurred when using the mean shape at every frame as an estimation is ∼175cm.

For this experiment, we use data from the CMU Motion Capture database.
We take 50 random sequences of 20s in duration, sample them at 30Hz and
Procrustes align and mean center them. There are 31 markers on the body, and

2 ML estimates of the parameters for noiseless data can be obtained using a “flip-flop”
algorithm [12], but in practice we obtained better results with this procedure.
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Fig. 3. Inferring missing data under three different occlusion patterns when the shape
distribution is unknown. The graphs show mean Euclidean error in the reconstruction
under the occlusion models discussed in Section 6.2. The bottom two results correspond
to the method of Sect. 5. We investigate two different arrangements for the data matrix,
3F×P and F×3P , which capture different correlations of the data. For this experiment,
3F × P usually offered better performance, which we report on our method. The data
is from dense human motion capture originally intended to measure non-rigid skin
deformation while running in place.

we subdivide each sequence into 1s windows resulting in F=30 and P=31. We
train all models on 49 of the sequences, and test on a random 1s segment of the
left out sequence. We simulate random occlusion on a percentage of the points
and report the average over 50 trials. For the probabilistic models, we set the
noise variance to 0. For models relying on truncation of the basis, we sweep
over all possible levels of truncation and pick the best number a posteriori. Note
that the MND model with factored covariance performs equally well or better
than PCA on the vectorized sequences, while requiring less training data (50
times less in this experiment). This allows us to train a local model only on the
subsequences neighboring the test subsequence; the model is more specific and
results in lower error.

Unknown Distribution Parameters. When no training data is available, we
rely on the convex inference procedure described in Sect. 5. We compare our ap-
proach with three different priors: (1) a trajectory-only prior, (2) a trace-norm
prior, and (3) a naive combination of the trace-norm and trajectory priors. We
assume σ=1mm for all methods. We use dense motion capture data from Park
and Hodgins [22]. The sequences are captured at 120Hz with a dense spatial sam-
pling across the body. We downsample by four spatially and temporally, yielding
a point cloud of 118 points at 30Hz across 162 frames. We measure reconstruction
error as mean Euclidean distance over all points, under three different patterns
of missing data: (a) Random: We occlude points (x,y,z) at random until we
achieve a percentage of missing data. This pattern of occlusion is not common in
practical situations. Nonetheless, it is of interest here because under this pattern,
the trace-norm is known to provide minimum rank solutions with high proba-
bility [24]. (b) Detection loss: We model detection loss by occluding spatially
proximal points during 1 second durations (30 frames), simulating an occlusion.
We superimpose these simulated occlusions to increase the amount of missing
data. (c) Correspondence loss: We duplicate every point trajectory. Each of
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the resulting trajectories is observable during a non-overlapping duration, re-
sulting in a pattern similar to that observed when tracking from visual features.
The track length is modified to achieve a particular level of missing data (with
respect to the original sequence).

The resulting occlusion patterns are shown as insets on the graphs in Fig. 3,
laid out as a matrix of frames by points, where black denotes observed entries. We
note that correspondence loss results in a much harder problem. Independently
of the occlusion pattern, the proposed approach improves results.

6.3 Non-rigid Structure from Motion

We compare the performance of our time-varying point cloud reconstruction
method using Eq. (10) on a standard set of structure from motion sequences,
where the only data loss is from projection. We report normalized mean 3D error
as computed in [15] for four methods, (1) KSTA [15], a non-linear kernelized
shape-trajectory method, (2) Dai et al. [10], (3) a trajectory-only prior, and (3)
our approach. For our method, we compute the camera matrices as in Dai et
al. [10] 3, and set σ=1 and λ=0. For Dai et al. and KSTA, the optimal parameter
k was chosen for each test.

Dataset KSTA Dai Traj. Ours

Drink 0.0156 0.0266 0.0102 0.0099
Pick-up 0.2322 0.1731 0.1707 0.1707

Yoga 0.1476 0.1150 0.1125 0.1114
Stretch 0.0674 0.1034 0.0972 0.0940
Dance 0.2504 0.1842 0.1385 0.1347
Face2 0.0339 0.0303 0.0408 0.0299

Walking2 0.1029 0.1298 0.3111 0.1615
Shark2 0.0160 0.2358 0.1380 0.1297

Capoeira 0.2376 0.3931 0.4394 0.3786

(a) Performance on NR-SfM data sets (b) Frontal face 3D reconstruction

Fig. 4. (a) Comparison on standard NRSfM sequences using normalized mean 3D error
as reported by [10] and [15]. For our method, we compute the camera matrices as Dai et
al. Our method shows improved performance on 5 of 8 sequences, while the non-linear
KSTA method can achieve better performance on some sequences. (b) Reconstructing
a dynamic face from a frontal view. The top row shows frames from a video with
superimposed detected 2D landmarks (green circles) provided by IntraFace [37]. We
reconstruct the face in full 3D using Eq. (14) and show the reprojection onto three
other (held out) views for comparison (yellow dots).

3 For KSTA [15], the camera matrices are computed as per Akhter et al. [2]. The
implementation of Dai et al. and KSTA was provided by the respective authors.
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Fig. 5. (a) Multiview reconstruction on the “Rock Climbing” sequence from [21]. An-
notated labels are shown in white. (Left) Qualitative comparison. The top row shows a
result on the full data (104 camera snapshots of 45 points). All methods perform simi-
larly for fully observed frames. The bottom row shows a result on a simulated occlusion
(see text). (Center) Reconstructed 3D trajectories of the points, side view of the climb-
ing wall. The arrows denote the direction of motion of the climber. (Right) x,y,z-plot
of the mean trajectories of the imputed points. (b) The matrix normal prior allows us
to compute the expected value and spatiotemporal covariance of missing data. For this
30 frame sequence, points have been removed completely from frames 10–20. Observed
points are marked by red dots. We infer missing values and visualize the mean and
95% confidence bound.

6.4 Monocular reconstruction

In Fig. 4(b) we show a 3D point cloud reconstruction example from a frontal view
of a face using 2D landmark detections provided by IntraFace [37]. The original
video is around 1500 frames long and is reconstructed simultaneously. Only a
subset of frames is shown here. We directly use the model of Eq. (14) and build
an observation matrix Oortho using the head pose estimation matrices provided
by IntraFace. Our method recovers a time-varying 3D point cloud of the face,
which we can project onto three other views (not used during reconstruction) to
evaluate the accuracy.

6.5 Multiview Dynamic Reconstruction

We perform a qualitative evaluation of the method of Sect. 5 on a dynamic recon-
struction sequence from Park et al. [21]. This sequence is observed very sparsely
by multiple cameras taking snapshots of the scene at a rate of around 1 per
second. We aim to reconstruct the original motion at 30Hz. Because the obser-
vations are now 2D image measurements under 3D-to-2D perspective projection,
we use an observation model Oproj corresponding to a matrix re-arrangement
of the observation model described in [21]. Fig. 5(a) shows reconstructions on
two sequences, where we have simulated two types of occlusion. Because ground
truth is not available, we first run all methods on the full data to obtain a refer-
ence reconstruction and we average the resulting structure. This result is shown
in black. Fig. 5(a)(left) shows a simulated occlusion of the points on the left foot
during the first 6 seconds of the sequence. The trajectory-only prior ‖Θ+X‖2F
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gives a smooth solution, but the foot is not at a coherent location with respect
to the body. Conversely, all trace-norm based methods are able to infer the po-
sition of the left foot (bottom row of images) fairly plausibly. However, when we
look at the temporal domain Fig. 5(a)(right), we observe that the trace-norm
penalization ‖X‖∗ results in temporal artifacts—rows in the matrix with no ob-
servations are set to zero. This model is not adequate for data interpolation: as
observed in the matrix completion literature, the non-uniformity of the missing
entries (as happens when interpolating a sparsely observed signal at 30Hz) neg-
atively affect the performance of trace-norm based methods. Our method is able
to achieve a smoother interpolation while maintaining a low-rank structure.

6.6 3D Time-varying Point Cloud Reconstruction

In Fig. 6 we show a reconstruction of the baseball sequence acquired by Joo et
al. [16]. The sequence is given as a set of 3D point trajectories obtained from
a multi-camera system. Each trajectory is only partially observed (i.e., once a
point cannot be tracked forwards or backwards, its coordinates in subsequent
frames are missing). These sequences are 30-frames in duration and have around
∼800 points, which where occluded on average ∼15% of the time. The goal is to
obtain complete trajectories for the entire duration of the video. Here, we show
two reconstructions for two overlapping 30-frame subsets of these sequences.
The graphs show the trajectories for subsets of points. Note how the recovered
trajectories are smooth, and motion occurs in groups because of the low-rank
effect of the shape prior.
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Fig. 6. Reconstructing a baseball motion sequence. Black lines indicate observed
points, red lines are inferred trajectories. Two motion trail diagrams of 30-frame over-
lapping parts of a baseball swing are shown. The graphs show a close up reconstruction
for different subsets of the points.

7 Discussion

The model over dynamic 3D structure we describe can be related to shape,
trajectory, and shape-trajectory representations used in prior art [15, 8, 9, 27, 36,
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Truncation Probabilistic Convex Approx.

Shape
Bregler et al. [8]

X = ΩB̃T
Torresani et al. [33]
X = ΩWbB̃

T + ε Dai et al.[10]
‖X‖∗

Trajectory
Akhter et al. [2]

X = Θ̃A
Valmadre et al. [34]

X = Θ̃WbA + ε

Shape-
Trajectory

Gotardo and
Martinez [15]
X = Θ̃CB̃T

(This Paper) X = Θ̃WtCWbB̃
T + ε

‖Θ+XP⊥‖∗

Table 1: Comparison of linear methods for structure reconstruction. See Sect. 4.

33, 2, 34] (see Table 1). The convex MAP minimization of Eq. (14). when using
a normal prior over B can be related to the use of the trace-norm in rigid and
non-rigid structure from motion [5, 10]. In the following, consider the MND prior
over point cloud data X ∼MN (M,∆,Σ) with known distribution parameters
M, ∆, and Σ.

Trajectory Methods. The MND describes a joint shape-trajectory distribu-
tion, but it is illustrative to consider the marginal distribution it induces for a
particular trajectory xj (a column j of X) independent of all other points. This
corresponds to an equivalent basis representation over trajectories, as described
by Sidenbladh et al. [27]. The marginal distribution is then xj ∼ N (Mj ,∆j,jΣ),
where Σ=ΘΘT is the trajectory covariance matrix, and ∆j,j loosely corresponds
to the mass of each point. This expression is equivalent to the filtering solution
proposed by Valmadre and Lucey [34], who observe that a combination of first
and second-order differences fit natural motions well. See also [26].

Shape Methods. The marginal distribution of a particular shape xi (a row i
of X arranged as a column) independent of all other time instants corresponds
exactly to shape-only distributions used in prior art, such as the Point Distribu-
tion Model (PDM) of Cootes et al. [9], and the shape basis model of Torresani
et al. [33]. It follows from the matrix normal model that xi ∼ N (Mi,Σi,i∆),,
where Σi,i is the entry (i, i) in Σ and ∆=BBT is the shape covariance matrix.
An equivalent shape basis B is usually computed with PCA [8, 36, 2, 33].

Bilinear Spatiotemporal Methods. The model we present is a probabilis-
tic formulation of the shape-trajectory basis models described in [15, 1]. These
models describe spatiotemporal sequences as a linear combination of the outer
product of a reduced set of trajectory basis vectors and a set of shape basis
vectors. They rely on truncation of the basis to achieve compaction, while the
probabilistic MND model describes the relative variance of each spatiotemporal
mode with the weighting matrices Wt and Wb. Additionally, the MND allows
us to compute a confidence bound on the imputed missing data. We visualize
this distribution in Fig. 5(b) on a facial motion capture sequence from [1].

Trace-norm Methods. The trace-norm term in Eq. (14) can be written in
terms of the “generalized trace-norm” developed by Angst et al. for rigid SfM [5].
Compared to the rigid model of Angst et al., our work draws an explicit con-
nection between the row and column spaces of an MND distribution of a time-
varying 3D structure. Compared to the trace-norm regularizer of Dai et al. [10],
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we obtain an equivalent minimization if we assume that the temporal covariance
is an identity matrix (and set λ=0). The effect of this is most easily understood
for the case of interpolation: frames (rows) for which all points are missing will
be set to zero by the ‖X‖∗ penalizer. This effect can result in abrupt changes in
the reconstruction, and can be seen in the spiked blue curves in Fig. 5(a) (right).
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