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Abstract

As a person reads, the brain performs complex operations to create higher order

semantic representations from individual words. While these steps are effortless for

competent readers, we are only beginning to understand how the brain performs these

actions. Here, we explore lexical semantics using magnetoencephalography (MEG)

recordings of people reading adjective–noun phrases presented one word at a time.

We track the neural representation of single word representations over time, through

different brain regions. Our results reveal two novel findings: (a) a neural representa-

tion of the adjective is present during noun presentation, but this representation is

different from that observed during adjective presentation and (b) the neural represen-

tation of adjective semantics observed during adjective reading is reactivated after

phrase reading, with remarkable consistency. We also note that while the semantic

representation of the adjective during the reading of the adjective is very distributed,

the later representations are concentrated largely to temporal and frontal areas previ-

ously associated with composition. Taken together, these results paint a picture of

information flow in the brain as phrases are read and understood.
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1 | INTRODUCTION

Semantic composition, the process of combining small linguistic units

to build more complex meaning, is fundamental to language compre-

hension. It is a skill that children acquire with amazing speed, and

that adults perform with little effort. Still, we are just beginning to

understand the neural processes involved in semantic composition

and the neural representation of composed meaning. Multiple

studies have identified cortical regions exhibiting increased activity

during increased semantic composition load [(Bemis & Pylkkänen,

2011; Hagoort, 2005; Kuperberg, 2007; Kutas & Hillyard, 1980;

Westerlund & Pylkkänen, 2014), to name only a few]. Here we con-

sidered a different question: Where and when are single-word

semantic representations stored in preparation for, and used during

semantic composition?

Semantic composition in the brain has been studied using semanti-

cally anomalous sentences (Bastiaansen, Magyari, & Hagoort, 2010;

Kuperberg, 2007; Kutas & Hillyard, 1980), as well as in simple phrases

(Bemis & Pylkkänen, 2011; Westerlund & Pylkkänen, 2014), typically

by comparing the magnitude of brain activity between conditions

(e.g., composing words into phrases vs. reading word lists). Several such

studies have implicated right and left anterior temporal lobes (RATL

and LATL) as well as ventromedial prefrontal cortex (vmPFC) and left

inferior frontal gyrus (IFG) in compositional processing (Bemis &

Pylkkänen, 2011; Bemis & Pylkkänen, 2013; Hagoort, 2005). Magneto-

encephalography (MEG) studies have shown effects in these areas as

early as 180 ms poststimulus onset, until around 480 ms poststimulus

onset (Bemis & Pylkkänen, 2011; Bemis & Pylkkänen, 2013), which

aligns well with the N400 effect observed in electroencephalography

for semantically incongruent sentences (Kutas & Hillyard, 1980).
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Semantic composition effects have also been seen around 600 ms

poststimulus onset (P600; Osterhout & Holcomb, 1992). Though the

P600 is more commonly associated with syntactic violations, it can be

evoked by syntactically sound stimuli that violate a semantic constraint

(Kuperberg, 2007).

The computational (rather than neuroscientific) study of language

semantics has been greatly influenced by the idea that word meaning

can be inferred by the context surrounding a given word, averaged over

many examples of the word's usage (Bruni & Baroni, 2013; Baroni,

Dinu, & Kruszewski, 2014; Blacoe & Lapata, 2012; Pennington,

Socher, & Manning, 2014; Turney & Pantel, 2010). For example, we

might see the word ball with verbs like kick, throw, catch, with adjec-

tives like bouncy or with nouns like save and goal. Context cues suggest

meaning, so we can use large collections of text to compile statistics

about word usage (e.g., the frequency of pairs of words), to build

models of word meaning. These statistics are typically compressed

using dimensionality reduction algorithms like singular value decompo-

sition (SVD), as in latent semantic analysis (LSA; Landauer & Dumais,

1997). LSA and similar models represent each word with a vector.

Together, the vectors of many words form a vector space model (VSM).

The brain's semantic representations can be studied by quantifying

the information present in neural activity at particular cortical locations

and times. For example, one can predict the word a person is reading

based on their neural activity, by training a machine-learning algorithm

to predict the associated word vector (Mitchell et al., 2008; Sudre et al.,

2012). Such algorithms do not require large differences in brain activity

between conditions, but rather leverage differences in the spatiotempo-

ral patterns of neural activity, which may involve differences in signal in

both the positive and negative direction in different areas of the brain

at different times. Machine learning techniques have been used in a

variety of settings to predict words from brain activity (Mitchell et al.,

2008; Murphy, Talukdar, & Mitchell, 2012; Sudre et al., 2012; Wehbe

et al., 2014; Wehbe, Vaswani, Knight, & Mitchell, 2014).

To the best of our knowledge, the study presented here represents

the first effort to study semantic representations of adjective–noun

phrases using the fine time resolution offered by magnetoencephalog-

raphy (MEG). This is in contrast to previous work interested in the brain

areas that respond to stimuli requiring composition, or differing types

of composition (Bemis & Pylkkänen, 2011; Bemis & Pylkkänen, 2013;

Flick et al., 2018; Westerlund & Pylkkänen, 2014; Zhang & Pylkkänen,

2018). To study adjective–noun phrases in the brain, we traced the

flow of information through time and brain space. The ability of these

algorithms to predict the stimuli from MEG recordings is indicative of

the information present in the underlying brain activity, and thus is

indicative of the brain's neural representation of that stimulus.

2 | MATERIALS AND METHODS

To examine the neural representations of adjective and noun semantics,

we presented phrases consisting of an (adjective or determiner) followed

by a noun. To maximize our probability of detecting the individual words

of the phrase, we chose eight nouns that can be easily predicted from

MEG recordings (Sudre et al., 2012). We chose six adjectives to modu-

late the most predictable semantic qualities of the words (e.g., edibility,

manipulability, size; Sudre et al., 2012). We also paired nouns with the

determiner “the” to isolate noun meaning. In total, there are 30-word

pairs (phrases). For a full list, see the Appendix. Though some phrases

start with a determiner (the), for simplicity, throughout this article we will

refer to all phrases as adjective–noun phrases. Determiners were

included here in an attempt to isolate noun meaning while keeping the

two-word paradigm. Future work may choose to omit determiners for a

cleaner analysis of only adjectives. MEG data were recorded for nine

subjects (four female), all neurologically healthy, right-handed, native

English speakers with normal or corrected to normal vision.

Phrases are shown in rapid serial visual presentation (RSVP) format

(See Figure 1). During each trial, the first word of the phrase appears on

the display at 0 s, and is removed from the display at 500 ms. The noun

appears at 800 ms and is removed at 1,300 ms. Though this timing does

not replicate a natural reading rate, it was chosen in the hopes of analyz-

ing word meaning as reading progressed. To ensure subjects were

engaged during the experiment, 10% of the stimuli were adjective–

adjective pairs (oddballs), for which the subjects were instructed to press

a button with their left hand. Neither the adjective–adjective trials nor

the adjective–noun trial immediately following the oddball was used for

analysis. Excluding these omitted trials, each phrase was presented

20 times, and analysis was performed on the mean MEG time series over

all 20 trials. The experiment was carried out in seven blocks of approxi-

mately equal length, with the opportunity to rest between blocks.

Because of the experimental setup, there is a strong correlation

between the adjectives and nouns in our data (because not every

adjective appears with every noun). For example, the word “rotten”

only appears with food words “tomato” and “carrot”. Thus, if we did

not control for this correlation, we could not definitively say that our

ability to decode the noun is due only to noun semantics and not a

byproduct of adjective semantics (and vice versa). For this reason, we

were careful to avoid analyses in which we seek to predict a property

of the adjective, but might instead predict a correlated property of the

noun (and vice versa). This is explained further in Section 2.6.

2.1 | Data acquisition and preprocessing

All nine subjects gave their written informed consent approved by the

University of Pittsburgh (protocol PRO09030355) and Carnegie Mel-

lon (protocol HS09-343) Institutional Review Boards. Though a group

F IGURE 1 Stimulus presentation protocol. Adjective–noun
phrases were presented one word at a time with a fixation cross both
between words and between phrases. The first word of the phrase
appears at 0 ms, and disappears at 500 ms, the second word is visible
800–1,300 ms. The first word of successive phrases are 3,000 ms apart
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of nine participants is on the smaller side for studies such as this, we

note that the key features we describe in the results (maintenance

and resurgence of adjective meaning) are apparent for most subjects,

and the TGMs are quite similar (see Appendix Figure A1). In addition,

there is support for collecting more high-quality data from fewer sub-

jects (Kolossa & Kopp, 2018). Here we focused on many repetitions

(20 per phrase) for a smaller participant pool.

MEG data were recorded using an Elekta Neuromag device (Elekta

Oy). As much as possible, we adhered to the best practices of MEG

data collection (Gross et al., 2012). The data were acquired at 1 kHz,

high-pass filtered at 0.1 Hz and low-pass filtered at 330 Hz. Eye move-

ments (horizontal and vertical eye movements as well as blinks) were

monitored by recording the differential activity of muscles above,

below, and beside the eyes. At the beginning of each session, the posi-

tion of the subject's head was recorded with four head position indica-

tor (HPI) coils placed on the subject's scalp. The HPI coils, along with

three cardinal points (nasion, left and right preauricular), were digitized

into the system to allow for head translation to register data collected

in different blocks.

The data were preprocessed using the temporal extension of SSS

(tSSS; Taulu & Hari, 2009) to remove artifacts and noise unrelated to

brain activity. In addition, we used tSSS to realign the head position

measured at the beginning of each block to a common location. The

MEG signal was then low-pass filtered to 50 Hz to remove the contri-

butions of line noise and down-sampled to 200 Hz. The Signal Space

Projection method (SSP; Uusitalo & Ilmoniemi, 1997) was used to

remove signal contamination by eye blinks or movements, as well as

MEG sensor malfunctions or other artifacts. The MEG data were

parsed into trials, one for each phrase presentation. Each trial begins

at the onset of the first word of the phrase, and ends 3,000 ms later,

for a total of 600 time points of data per sample (See Figure 1). MEG

sensor amplitudes are known to drift with time, so we corrected each

trial by subtracting from every sensor the mean signal amplitude dur-

ing the 200 ms before stimulus onset. During behavioral tests, it was

found that phrases containing the noun “thing” were inconsistently

judged by human subjects, and so the eight phrases containing the

noun “thing” were omitted from further analysis, leaving a total of

30 phrases for analysis.

After processing, the MEG data for each subject consisted of

20 repetitions for each of the 30 phrases. Each repetition has a

600-dimensional time series for each of the 306 sensors. For each

subject, we averaged all 20 repetitions of a given phrase to create one

data instance per phrase, 30 instances in all. The dimensions of the

final data matrix for each subject were 30 × 306 × 600.

2.2 | Source localization

In order to transform MEG sensor recordings into estimates of neural

activity localized to areas of the brain, we used a multi-step process.

First, Freesurfer (http://surfer.nmr.mgh.harvard.edu) was used to con-

struct a 3D model of each subject's brain, based on a structural MRI.

Freesurfer was used to segment the brain into ROIs based on the

Desikan–Killiany Atlas. Then, the Minimum Norm Estimate method

(Hämäläinen & Ilmoniemi, 1994) was used to generate estimates of

sources on the cortical sheet, spaced 5 mm apart. The noise covari-

ance matrix was estimated using approximately 2 min of MEG record-

ings collected without a subject in the room (empty room recordings)

either directly before or after the subject's session. Source localization

resulted in approximately 12,000 sources per subject derived from

the 306 MEG sensor signals.

2.3 | Prediction tasks

We used two prediction tasks to track the words representation while

reading adjective–noun phrases. In each case, the task is to predict

the stimulus from the MEG recording. Differences in the time course

of prediction accuracy for each task allow us to probe the information

available during adjective–noun phrase comprehension. The tasks are

1. Predicting adjective semantics: Predict the identity of the first word

in the phrase (any of the six adjectives or the word “the”) and

2. Predicting noun semantics: Predict the identity of the noun (one of

eight).

For both tasks, we trained models to predict the dimensions of a

VSM vector from MEG recordings. We then predict word identity

based on the similarity of the predicted vectors to the corresponding

true VSM vectors. A more detailed description follows in Section 2.4.

For each of the words in our study, we used word vectors that are

based on the sentence dependency relationships for each word of

interest, averaged over a very large number of sentences (Fyshe,

Talukdar, Murphy, & Mitchell, 2013). Though we use these vectors to

represent lexical semantics, unavoidably some syntactic information

(or correlates of syntactic information) appears in the vectors. For

more details on the vectors, see the Appendix. We use the first

m = 100 SVD dimensions to summarize the dependency statistics,

which represents a reasonable trade-off between computation time

and accuracy (Fyshe et al., 2013).

2.4 | Prediction framework

To study adjective and noun representations in the brain, we devised

a simple prediction framework. Cross-validation was performed inde-

pendently for each subject, wherein two of the 30 phrases are with-

held during training, and subsequently used to test the framework's

predictions. This holds out and test procedure was repeated multiple

times (see Section 2.6). For the prediction tasks described in

Section 2.3, every stimulus phrase is represented by two vectors from

a VSM, which represent the semantics of either the adjective or noun.

The elements of this vector are the targets in the prediction frame-

work (s[k] in Equation (1)).

We created a data matrix X 2 RN × P where N is the total number

of phrases, and P = s × t, for s = 306 sensors and t time points. Each

element of the data matrix, xi,j, represents the value for training

instance i at a point j in MEG sensor/time space. To predict each of
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the dimensions of the semantic vector, we trained an L2 regularized

(ridge) regression model, β̂:

β̂ kð Þ
= argmin

β

XN
i=1

s kð Þ
i −

XP
j=1

βjxi, j

 !2

+ λ
XP
j=0

β2j

8<
:

9=
;

= argmin
β

s kð Þ−Xβ
�� ��2

F + λ βk k2F
n o ð1Þ

where s kð Þ
i is the kth element of the VSM word vector for training

instance i, and λ is a regularization parameter that controls overfitting

in β. We append a column of 1 s to X to incorporate a bias term.

Notice that each semantic dimension k has its own β̂ kð Þ
. In previous

work, we have found λ to be very stable, so a set value of λ = 10−6

was used to save computation time. Training data was normalized

during cross-validation so that each time-sensor feature has mean

0 and standard deviation 1, and the same correction was applied to

test data. Time windows used to train each regression model are

90ms wide and overlap by 10 ms with adjacent windows. Unless

specified, all analyses are performed in sensor space.

2.5 | The 2 versus 2 test

For each stimulus word w in this study, we have an m-dimensional

VSM vector sw = s 1ð Þ
w …s mð Þ

w

n o
, created from corpus data. We refer to

each feature s kð Þ
w in this vector as the kth semantic feature of the stim-

ulus word w. The semantic vector may correspond to the adjective or

the noun, depending on the analysis being performed.

Using Equation (1), we trained m independent functions

f 1ð Þ xð Þ! ŝ 1ð Þ,…, f mð Þ xð Þ! ŝ mð Þ, where ŝ kð Þ represents the predicted

value of the kth semantic feature and f kð Þ xð Þ= β̂ kð Þ
x using β̂ kð Þ

from

Equation (1). We combined the output of f(1)…f(m) to create the final

predicted semantic vector ŝ = ŝ 1ð Þ…ŝ mð Þ
n o

. We used a distance function

to quantify the dissimilarity between two semantic vectors (ŝ and sw).

Many distance metrics could be used, we chose cosine distance due

to its popularity for VSM-related tasks in computational linguistics.

To test performance, we used the forced choice 2 versus 2 test

(Mitchell et al., 2008). For each test, we withheld the MEG recording

for two of the 30 available adjective–noun phrases (phrase i and j) and

trained β̂ on the remaining 28. We then used the MEG data of the

held out phrases (x) to predict the semantic vectors for both of the

held out phrases (ŝ). The task is to choose the correct assignment of

predicted vectors ŝi and ŝj to the true VSM semantic vectors si and sj.

We will make this choice by comparing the sum of distances for the

two assignments:

d si , ŝið Þ+ d sj , ŝj
� �

<
?
d si , ŝj
� �

+ d sj, ŝi
� � ð2Þ

If the left-hand side of the above equation is indeed smaller than

the left, we mark the 2 versus 2 test correct. 2 versus 2 accuracy is

the percentage of correct 2 versus 2 tests. The 2 versus 2 test is

advantageous because it allows us to use two predictions per test,

resulting in higher sensitivity; two weak predictions can still result in a

correct assignment of true to predicted phrase vectors. We report the

2 versus 2 accuracy averaged over all subjects. Under the null hypoth-

esis that MEG data and semantics are unrelated, the expected chance

2 versus 2 accuracy is 50%.

2.6 | Correlations between the words of phrases

There is a correlation between the adjectives and nouns in our experi-

mental paradigm. For example, the word “rotten” is always followed by

a food word. The word “carrot” never appears with the adjective “gen-

tle”. If we were not to correct for this correlation, we could build a

model that was actually detecting the correlated semantics of the noun,

when we had intended to build a model that leverages only the seman-

tics of the adjective. To avoid reporting results that rely on this con-

found, we only consider predicting the adjective or noun when the

other word (noun or adjective, respectively) is shared in the 2 versus

2 pair. That is, when we encounter a 2 versus 2 pair that contrasts

adjectives “rotten” and “big”, we will include it in our analysis only when

the noun is the same for both phrases (e.g., “rotten tomato” and “big

tomato”). Thus, if our prediction framework leveraged the correlated

semantics of the noun to predict the adjective, it would be of no use

for differentiating between these test phrases. The same is true for the

noun; when we encounter a 2 versus 2 pair that contrasts nouns “dog”

and “bear”, we include it only when the adjective is the same for both

phrases (e.g., “gentle dog” and “gentle bear”). Thus, we can be sure that

we are not relying on any correlations between adjectives and nouns

for our analyses. There are (30 choose 2) = 435 distinct 2 versus 2 tests.

Amongst those 435 tests, 51 share the same adjective and 60 share

the same noun. Our analysis proceeded with these 111 pairs.

2.7 | Significance testing

We used permutation tests to determine the probability of obtaining

our prediction results by chance. Permutation tests require shuffling

the data labels (phrase identity) and running the identical prediction

framework (cross-validation, training β, predicting ŝ, computing 2 vs.

2 accuracy) on the permuted data. When we do this many times, we

approximate the null distribution under which the data and labels

have no relationship. From this null distribution, we calculate a p-value

for the performance we observe when training on the true

(unpermuted) assignment of words to MEG data. In the experiments

that follow, we will train and test multiple predictors on multiple time

windows. To account for the multiple comparisons performed over

the time windows, we used the Benjamini–Hochberg–Yekutieli (BHY)

procedure (Benjamini & Yekutieli, 2001), and p = .01.

2.8 | Time generalization matrices

To test the consistency of the neural code in time, we use temporal

generalization matrices (TGMs; King & Dehaene, 2014). TGMs mix

train and test data from different time windows to test the stability of
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the neural representation over time. For our TGMs, we used the pre-

diction framework described in Section 2.4, but mix train and test data

selected from different time windows for each of the 2 versus 2 tests.

The entry at [i,j] of a TGM (T(i,j)) contains the 2 versus 2 accuracy when

we train using MEG data from a time window centered at time i, and

test using MEG data from a time window centered at time j. Thus,

depending on the value of i and j, we may be mixing train and test

data from different time periods, possibly comparing times when the

subject is viewing a different word type, or no visual stimuli at all. If

the neural representation of a concept is stable, then models can be

trained and tested with data from different time windows with little

or no impact on accuracy. TGMs have been used to show that infor-

mation from previous stimuli can be detected during a memory task,

even after stimulus presentation (Fuentemilla, Penny, Cashdollar,

Bunzeck, & Düzel, 2010; Meyers, Freedman, Kreiman, Miller, &

Poggio, 2008). Our analysis uses windows of the MEG data to com-

pute each T(i,j), whereas previous work appears to use one-time point

only. A windowed approach allows us to track the more complex pat-

terns required for language understanding.

3 | RESULTS

We will begin with a typical time and ROI analysis of the neural repre-

sentation of adjective and nouns, and then explore a TGM analysis of

our data.

3.1 | Predicting adjective and noun semantics

2 versus 2 accuracy for predicting the adjective and noun fromwhole brain

MEG sensor data observed within a sliding 90 ms interval appears in

Figure 2. Here we can see that the adjective remains detectable until well

after the onset of the noun, dipping below statistical significance for the

first time at about 1,100 ms after the onset of the adjective (300 ms after

the onset of the noun). Adjective prediction accuracy again rises above the

statistical significance threshold at several subsequent time points, and is

significantly above chance for the last time at 1,955 ms after the onset of

the adjective (1,155 ms after the onset of the noun). Thus, our model can

predict the adjective during adjective and noun presentation, and also for a

prolonged period after the noun stimuli has disappeared. This implies that

there is a neural representation associated with the adjective that persists

during the entire phrase presentation, as well as after the phrase has been

presented (we call this the phrase wrap-up period). From these results, we

cannot tell if the neural representation of the adjective changes over time,

we can only infer that there exists a reliable detectable representation dur-

ing each significantly above-chance time window.

Figure 2 also shows noun prediction accuracy as a function of time.

After its initial peak around 890 ms (90 ms after the onset of the noun),

the accuracy for predicting noun semantics dips below chance at

1,615 ms, and is not above chance after 1,645 ms (815 and 845 ms,

respectively). Thus, the noun is detectable at significantly above chance

levels for a continuous interval of size 740 ms. Though prediction accu-

racy is sustained after the offset of the noun, there is no resurgence later

in time. The accuracy for predicting the noun falls off more quickly and is

significant for less time than the adjective. There is also one above chance

point very early in time (windows centered at 775 ms, corresponding to

time windows 730–820 ms). This window does overlap with the first

20 milliseconds of noun presentation, so may be due to the visual fea-

tures of the word, which can be correlated to the word vector. Correla-

tion of word vectors to visual features is discussed further in Section 4.3.

3.2 | Localizing adjective and noun semantics

What parts of the brain are driving this late-in-time response to the

adjective semantics? To answer this question, we used each subject's

source localized MEG data, parcellated based on the Desikan–Killiany

F IGURE 2 2 versus 2 accuracy as a function of time for predicting the words of the phrase, averaged over nine subjects. Time windows for
the presentation of the adjective and noun are indicated with gray rectangles. Vertical axis indicates the prediction accuracy for the adjective or
noun, based on predicting the word from a 90-ms interval of MEG data in sensor space. Significantly above chance accuracies are highlighted.
Here a separate prediction model was trained for each time point on the horizontal time axis. Significantly above chance accuracy occurs during
word presentation (as expected), but adjective accuracy remains high, even during and after noun presentation
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Atlas (Desikan et al., 2006). All sources localized to a particular ROI were

used to train and test a model. In Figure 3, we explore the results for

predicting the adjective, and show those ROIs with at least one-time

point above chance (after FDR correction) in the given time interval. We

colored each ROI with the maximum 2 versus 2 accuracy during that

time window, obtained with sources localized to that ROI. We explored

three-time windows: 0.200–0.400, 1.545–1.635, and 1.925–1.955 s

(the last two windows being 0.745–0.835 and 1.125–1.155 s with

respect to noun onset). The first time window includes the peak of

decoding during the adjective's presentation, and the last two time win-

dows correspond to the last two time periods the 2 versus 2 accuracy

for predicting the adjective is above chance (Figure 2). We corrected for

multiple comparisons over the full 3 s of presentation using BHY FDR

correction with p = .01. A video of 2 versus 2 accuracy over all ROIs for

the full 3 s is available in the Supporting Information.

As one would expect, across all windows, there are more statistically

significant ROIs in the left hemisphere and they have higher peak 2 versus

2 accuracy. In the earlier time window, 1.545–1.635 s, several temporal

and parietal ROIs are above chance, with the highest 2 versus 2 accuracies

occurring in the left fusiform, precuneus, and inferior temporal regions

(2 vs. 2 accuracies of 0.67, 0.66, and 0.66, respectively). In the later time

window, 1.925–1.955 s, only two regions are above chance: left rostral

frontal and left pars opercularis (Broca's area), both having 2 versus 2 accu-

racy 0.6. This late accuracy in Broca's area lends support to our claim that

compositional processes may be occurring as late as 2 s after the onset of

the adjective, a point we will return to in the discussion section.

3.3 | Consistency of the neural code in time

How consistent in time is the neural code of the adjective? That is,

does the neural code for the adjective during adjective presentation

resemble the neural code used for the adjective during noun

presentation, or during the phrase wrap-up period? To test this, we

created TGMs (Figure 4), as described in Section 2.8, using whole-

brain MEG sensor data. Recall that each point along the diagonal of

the TGMs corresponds to training and testing the prediction model

using MEG data taken from the same time window, and so represents

exactly the results plotted in Figure 2. In contrast, the off-diagonal

elements correspond to training the model using MEG data from one-

time interval but testing its prediction accuracy on data taken from a

second-time interval, allowing us to test whether the neural represen-

tation of this predicted information varies over time.

The TGMs in Figure 4 show two key features. Firstly, there are

off-diagonal patches that correspond to both high and low prediction

accuracies. Only the adjective TGM shows off-diagonal accuracy pat-

ches above chance (Figure 4a), and they are strongest when training

on a time point after 2 s (1.2 s after the onset of the noun), and test-

ing on a period during the presentation of the adjective. Significantly

below chance accuracy patches appear for both the adjective and

noun (thought the noun patch is small), and are strongest when train-

ing on a window just after the offset of that word and testing during

the time when a word is visible (discussed further in Section 4.5). Sec-

ond, both TGMs show a highly oscillatory pattern, which manifests as

many diagonal lines parallel to the main diagonal. To quantify this

effect, we performed a Fourier transform on the columns of the TGM.

We found that TGM oscillations fall into the alpha band family of fre-

quencies (8–13 Hz), but also that they were highly correlated to the

amplitude spectrum of the raw MEG data, including the alpha peak.

3.4 | Results summary

To summarize, the main findings from our data analyses are: (a) we can

predict the adjective well after noun stimuli presentation (as late as 2 s

after adjective presentation, 1.2 s after the onset of the noun), (b) the

F IGURE 3 2 versus 2 accuracy for predicting the adjective using source localized data. The last two-time windows correspond to the last two
significantly above chance time periods in Figure 2. From left to right, analysis performed over windows centered at 0.200–0.400, 1.545–1.635,
and 1.925–1.955 s. The last two windows correspond to 0.745–0.835 and 1.125–1.155 s after the onset of the noun. ROIs with no time points
above chance during the window are masked, remaining ROIs are colored with the highest 2 versus 2 accuracy in the corresponding time
window. In the earliest time window, during adjective presentation, nearly every ROI can be used to detect the identity of the adjective, with the
highest accuracies occurring in occipital and parietal regions. During the later time windows, above chance ROIs appear mostly in parietal,
temporal and inferior frontal regions
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neural representation of adjective semantics observed during adjective

reading is reactivated after the entire phrase is read, with remarkable

consistency, and (c) there is a period of below chance prediction perfor-

mance just after the presentation of each word.

4 | DISCUSSION

Here we compare and contrast the results from Section 3 to build a

hypothesis of how the brain represents and processes adjective–noun

phrases. To foreshadow, our interpretation of the above analyses is as

follows:

1. During the time the adjective is read, the brain maintains a neural

representation for the adjective.

2. During the time the noun is read, the brain holds both the repre-

sentation for the noun, and also a representation of the adjective

that is the neural “reverse”1 of the representation during adjective

F IGURE 4 2 versus 2 accuracy for predicting the words of the phrase, presented as TGMs for the a) adjective and b) noun. Left: All results,
right: FDR thresholded. A TGM mixes training and testing data in all possible combinations to track the similarity of a neural representation in
time. Within each TGM, the color at point i,j indicates the prediction accuracy when the model is trained using data from an interval centered at
time point i, then tested by its ability to predict the noun or verb based on MEG data centered at time point j. Time windows are 90 ms wide and
overlap by 10 ms with adjacent windows. Time 0 is the onset of the adjective, 0.8 is onset of the noun, as annotated with gray rectangles. The
adjective shows a resurgence after the presentation of the noun which matches the representation observed during adjective presentation,
whereas the noun shows no such resurgence pattern

1This terminology is borrowed from King and Dehaene (2014).
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reading. That is, the MEG signal observed during noun presenta-

tion is similar to the signal observed during adjective presentation,

but multiplied by −1. This is explored more in Section 4.5.

3. After the noun stimuli ends, the noun also enters a reversed repre-

sentation state, though much less pronounced.

4. The adjective's representation resurges after reading the noun,

and it is a good match to the representation observed during

adjective reading.

5. Our ROI analysis confirms previous reports of a distributed repre-

sentation of semantics, and the last resurgence of adjective

semantics appears to be localized to left inferior frontal ROIs.

4.1 | Adjective semantics in early and late time
windows

Figure 4a (adjective semantics TGM), shows that the pattern for the

adjective is fairly consistent within the time that the adjective is being

presented. In addition, there are significantly above chance points

very late in time, as late as 2.5 s. This result implies that the early and

late representations of adjective semantics are highly similar. This late

above chance accuracy could be due to the intersective quality of

most of the adjectives chosen for this study; the meaning of our

selected adjectives is largely unaffected by the semantics of the nouns

in this experiment. For example, rotten has very similar meaning when

paired with either tomato or carrot. Though the two foods may spoil

in slightly different ways, the end result is inedible. Thus, it is reason-

able that, for phrases that contain an intersective adjective, the neural

representation of the adjective alone should be very similar to the

phrase's neural representation. It should be noted, however, that since

we did not include a noncompositional condition (e.g., word lists), we

cannot definitively say that the results are due to composition. In

addition, the slower presentation of words does not represent a natu-

ral reading scenario, and this too will affect results.

At first glance, one might think the late above chance prediction

accuracy for the adjective conflicts with previous work showing that

semantic composition begins as early as 140 ms after the onset of

the noun, and as late as 600 ms (Bemis & Pylkkänen, 2013;

Kuperberg, 2007). In our experiments, this would correspond to

940 ms and 1,400 ms after the onset of the adjective. The early

effects of semantic composition are typically studied using contra-

sting stimuli that either does or does not require composition. Thus,

the timings reported in previous work are the “switching on” of the

machinery required to perform semantic composition, but not neces-

sarily the time when we would expect to see the final product of

semantic composition, or cessation of thinking about the phrase

semantics. Our analysis is specifically looking for the signature of

individual words in a composed representation, and thus it is logical

that it appears after the typical P600 effect signaling composition

violations.

There is support for semantic effects as late as the effects we see

here. Previous work has shown effects during joke comprehension as

late as 1,100 ms after the onset of the final word (Marinkovic et al.,

2011). Semantic violation effects have been reported as late as 2.5 s

after the onset of the critical word in the sentence (Bastiaansen et al.,

2010). When the semantic plausibility of sentence critical words is

varied, differences in EEG recordings for anomalous versus expected

words extend to the edge of the 1.2 s analysis window (and possibly

beyond; DeLong, Quante, & Kutas, 2014). Many analyses have

restricted themselves to the time period ending 1 s after the onset of

the critical word, possibly because the paradigms only allowed for

analysis to that point (Kuperberg, 2007; Kutas & Hillyard, 1980). A

review of several other accounts of this late activation appears in Van

Petten and Luka (2012). The results of the present study show that

analyzing MEG data beyond 1 s poststimulus onset can give new

insight into semantic processing.

One might also wonder if the late resurgence is a task effect.

Recall that participants were asked to press a button when they were

presented with two adjectives in a row. It is possible to do this task

without performing composition, and without attending to the first

word at all, as the task can be simplified to pressing the button if the

second word is an adjective. However, as we analyze only the non-

oddball (adjective noun) trials, if a person was only attending to the

second word, the late resurgence should show the signature of the

noun. Instead, the late resurgence shows the signature of the adjec-

tive. Still, the late resurgence could be a byproduct of recalling the

first word in order to perform the consecutive adjectives task, rather

than a byproduct of adjective–noun composition. This is a disadvan-

tage of our collection paradigm, and future work should incorporate a

task that explicitly requires composition.

However, the extremely distributed nature of adjective seman-

tics seen during adjective reading is not replicated in these late time

windows (Figure 3). Instead, significant ROIs later in time tend to be

confined to areas known to be associated with composition, specifi-

cally temporal and left frontal areas. This is particularly striking for

the final window, 1.925–1.955 s, where the only areas above chance

are in the left frontal lobe, and include Broca's area. This is in line

with Hagoort's theory of composition (Hagoort, 2005), which place

unification areas in LIFG, and control areas in dorsolateral prefrontal

cortex.

4.2 | Noun semantics

The neural representation of the noun is detectable until 1,645 ms

after the onset of the adjective (845 ms after the onset of the noun).

This duration is much shorter than that of the adjective, which is

detectable in the brain as late as 2 s after the onset of the adjective

stimulus. After the noun stimulus has left the screen, a “reversed” rep-

resentation of the noun appears in the brain, again for a much shorter

time than the adjective.

Noun semantics are not predictable during the phrase wrap up

period (1.3–3 s). It is somewhat counter-intuitive that the semantics

of the adjective should be more salient than the semantics of the

noun during the contemplation of the phrase. This could be the result

of our choice of adjectives, which manipulate the most predictable
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features of the noun to their extreme ends, perhaps obfuscating the

prototypical noun representation.

An interesting follow up to our study would explore a language

with noun-adjective phrases (e.g., Spanish, French, Portuguese). This

would allow us to determine if the wide decodability window is a

characteristic of adjectives, or a characteristic of being the first word

in an adjective–noun phrase. We do note, however, that previous

work on single nouns showed that noun semantics were decodable

after for at least 700 ms after the onset of the noun stimulus (the end

of that study's analysis window; Sudre et al., 2012), which is in agree-

ment with the length of our noun decodability window.

4.3 | Decoding visual features

Some critiques of a decoding approach for studying semantics claim

we may only be detecting the visual features of the word form, not the

semantics. To address this concern, we ran our analysis to predict

the number of letters in the adjective, a feature highly correlated with

the visual information available to the participant. In a sensor space

analysis, we found that after 700 ms, we could not reliably predict

word length. Word length was most predictable in occipital cortex

ROIs before 200 ms poststimulus onset, and not predictable later in

time. Note also that in Figure 4a, high off-diagonal accuracy appears

for test times at 200 ms and later, so is likely not attributable to a

visual feature of the stimulus being recalled. In addition, TGMs for

word length contained no significant off-diagonal points, implying that

the resurgence of adjective semantics is not simply the image of the

word being visually recalled.

Recall, also, that we are using a corpus-derived semantic repre-

sentation of the adjective for the prediction tasks throughout this

paper. Though there are some correlates to the perceptual features

of word strings in these corpus-derived features (e.g., frequent

words are, on average, shorter than infrequent words) we are, by

and large, leveraging the semantic features of the words when we

use these vectors.

4.4 | The localization of semantic representations

What brain regions are driving the late adjective decodability? The

2 versus 2 results in the 1,545–1,635 ms window are largely driven

by temporal and parietal regions. This implies that the output of

semantic composition involves both distributed parietal regions

(as seen for single words in Sudre et al. (2012)) as well as a contribu-

tion from ROIs involved in semantic composition of adjective–noun

phrases (LIFG, LATL; Bemis & Pylkkänen, 2011; Westerlund &

Pylkkänen, 2014), and specifically intersective adjective–noun

phrases (LATL; Poortman & Pylkkänen, 2016). The later time window

(1925–1955 ms) shows above chance decoding in rostral and pars

opercularis (Broca's Area). Broca's area has long been associated

with semantic composition and language comprehension, and is

important in models of semantic composition (though its role is being

refined by current research; Friederici, 2011; Hagoort, 2005;

Hagoort, 2014; Poeppel, 2014; Poeppel, Emmorey, Hickok, &

Pylkkanen, 2012).

4.5 | Significantly below chance prediction accuracy
in temporal generalization matrices

For both words of the phrase, the TGMs shows a period of below

chance prediction accuracy after the offset of the word stimuli. Signifi-

cantly below chance accuracy may seem counter-intuitive; how can the

framework's predictions be systematically worse than random guessing?

If the prediction is systematically inverted, perhaps the MEG signal

itself is reversed or negated (that is, the MEG signal used for testing is

equivalent to the training MEG signal multiplied by −1). To test this, we

negated the original MEG signal (multiplied by −1) in TGM coordinates

that are below chance. We found that the 2 versus 2 accuracy of

negated data was not only above chance, it was exactly 1 − a, where

a is the 2 versus 2 accuracy on the original MEG data. This is a

byproduct of our prediction framework. Negated MEG signal leads to

negated predictions (that is a negated ŝ kð Þ
i from Equation (1)), which

causes the predicted vector to point in exactly opposite direction of

the prediction for non-negated data. The opposing direction results in

a negation of the cosine of the angle, and thus flips the decision in

Equation (2). This negated representation of the word could be how

the brain to maintains context while processing a new word, or even a

signature of repetition suppression evident in priming paradigms.

What does it mean for the MEG signal to be reversed or negated?

MEG measures the postsynaptic potential of many parallel dendrites.

Thus, the negation of the MEG signal equates to the reversal of the

underlying magnetic field. In pyramidal neurons, this could indicate

that the opposite end of the same neuron is receiving input, indicating

that the same brain area is receiving input, but the source of the input

has changed. This could be caused by several phenomena, perhaps

related to the neural loops currently thought to be related to neural

oscillations (Jensen, Gips, Bergmann, & Bonnefond, 2014). It is inter-

esting that the negated representation for the adjective appears dur-

ing the time we would expect to see N400 and P600 effects during

noun reading (approximately 1.2 and 1.4 s in Figure 4a).

We hypothesize that for both the adjective and the noun, the brief

“reversed” representation is a holding pattern that allows the brain to

store a word's meaning in memory while performing another action.

In the case of the adjective, the next action is reading the noun. In the

case of the noun, the next action is recalling the adjective for compo-

sition. The beginning of the negated noun representation aligns well

with the end of the negated adjective representation. After the

negated noun representation completes, we see the return of the

adjective in its original, non-negated, form. Further studies will be

needed to confirm or deny this hypothesis.

4.6 | The oscillatory nature of TGMs

One of the most striking patterns in the TGMs is the oscillatory nature

of the prediction accuracy (Figure 4). The oscillation frequency and
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intensity are different for each participant (TGMs for individual sub-

jects appear in Figures A1 and A2), but always resides in the alpha

range. Initially, we thought this might be a clue that semantic repre-

sentations repeat themselves, but we noted that the frequencies of

the oscillations in the TGMs were highly correlated to the main fre-

quencies in the raw MEG data. Thus, it is possible that the oscillations

may simply be an artifact of alpha waves superimposed on the signal

corresponding to the semantic representation. In addition, our un-

jittered stimuli may have exasperated this effect, as alpha entrains to

visual signals (Bhatt et al., 2002). This is a cautionary tale for the sub-

tleties of interpreting TGMs. Because the analysis crosses time

boundaries, drifts and oscillations in the signal can have a large effect

on results, even when they are not apparent in typical analyses in

which the train and test windows are the same.

Still, the correlation of TGM oscillation frequency to subject-

specific alpha does not rule out the possibility that semantic represen-

tations are oscillatory. Certainly, there is support for oscillations

playing a role in scene understanding (Jensen et al., 2014), and evi-

dence for alpha-entrained neural signals for visual tasks (perceptual

echo; Vanrullen & MacDonald, 2012). Further work is needed to

explore the role of oscillatory activity in semantic composition.

5 | CONCLUSION

This article conveyed several new findings regarding the brain's repre-

sentation of adjectives and nouns during phrase reading as we tracked

the flow of information during semantic composition. Our analysis

showed that adjective semantics are predictable for an extended

period of time, almost continuously until 1.6 s after the onset of

the adjective, and are reactivated during late processing, 2–3 s after

the onset of the adjective (1.2–2.2 s after the onset of the noun). The

reactivated neural representation matches the representation seen

during the initial reading of the adjective. After the offset of each

word, a “reversed” representation of the word appears.

The resurgence of adjective semantics is much later than the acti-

vation of the machinery responsible for combinatorics, as documented

in previous research (Bemis & Pylkkänen, 2011; Bemis & Pylkkänen,

2013). The combinatorial machinery of LATL and LIFG could be the

hub that coordinates areas, readying them for the compositional

processing. This would require them to activate sooner than areas of

the brain that store the composed semantic meaning. Our results

imply that future research interested in the composed representation

should look beyond the typical 1 s time window after the onset of

a word.

With respect to semantic composition in the brain, several new

research questions have emerged. For example, does adjective resur-

gence appear even for nonintersective adjectives? We would also like

to explore more complex composition tasks like sentences, para-

graphs, stories, and beyond. We are interested in the underlying

mechanisms that give rise to significantly below chance accuracy and

would like to explore their role in compositional processing. Our work

also raises new questions regarding the role of oscillations in the

neural processing of language. By exploring simple composition in a

controlled setting, our study establishes an analysis framework for

such future research directions.
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APPENDIX

STIMULI

The phrases for the adjective noun brain imaging experiment are

made from six nouns (“dog”, “bear”, “tomato”, “carrot”, “hammer”,

“shovel”) and eight adjectives (“big”, “small”, “ferocious”, “gentle”,
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“light”, “heavy”, “rotten”, “tasty”), as well as two null words: “the” and

“thing”. The phrases are:

Due to multiple word senses, the word “light” was not used in the

adjective-adjective oddballs.

WORD VECTOR MODEL

The word vector model used here is based on previous work (Fyshe

et al., 2013). It was built using a large corpus of text from web pages,

specifically a 16 billion words subset of ClueWeb09 (Callan & Hoy,

2009). The sentences were then dependency parsed and statistics

were calculated to model the probability of seeing two words in a par-

ticular dependency relationship in a sentence. These probabilities

were arranged in a large matrix, which was then compressed using sin-

gular value decomposition. The first 100 dimensions of the matrix

were used for this study.

TGM ANALYSIS FOR ALL SUBJECTS

• the dog • small carrot

• the bear • small hammer

• the tomato • small shovel

• the carrot • ferocious dog

• the hammer • ferocious bear

• the shovel • gentle dog

• big dog • gentle bear

• big bear • light hammer

• big tomato • light shovel

• big carrot • heavy hammer

• big hammer • heavy shovel

• big shovel • rotten carrot

• small dog • rotten tomato

• small bear • tasty carrot

• small tomato • tasty tomato

F IGURE A1 The adjective TGM matrices for all nine subjects included in the study [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE A2 The noun TGM matrices for all nine subjects included in the study [Color figure can be viewed at wileyonlinelibrary.com]
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