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Today: 

•  Support Vector Machines 
•  Margin-based learning 

Readings: 

Required: 
SVMs: Bishop Ch. 7, through 7.1.2 

Optional: 
Remainder of Bishop Ch. 7  

Thanks to Aarti Singh for several slides 

SVM: Maximize the margin 

margin = γ = a/‖w‖
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Margin = Distance of 
closest examples  
from the decision line/
hyperplane 
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Maximizing the margin 

margin = γ = a/‖w‖
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   max  γ = a/‖w‖


w,b  

s.t. (wTxj+b) yj ≥ a  ∀j  

Note:  ‘a’ is arbitrary (can normalize  
            equations by a) 

Margin = Distance of 
closest examples  
from the decision line/
hyperplane 

Support Vector Machine (primal form) 

    Solve efficiently by quadratic 
programming (QP) 
–  Well-studied solution 

algorithms 

   max  γ = 1/‖w‖

w,b  

s.t. (wTxj+b) yj ≥ 1  ∀j  

   min  wTw


s.t. (wTxj+b) yj ≥ 1  ∀j  
w,b  

Primal form: 
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Primal form: solve for w, b 

both are QP problems with a single local optimum! 

We can solve either primal or dual forms 

Dual form: solve for   

Classification test for new x : 

Classification test for new x : 

Support Vectors 

γ
 γ


Linear hyperplane defined by 
“support vectors” 

Moving other points a little 
doesn’t effect the decision 
boundary  

only need to store the 
support vectors to predict 
labels of new points 

How many support vectors in 
linearly separable case, 
given d dimensions? 

wTx + b > 0 
wTx + b < 0 

≤ d+1 
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Kernel SVM 

And because the dual form depends only on inner products, we can apply 
the kernel trick to work in a (virtual) projected space   

Primal form: solve for w, b  in the projected higher dim. space 

Classification test for new x : 

Dual form: solve for                   in the original low dim. space  

Classification test for new x : 

SVM Decision Surface using Gaussian Kernel 

Circled points are the support vectors: training examples with non-zero  

Points plotted in original 2-D space. 

Contour lines show constant  

[from Bishop, figure 7.2] 
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What if data is not linearly separable? 

Use features of features  
of features of features…. 

But run risk of overfitting! 

x1
2, x2

2, x1x2, …., exp(x1) 

What if data is still not linearly separable? 

   min  wTw + C #mistakes 

w,b  
s.t. (wTxj+b) yj ≥ 1   ∀j 

Allow “error” in classification 

Maximize margin and minimize  
# mistakes on training data 

C  -  tradeoff parameter 

Not QP  
0/1 loss (doesn’t distinguish between 
near miss and bad mistake) 
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Support Vector Machine with soft margins 

j 

Allow “error” in classification 

ξj    - “slack” variables  
           = (>1 if xj misclassifed) 
 pay linear penalty if mistake 

C  -  tradeoff parameter (chosen by  
        cross-validation) 

Still QP  Soft margin approach 

   min  wTw + C Σ ξj 
w,b  

s.t. (wTxj+b) yj ≥ 1-ξj   ∀j 

   ξj ≥ 0      ∀j 

j 
ξj  

Primal and Dual Forms for Soft 
Margin SVM 

Primal form: solve for w, b  in the projected higher dim. space 

Dual form: solve for                   in the original low dim. space  

both are QP problems with a single local optimum  
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SVM Soft Margin Decision Surface using Gaussian Kernel 

Circled points are the support vectors: training examples with non-zero  

Points plotted in original 2-D space. 

Contour lines show constant  

[from Bishop, figure 7.4] 

SVM Summary 

•  Objective: maximize margin between decision surface and 
data 

•  Primal and dual formulations 
–  dual represents classifier decision in terms of support vectors 

•  Kernel SVM’s 
–  learn linear decision surface in high dimension space, working in 

original low dimension space 

•  Handling noisy data: soft margin “slack variables” 
–  again primal and dual forms 

•  SVM algorithm: Quadratic Program optimization 
–  single global minimum 
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SVM: PAC Results? 

VC dimension: examples 
What is VC dimension of 
•  H2 = { ((w0 + w1x1 + w2x2)>0    y=1) } 

–  VC(H2)=3 
•  For Hn = linear separating hyperplanes in n dimensions, VC(Hn)=n+1 



9 

Structural Risk Minimization 

Which hypothesis space should we choose?  
•  Bias / variance tradeoff 

H1 H2 H3 H4 

[Vapnik] 

SRM: choose H to minimize bound on expected true error! 

* unfortunately a somewhat loose bound... 

Margin-based PAC Results 

recall: 

[Shawe-Taylor, Langford, McCallester] 
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Maximizing Margin as an Objective Function 

•  We’ve talked about many learning algorithms, with 
different objective functions 

•  0-1 loss 
•  sum sq error 
•  maximum log data likelihood 
•  MAP 
•  maximum margin 

How are these all related? 

Slack variables – Hinge loss 

22 

   min  wTw + C Σ ξj 
w,b  

s.t. (wTxj+b) yj ≥ 1-ξj   ∀j 

   ξj ≥ 0      ∀j 

j 

Complexity penalization 

Hinge loss 

0-1 loss 

0 -1 1 
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SVM vs. Logistic Regression 

SVM : Hinge loss 

0-1 loss 

0 -1 1 

Logistic Regression : Log loss  ( -ve log conditional likelihood) 

Hinge loss Log loss 

What you need to know 

Primal and Dual optimization problems 
Kernel functions 
Support Vector Machines 
•  Maximizing margin 
•  Derivation of SVM formulation 
•  Slack variables and hinge loss 
•  Relationship between SVMs and logistic regression 

–  0/1 loss 
–  Hinge loss 
–  Log loss 


