Today:
• Learning of control policies
• TD(\(\lambda\))
• Animal learning from rewards

Readings:
• Mitchell, chapter 13
• Kaelbling, et al., Reinforcement Learning: A Survey

HMM, Markov Process, Markov Decision Process
Immediate rewards $r(s, a)$
State values $V^*(s)$
State-action values $Q^*(s, a)$

$$V^*(s) = E[r(s, \pi^*(s)) + \gamma \mathbb{E}_{s'|s, \pi^*(s)}[V^*(s')]]$$

$r(s, a)$ (immediate reward) values

Consider first the case where $P(s'| s, a)$ is deterministic

Bellman equation.

Updating \hat{Q}

$$\hat{Q}(s_1, a_{\text{right}}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')$$
$$\leftarrow 0 + 0.9 \max\{63, 81, 100\}$$
$$\leftarrow 90$$

notice if rewards non-negative, then

$$(\forall s, a, n) \quad \hat{Q}_{n+1}(s, a) \geq \hat{Q}_n(s, a)$$

and

$$(\forall s, a, n) \quad 0 \leq \hat{Q}_n(s, a) \leq Q(s, a)$$
Nondeterministic Case

Q learning generalizes to nondeterministic worlds

Alter training rule to

$\hat{Q}_n(s, a) \leftarrow (1 - \alpha_n)\hat{Q}_{n-1}(s, a) + \alpha_n \left[r + \max_{a'}\hat{Q}_{n-1}(s', a') \right]$

where

$\alpha_n = \frac{1}{1 + \text{visits}_n(s, a)}$

Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992]

Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

$Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_{a} \hat{Q}(s_{t+1}, a)$

Why not two steps?

$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_{a} \hat{Q}(s_{t+2}, a)$

Or n?

$Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \cdots + \gamma^{(n-1)}r_{t+n-1} + \gamma^n \max_{a} \hat{Q}(s_{t+n}, a)$

Blend all of these:

$Q^{\lambda}(s_t, a_t) \equiv (1 - \lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) \right]$
Temporal Difference Learning

\[Q^\lambda(s_t, a_t) \equiv (1-\lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) \right] \]

Equivalent expression:

\[Q^\lambda(s_t, a_t) = r_t + \gamma \left[(1 - \lambda) \max_a \hat{Q}(s_t, a_t) + \lambda \ Q^\lambda(s_{t+1}, a_{t+1}) \right] \]

TD(\lambda) algorithm uses above training rule

- Sometimes converges faster than Q learning
- converges for learning \(V^* \) for any \(0 \leq \lambda \leq 1 \) (Dayan, 1992)
- Tesauro’s TD-Gammon uses this algorithm

MDP’s and RL: What You Should Know

- Learning to choose optimal actions \(A \)
- From delayed reward
- By learning evaluation functions like \(V(S), Q(S,A) \)

Key ideas:

- If next state function \(S_t \times A_t \rightarrow S_{t+1} \) is known
 - can use dynamic programming to learn \(V^*(S) \)
 - or, learn it by sampling \(<s,a> \) pairs and applying our update rule
 - once learned, choose action \(A_t \) that maximizes \(V^*(S_{t+1}) \)
- If next state function \(S_t \times A_t \rightarrow S_{t+1} \) unknown
 - learn \(Q(S_t,A_t) = E[V^*(S_{t+1})] \)
 - to learn, sample \(<s,a> \) pairs by executing actions in actual world
 - once learned, choose action \(A_t \) that maximizes \(Q(S_t,A_t) \)
MDPs and Reinforcement Learning: Further Issues

- What strategy for choosing actions will optimize
 - learning rate? *(explore* uninvestigated states)
 - obtained reward? *(exploit* what you know so far)

- *Partially observable* Markov Decision Processes
 - state is not fully observable
 - maintain probability distribution over possible states you’re in

- Convergence guarantee with function approximators?
 - our proof assumed a table representation for Q, V
 - some types of function approximators still converge (e.g., nearest neighbor) [Gordon, 1999]

- Correspondence to human learning?

Reinforcement Learning in Animals?
Dopamine As Reward Signal

[no prediction, reward occurs]

(No CS) R

(No CS) R

Tonic Mitchell, April 2011
Dopamine As Reward Signal

\[
\text{error} = r_t + \gamma V(s_{t+1}) - V(s_t)
\]

RL Models for Human Learning

[Seymore et al., *Nature* 2004]

Figure 1 Experimental design and temporal difference model. a. The experimental design expressed as a Markov chain, giving four separate trial types. b. Temporal difference value. As learning proceeds, earlier cues learn to make accurate value predictions (i.e., weighted averages of the trial expected gain). c. Temporal difference prediction error. During learning the prediction error is transferred to earlier cues as they acquire the ability to make predictions. In trial types 3 and 4, the substantial change in prediction elicits a large positive or negative prediction error. (For clarity, before and mid-learning are shown only for trial type 1.)
One Theory of RL in the Brain
from [Nieuwenhuis et al.]

- Basal ganglia monitor events, predict future rewards
- When prediction revised upward (downward), causes increase (decrease) in activity of midbrain dopaminergic neurons, influencing ACC

- This dopamine-based activation somehow results in revising the reward prediction function. Possibly through direct influence on Basal ganglia, and via prefrontal cortex
Summary: Temporal Difference ML Model Predicts Dopaminergic Neuron Activity during Learning

- Evidence now of neural reward signals from
 - Direct neural recordings in monkeys
 - fMRI in humans (1 mm spatial resolution)
 - EEG in humans (1-10 msec temporal resolution)

- Dopaminergic responses encode Bellman error

- Some differences, and efforts to refine the model
 - How/where is the value function encoded in the brain?
 - Study timing (e.g., basal ganglia learns faster than PFC?)
 - Role of prior knowledge, rehearsal of experience, multi-task learning?