Theo representational semantics and conventions.

Tom Mitchell
September 2009

This document describes key details of the Theo knowledge representation.
Special status of “Specializations” and “Generalizations” slots

Most slots in Theo are defined by the user. A few dozen come with Theo, and are
part of the definition of Theo itself (which can be changed by modifying these). Two
of the Theo-provided slots, “specializations” and “generalizations” have special
status because they define the inheritance hierarchy of entities. They are special in
the following sense:

1. if you addValue(generalizations, x, y), then Theo will also automatically
addValue(specializations, y, x). Similarly, if you addValue(specializations, y, x),
Theo will automatically addValue(generalizations, X, y). In short, Theo maintains
the consistency of the generalizations and specializations slots. This enables it to
always efficiently find the transitive closure of both relations, which is very useful
for operations like inheritance.

2. The specializations of x must not contain y if it also contains a generalization of y.
Similarly, generalizations of y must not contain x if it also contains a specialization
of x. This is not currently enforced by the Theo addValue function, but you should
make sure your own code enforces it, because other Theo code (e.g., for inheritance)
depends on this assumption.

If you create or edit your KB, be sure to follow the above two conditions.

Number of values a slot can have.

Different slots can have different numbers of values. The slot nrOfValues denotes
the number allowed for any given slot. For example, everybody has only one
mother, which we assert in Theo by the assertion nrOfValues(mother)=1. However,
we have two parents, hence nrOfValues(parents)=2, and any number of daughters,
hence nrOfValues(daughters)="any’. The legal values for nrOfValues are any integer,
or the string ‘any’.

Representing slots with no values.

Slots can have no value. There are two different situations in which this can occur:
(1) the value of the slot is not known, hence it has no known value, or (2) the slot is
known to have a null or empty value. For example, the
generalizations(everything)={}, because ‘everything’ is the root of all entities in



Theo, and it literally has no generalizations. This is case 2. In contrast, the
age(BillGates) might be unknown, but he clearly does have an age. This is case 1.

Theo represents the value in the first case as NO_THEO_VALUE. It represents the
value in the second case as the empty list {}. (this is the case regardless of the
nrOfValues for the slot). If you query getValue(slot, entity), and slot is not even
present in the data structure that defines entity, then getValue will return
NO_THEO_VALUE.

Storing sources of slot values.

Slot values can optionally have sources, or justifications, in Theo. In the RTW
system the sources for the value of slot s of entity e are stored as a list in the
“source” subslot (that is, in the “source” slot of {e s}). If slot s contains k values, then
its source subslot will also contain k values, where the ith value of source justifies
the ith value of s. Each item in the list of sources (we’ll call it a source) is itself a list,
to allow for the possibility that several different methods have proposed this value.
Each item in this list (we'll call it a source item) is a list whose format is not
constrained, but we suggest the following form for each source item:

{<methodName> <argumentList> <anyOtherRelevantinformation>}

such as the following justification used by the “prolog” method, which contains
sufficient information to recalculate the slot value which is justified by this source.
The first item here is the name of the method, and the second item is the
information needed by the prolog method: first the rule, then the list of its variables,
then the items that bound to these variables to infer the belief that the
“company_economic_sector” of the company “excite” is “media.”

{prolog,
{{{{company_economic_sector, 7x, 7y}, {competes_with, 7x, 7z},
{company_economic_sector, ?z, ?y} }, 0.7761, 131, 33, 305},
{7x,7z, 7y},
{excite, lycos, media} } } }

Upper/lower case issues

In principle, you can define a Theo entity named “OranGe” and another named
“orange” and inside core memory, these will be kept separate. However, it seems
the .xml files that represent that KB on disk are all lower-case filenames (ask Andy
and Tom why). Therefore, it is strongly discouraged to have two distinct entity
names that differ only by upper/lower case. Just don’t do it.



Swapping the KB from disk in Matlab implementation of Theo.

When using very large KB'’s (e.g., with 50K or more entities) it can be useful to store
the KB on disk, and have Theo work directly from the disk copy. To do this, set
global variables as follows

THEO.kbdir="/Users/tommitchell/kb/'; % root directory of the KB
THEO.readDiskKB=1; % enable loading KB entities on demand from disk
THEO.maintainDiskKB=1; % enable writing out KB updates to disk
THEO.maxEntitiesinRAM=10000; % number of KB entities to keep cached in RAM
THEO.traceSwapInEntity=1; % enable screen notification when entities swapped in

The primary Theo API functions to handle disk swapping are

useKB(kbdirectory); % sets THEO.kbdir to its input argument

isEntityInRAM (entity); % returns 1 if entity is cached in RAM, else 0
isEntityOnDisk(entity); % Returns 1 if entity exists on THEO.kbdir, else 0
swaplInEntity(entity, <dir THEO.kbdir>) % swaps in entity from disk to RAM
swapOutEntity(entity, <saveOnDisk 0>) % swaps out entity, optionally saving first
to disk.



