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Machine Learning 10-701 
Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 

April 7, 2011 

Today: Kernel methods, SVM 

•  Regression: Primal and dual 
forms 

•  Kernels for regression 
•  Support Vector Machines 

Readings: 

Required: 
Kernels: Bishop Ch. 6.1 
SVMs: Bishop Ch. 7, through 7.1.2 

Optional: 
 Bishop Ch 6.2, 6.3 

Thanks to Aarti Singh, Eric Xing, 
John Shawe-Taylor for several slides 

Kernel Functions 

•  Kernel functions provide a way to manipulate data as 
though it were projected into a higher dimensional 
space, by operating on it in its original space 

•  This leads to efficient algorithms  

•  And is a key component of algorithms such as  
–  Support Vector Machines 
–  kernel PCA 
–  kernel CCA 
–  kernel regression 
–  … 
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Linear Regression 

Wish to learn f: X  Y, where X=<X1, … Xn>, Y real-valued 

Learn 

where 

Linear Regression 

Wish to learn                   where  

Learn 

where 

here the lth row of X is the lth training example xTl 

and      
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Vectors, Data Points, Inner Products 

Consider 

where   

for any two vectors, their dot product (aka inner product) is equal to product of 
their lengths, times the cosine of angle between them.  

Linear Regression: Primal Form 

Learn 

where 

solve by taking derivative wrt w, setting to zero… 

so:  
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Aha! 

Learn 

where 

solution: 

But notice w lies in the space spanned by training examples 
(why?) 

Linear Regression: Dual Form 

Primal form: 
Learn 

Solution:   

Dual form: use fact that  

Learn 

Solution:   
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[slide from John Shawe-Taylor] 

[slide from John Shawe-Taylor] 



6 

[slide from John Shawe-Taylor] 

[slide from John Shawe-Taylor] 
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Kernel functions 

Original space Projected space 
(higher dimensional) 

Example: Quadratic Kernel 

Suppose we have data originally in 2D, but project it into 3D using  

But we can use the following kernel function to calculate inner products 
in the projected 3D space, in terms of operations in the 2D space 

this converts our original linear regression into quadratic regression! 

And use it to train and apply our regression function, never leaving 2D space 
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[slide from John Shawe-Taylor] 

Implications of the “Kernel Trick” 

Some Common Kernels 

•  Polynomials of degree d 

•  Polynomials of degree up to d 

•  Gaussian/Radial kernels (polynomials of all orders – 
projected space has infinite dimension) 

•  Sigmoid 
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Which Functions Can Be Kernels? 

•  not all functions 
•  for some definitions of k(x1,x2) there is no corresponding 

projection ϕ(x) 

•  Nice theory on this, including how to construct new 
kernels from existing ones 

•  Initially kernels were defined over data points in 
Euclidean space, but more recently over strings, over 
trees, over graphs, … 

•  Some of this covered in 10-702 

Kernels :  Key Points 

•  Many learning tasks are framed as optimization problems 

•  Primal and Dual formulations of optimization problems 

•  Dual version framed in terms of dot products between x’s 

•  Kernel functions k(x,y) allow calculating dot products 
<Φ(x),Φ(y)> without bothering to project x into Φ(x) 

•  Leads to major efficiencies, and ability to use very high 
dimensional (virtual) feature spaces 
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Kernel Based Classifiers 

Simple Kernel Based Classifier 

[slide from John Shawe-Taylor] 
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Linear classifiers – which line is better? 
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Pick the one with the largest margin! 

Parameterizing the decision boundary 

w
T x

 +
 b

 =
 0

 

wTx + b > 0 wTx + b < 0 

Labels: 
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Parameterizing the decision boundary 

w
T x

 +
 b

 =
 0

 

wTx + b > 0 wTx + b < 0 

Labels: 

Maximizing the margin 

margin = γ = a/‖w‖

w
T x

 +
 b

 =
 0

 

w
T x

 +
 b

 =
 a

 

w
T x

 +
 b

 =
 -a

 

γ γ

Margin = Distance of 
closest examples  
from the decision line/
hyperplane 
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Maximizing the margin 

margin = γ = a/‖w‖

w
T x

 +
 b

 =
 0

 

w
T x

 +
 b

 =
 a

 

w
T x

 +
 b

 =
 -a

 

γ γ
   max  γ = a/‖w‖

w,b  

s.t. (wTxj+b) yj ≥ a  ∀j  

Note:  ‘a’ is arbitrary (can normalize  
            equations by a) 

Margin = Distance of 
closest examples  
from the decision line/
hyperplane 

Support Vector Machine 

w
T x

 +
 b

 =
 0

 

w
T x

 +
 b

 =
 a

 

w
T x

 +
 b

 =
 -a

 

γ γ

   min  wTw

s.t. (wTxj+b) yj ≥ 1  ∀j  
w,b  

     Solve efficiently by quadratic 
programming (QP) 
–  Well-studied solution 

algorithms 

     Linear hyperplane defined 
by “support vectors” 


