Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

April 26, 2011

Today:
• Learning of control policies
• Markov Decision Processes
• Temporal difference learning
• Q learning

Readings:
• Mitchell, chapter 13
• Kaelbling, et al., Reinforcement Learning: A Survey

Thanks to Aarti Singh for several slides

Reinforcement Learning

[Sutton and Barto 1981; Samuel 1957; ...]

\[V^*(s) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...] \]
Reinforcement Learning: Backgammon

[Tesauro, 1995]

Learning task:
• chose move at arbitrary board states

Training signal:
• final win or loss

Training:
• played 300,000 games against itself

Algorithm:
• reinforcement learning + neural network

Result:
• World-class Backgammon player

Outline

• Learning control strategies
 – Credit assignment and delayed reward
 – Discounted rewards

• Markov Decision Processes
 – Solving a known MDP

• Online learning of control strategies
 – When next-state function is known: value function \(V'(s) \)
 – When next-state function unknown: learning \(Q'(s,a) \)

• Role in modeling reward learning in animals
The task: learn a policy \(\pi : S \rightarrow A \) for choosing actions that maximizes

\[
E'[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots] \quad 0 < \gamma \leq 1
\]

for every possible starting state \(s_0 \).
Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and
• Learn control policy $\pi: S \rightarrow A$ that maximizes $\sum_{t=0}^{\infty} \gamma^t E[r_t]$ from every state $s \in S$

Example: Robot grid world, deterministic reward $r(s,a)$

$\gamma \leq 1$
$\gamma > 1$
$\gamma = 0$
$\gamma = 1$

$r(s, a)$ (immediate reward)

Yikes!!
• Function to be learned is $\pi: S \rightarrow A$
• But training examples are not of the form $<s, a>$
• They are instead of the form $<s, a>, r>
Value Function for each Policy

- Given a policy $\pi : S \rightarrow A$, define

 $$V^\pi(s) = E\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$$

 assuming action sequence chosen according to π, starting at state s

- Then we want the optimal policy π^* where

 $$\pi^* = \arg \max_\pi V^\pi(s), \quad (\forall s)$$

- For any MDP, such a policy exists!
- We'll abbreviate $V^{\pi^*}(s)$ as $V^*(s)$
- Note if we have $V^*(s)$ and $P(s_{t+1}|s_t, a)$, we can compute $\pi^*(s)$

Value Function – what are the $V^\pi(s)$ values?

$$V^\pi(s) = E\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$$

Suppose \mathcal{M} is shown by circled action from each state
Suppose $\gamma = 0.9$

$$r(s, a) \text{ (immediate reward)}$$

Tom Mitchell, April 2011
Value Function – what are the $V^*(s)$ values?

$$V^\pi(s) = E[\sum_{t=0}^{\infty} \gamma^t r_t]$$

$r(s, a)$ (immediate reward)
Recursive definition for $V^*(S)$

$$V^*(s) = E \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

assuming actions are chosen according to the optimal policy, π^*

$$V^*(s_1) = E[r(s_1, a_1)] + E[\gamma r(s_2, a_2)] + E[\gamma^2 r(s_3, a_3)] + \ldots$$

$$V^*(s_1) = E[r(s_1, a_1)] + \gamma E_{s_2|s_1, a_1}[V^*(s_2)]$$

$$V^*(s) = E[r(s, \pi^*(s))] + \gamma E_{s'|s, \pi^*(s)}[V^*(s')]$$

Value Iteration for learning V^*: assumes $P(S_{t+1}|S_t, A)$ known

Initialize $V(s)$ arbitrarily

Loop until policy good enough

Loop for s in S

Loop for a in A

$$Q(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V(s')$$

$$V(s) \leftarrow \max_a Q(s, a)$$

End loop

End loop

$V(s)$ converges to $V^*(s)$

Dynamic programming
Value Iteration

Interestingly, value iteration works even if we randomly traverse the environment instead of looping through each state and action methodically

- but we must still visit each state infinitely often on an infinite run
- For details: [Bertsekas 1989]
- Implications: online learning as agent randomly roams

If max (over states) difference between two successive value function estimates is less than ϵ, then the value of the greedy policy differs from the optimal policy by no more than

$$\frac{2\epsilon \gamma}{(1 - \gamma)}$$

So far: learning optimal policy when we know $P(s_t | s_{t-1}, a_{t-1})$

What if we don’t?
Q learning

Define new function, closely related to V^*

\[
V^*(s) = E[r(s, \pi^*(s)) + \gamma E_{s'\mid s,\pi^*(s)}[V^*(s')]]
\]

\[
Q(s, a) = E[r(s, a) + \gamma E_{s'\mid s, a}[V^*(s')]]
\]

If agent knows $Q(s, a)$, it can choose optimal action without knowing $P(s_{t+1} \mid s_t, a)$!

\[
\pi^*(s) = \arg \max_a Q(s, a) \quad V^*(s) = \max_a Q(s, a)
\]

And, it can learn Q without knowing $P(s_{t+1} \mid s_t, a)$

Immediate rewards $r(s, a)$

State values $V^*(s)$

State-action values $Q^*(s, a)$

$V^*(s) = E[r(s, \pi^*(s)) + \gamma E_{s'\mid s,\pi^*(s)}[V^*(s')]]$

Bellman equation.

Consider first the case where $P(s' \mid s, a)$ is deterministic
Training Rule to Learn Q

Note Q and V^* closely related:

\[V^*(s) = \max_{a'} Q(s, a') \]

Which allows us to write Q recursively as

\[Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)) \]

\[= r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a') \]

Nice! Let \hat{Q} denote learner’s current approximation to Q. Consider training rule

\[\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a') \]

where s' is the state resulting from applying action a in state s

Q Learning for Deterministic Worlds

For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$

Observe current state s

Do forever:

- Select an action a and execute it
- Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s, a)$ as follows:
 \[\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a') \]
- $s \leftarrow s'$
Updating \hat{Q}

\[
\hat{Q}(s_1, a_{\text{right}}) = r + \gamma \max_{a'} \hat{Q}(s_2, a')
\]

\[
= 0 + 0.9 \max\{63, 81, 100\}
\]

\[
= 90
\]

notice if rewards non-negative, then

\[
(\forall s, a, n) \quad \hat{Q}_{n+1}(s, a) \geq \hat{Q}_n(s, a)
\]

and

\[
(\forall s, a, n) \quad 0 \leq \hat{Q}_n(s, a) \leq Q(s, a)
\]

\[
\hat{Q}
\]

converges to Q Consider case of deterministic world where see each (s, a) visited infinitely often.

Proof: Define a full interval to be an interval during which each (s, a) is visited. During each full interval the largest error in \hat{Q} table is reduced by factor of γ. Discount factor

Let Q_n be table after n updates, and Δ_n be the maximum error in \hat{Q}_n; that is

\[
\Delta_n = \max_s \max_a |\hat{Q}_n(s, a) - Q(s, a)|
\]

For any table entry $\hat{Q}_n(s, a)$ updated on iteration $n + 1$, the error in the revised estimate $\hat{Q}_{n+1}(s, a)$ is

\[
|\hat{Q}_{n+1}(s, a) - Q(s, a)| = |(r + \gamma \max_{a'} \hat{Q}_n(s', a')) - (r + \gamma \max_{a'} \hat{Q}_n(s', a'))|
\]

\[
= |(r + \gamma \max_{a'} \hat{Q}_n(s', a') - \max_{a'} Q(s', a'))|
\]

\[
\leq \gamma |\max_{a'} \hat{Q}_n(s', a') - \max_{a'} Q(s', a')|
\]

\[
\leq \gamma \max_{a'} |\hat{Q}_n(s', a') - Q(s', a')|
\]

\[
|\hat{Q}_{n+1}(s, a) - Q(s, a)| \leq \gamma \Delta_n
\]
Nondeterministic Case

Q learning generalizes to nondeterministic worlds

Alter training rule to

$$\hat{Q}_n(s, a) \leftarrow (1 - \alpha_n) \hat{Q}_{n-1}(s, a) + \alpha_n [r + \max_{a'} \hat{Q}_{n-1}(s', a')]$$

where

$$\alpha_n = \frac{1}{1 + \text{visits}_n(s, a)}$$

Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992]

Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

$$Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_a \hat{Q}(s_{t+1}, a)$$

Why not two steps?

$$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_a \hat{Q}(s_{t+2}, a)$$

Or n?

$$Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \cdots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_a \hat{Q}(s_{t+n}, a)$$

Blend all of these:

$$Q^\lambda(s_t, a_t) \equiv (1 - \lambda) [Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t)]$$
Temporal Difference Learning

\[Q^\lambda(s_t, a_t) \equiv (1 - \lambda) \left[Q^1(s_t, a_t) + \lambda Q^2(s_t, a_t) + \lambda^2 Q^3(s_t, a_t) \right] \]

Equivalent expression:

\[Q^\lambda(s_t, a_t) = r_t + \gamma \left[(1 - \lambda) \max_a \hat{Q}^\lambda(s_t, a_t) + \lambda Q^\lambda(s_{t+1}, a_{t+1}) \right] \]

TD(\lambda) algorithm uses above training rule

- Sometimes converges faster than Q learning
- converges for learning \(V^* \) for any \(0 \leq \lambda \leq 1 \) (Dayan, 1992)
- Tesauro’s TD-Gammon uses this algorithm

MDP’s and RL: What You Should Know

- Learning to choose optimal actions \(A \)
- From delayed reward
- By learning evaluation functions like \(V(S), Q(S,A) \)

Key ideas:

- If next state function \(S_t \times A_t \rightarrow S_{t+1} \) is known
 - can use dynamic programming to learn \(V(S) \)
 - once learned, choose action \(A_t \) that maximizes \(V(S_{t+1}) \)
- If next state function \(S_t \times A_t \rightarrow S_{t+1} \) unknown
 - learn \(Q(S_t, A_t) = E[V(S_{t+1})] \)
 - to learn, sample \(S_t \times A_t \rightarrow S_{t+1} \) in actual world
 - once learned, choose action \(A_t \) that maximizes \(Q(S_t, A_t) \)
MDPs and Reinforcement Learning: Further Issues

- What strategy for choosing actions will optimize
 - learning rate? (explore uninvestigated states)
 - obtained reward? (exploit what you know so far)

- Partially observable Markov Decision Processes
 - state is not fully observable
 - maintain probability distribution over possible states you’re in

- Convergence guarantee with function approximators?
 - our proof assumed a tabular representation for Q, V
 - some types of function approximators still converge (e.g., nearest neighbor) [Gordon, 1999]

- Correspondence to human learning?