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Today: Readings:
* Support Vector Machines Required:
* Margin-based learning SVMs: Bishop Ch. 7, through 7.1.2
Optional:
Remainder of Bishop Ch. 7

Thanks to Aarti Singh for several slides

SVM: Maximize the margin

Margin = Distance of
closest examples
from the decision line/

hyperplane
— margin =y = a/llwll




Maximizing the margin

Margin = Distance of
closest examples
from the decision line/

hyperplane
- margin =y = a/llwll
- q:ﬁ—
= max vy = a/llwll
w.b
- s.t.m vj

'/ Note: ‘a’is arbitrary (can normalize
equations by a)

Support Vector Machine (primal form)

max y = 1/lwll

w,b —

s.t. (Wix+b)y; 21 Vj

= _ Primal form:
min| w'w
= = w,b [j
s.t. (Wixi+b) y, 21 Vj

olve efficiently by quadratic
- - programming (QP)

— Well-studied solution
algorithms




We can solve either primal or dual forms

Primal form: solve for w, b

Classification test for new x : w/x +b > 0

Dual form: solve for cxq...cx g e

- M 1 M M ‘
max Dom1 O 5 D D e\ G ORY YR (X Xa)
Qq...00\y

s.t. ap >0 VI € training examples
Z}‘:Il ay =0

Classification test for new x :

both are QP problems with a single local optimum!

Support Vectors

,&_SZ\,.S“' y X b= 0 Linear hyperplane defined by
Wix+b>0 z ary (x x) +b<0 “s QQOTt vectors”

doesn’t effect the decision

i @ - boundary
& - - only need to store the
ok support vectors to predict
T @ "V\ labels of new points
= How many support vectors in
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9 - given d dimensions?
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Kernel SVM

And because the dual form depends only on inner products, we can apply
the kernel trick to work in a (virtual) projected space ¢ : X — F
—_—l - —

Primal form: solve for w, b in the projected higher dim. space

min w!w
w.b —

st. y(wld(x;) +b) > 1 Ve training examples
——

Classification test for new x w’ ®(x) + b > 0

Dual form: solve for «y...cxy; in the original low dim. space
. M LM oMl g x) ;<@(KB))§[XQ
ﬂll“‘(‘;‘:l doim1 Q1 ijl D k—1 QGORY YN KX, Xk

s.t. a; >0 VIl € training examples

M
lel oy =0

Classsification test for new x : Z o yl b>0
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SVM Decision Surface using Gaussian Kernel

< ' [from Bishop, figure 7.2]

<

f(x) =w'd(x) +b

Circled points are the support vectors: training examples with non-zero «;
Points plotted in original 2-D space.

Contour lines show constant f‘( )
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What if data is not linearly separable?

Use features of features

" of features of features....
y + T -
i - =
S B X412, X2, X4Xg, ----, EXP(X4)
# e =7
+ . = -

But run risk of overfitting!

What if data is still not linearly separable?

Allow “error” in classification

min wTw/+ C #mistakes

w.b
M s.t. (Wx+b) y; 21V
* - =
< -

s 7 + T - Maximize margin and minimize
= [ - = # mistakes on training data

T - = = C - tradeoff parameter

S
Not QP ®

0/1 loss (doesn’t distinguish between
near miss and bad mistake)




g - “slack’ variables
= (>1 if x; misclassifed)
pay linear penalty if mistake
C - tradeoff parameter (chosen by
cross-validation)
Soft margin approach stilQP ©

Primal and Dual Forms for Soft
Margin SVM

Primal form: solve for in the projected higher dim. space
min Lwiw HOe S &
w0

st y(wld(x)) +b) >1—¢& V€ training examples

>0 V] € training examples

Dual form: solve for «x...cxpy in the original low dim. space

max 00— § 50 S g (g0

Q. O g

s.t. 0< o S@ VI € training examples
M
Yoy =0

both are QP problems with a single local optimum ©




SVM Soft Margin Decision Surface using Gaussian Kernel
[from Bishop, figure 7.4]

f(x) = wld(x)+ b

2+t

Circled points are the support vectors: training examples with non-zero «;
Points plotted in original 2-D space.

Contour lines show constant f'(x)
M M
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SVM Summary

» Objective: maximize margin between decision surface and
data

* Primal and dual formulations
— dual represents classifier decision in terms of support vectors
Kernel SVM's

— learn linear decision surface in high dimension space, working in
original low dimension space

+ Handling noisy data: soft margin “slack variables”
— again primal and dual forms

« SVM algorithm: Quadratic Program optimization
— single global minimum




SVM: PAC Results?

VC dimension: examples

What is VC dimension of
© Hy={((wy+wix; T wx))>0 2 y=1) }
— VC(H,)=3
* For H, = linear separating hyperplanes in n dimensions, VC(H,)=n+1

_—

m > % (41005(2/5) + 8VC(H) 10g5(13/0))




Structural Risk Minimization [vapnik]

Which hypothesis space should we choose?
+ Bias / variance tradeoff

Ha(H3 H2®

SRM: choose H to minimize bound on expected true error!

VC(H)(In #7(’}{) +1)+In%

m

ETTOTtrue ( h) < erTOTirain ( h) +

* unfortunately a somewhat loose bound...

Margin-be(lsed PAC Results

Q £~ [Shawe-Taylor, Langford, McCallester]
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Consider a fixed distribution D on pairs (z, y) with z € R satisfying ||z|| = 1
and y € {—1,1}. We are interested in finding a weight vector w with |[w[[=1 + -
such That the sign of w-z predicts y. For v > 0 the error rate of w on distribution

D relative to safety m%rgin v, denoted Z:(w, D) is defined as follows. Ly

&£ .
Aege k-Z}j\(wa D):M] \70‘)
Let S be a sample of m pairs drawn IID from the distribution D. The sample
S can be viewed as an empirical distribution on pairs. We are interested in
bounding b€9/(.w, D) in terms of @w, S) and the margin v. Bartlett and Shawe-
Taylor use fat shattering arguments [2] to show that with probability at least

1 — § over the choice of the sample S we have the following simultaneously for
all weight vectors w with ||w|| = 1 and margins y > 0.
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recall:




Maximizing Margin as an Objective Function

+ We've talked about many learning algorithms, with
different objective functions

* 0-1loss

* sum sq error

* maximum log data likelihood
+ MAP

* maximum margin

How are these all related?

Slack variables — Hinge loss

Complexity penalization _ AN
min w'w +
& =loss(f(z;)y) <9 wb @
s.t. (Wx;+b) y; 2 1-§; V]

f(:C]) = sgn(w (Xj + b) g >0 VJ
j 2

£ =(1—(w-z; +b)y;))+ <<J Hinge loss

R
\/P?j‘m
0-1 Ioss—\

A0 1 o2+ 0y, )
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SVM vs. Logistic Regression

SVM : Hinge loss
loss(f(;),y;) = (1 — (W-2; +b)y;))+

Logistic Regression : Log loss ( -ve log conditional likelihood)
loss(f(z;),y;) = —log P(y; | zj,w,b) = log(1+ e_(w"”ﬁb)yj)

Log loss\ Hinge loss

0-1 loss

4 0 1 (W-z; +b)y;

What you need to know

Primal and Dual optimization problems
Kernel functions

Support Vector Machines

« Maximizing margin

» Derivation of SVM formulation

» Slack variables and hinge loss

» Relationship between SVMs and logistic regression
— 0/1 loss
— Hinge loss
— Log loss
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