Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

April 12, 2011

Today:

- Support Vector Machines
- Margin-based learning

Readings:

Required:

SVMs: Bishop Ch. 7, through 7.1.2

Optional:

Remainder of Bishop Ch. 7

Thanks to Aarti Singh for several slides

Kernel SVM

And because the dual form depends only on inner products, we can apply the kernel trick to work in a (virtual) projected space $\Phi: X \to F$

Primal form: solve for \mathbf{w} , b in the projected higher dim. space

$$\min_{\mathbf{w},b} \quad \mathbf{w}^T \mathbf{v}$$

s.t.
$$y_l(\mathbf{w}^T \Phi(\mathbf{x}_l) + b) \ge 1 \quad \forall l \in \text{ training examples}$$

Classification test for new $\mathbf{x} \cdot \mathbf{w}^T \Phi(\mathbf{x}) + b > 0$

Dual form: solve for $\alpha_1...\alpha_M$ in the original low dim. space

Dual form: solve for
$$\alpha_1...\alpha_M$$
 in the original low dim. space
$$\max_{\alpha_1...\alpha_M} \sum_{l=1}^M \alpha_l - \frac{1}{2} \sum_{j=1}^M \sum_{k=1}^M \alpha_j \alpha_k y_j y_k \underbrace{\kappa(\mathbf{x_j}, \mathbf{x_k})}_{\kappa(\mathbf{x_j}, \mathbf{x_k})} = \sum_{l=1}^M \alpha_l y_l = 0$$
 s.t. $\alpha_l \geq 0 \quad \forall l \in \text{ training examples}$
$$\sum_{l=1}^M \alpha_l y_l = 0$$

Classification test for new \mathbf{x} : $\sum_{l \in \mathrm{SV}'\mathrm{S}} \alpha_l \ y_l (\kappa(\mathbf{x}, \mathbf{x}_l)) + b > 0$

SVM Decision Surface using Gaussian Kernel

Circled points are the *support vectors*: training examples with non-zero α_l

Points plotted in original 2-D space.

Contour lines show constant $\hat{f}(\mathbf{x})$

$$\hat{f}(\mathbf{x}) = b + \sum_{l=1}^{M} \alpha_l \ y_l \ \kappa(\mathbf{x}, \mathbf{x}_l) = b + \sum_{l=1}^{M} \alpha_l \ y_l \exp(-\|\mathbf{x} - \mathbf{x}_l\|^2 / 2\sigma^2)$$

What if data is not linearly separable?

Use features of features of features of features of features....

$$x_1^2, x_2^2, x_1x_2,, exp(x_1)$$

But run risk of overfitting!

What if data is still not linearly separable?

Allow "error" in classification

$$\begin{array}{c|c}
 & \text{min } \mathbf{w}^{\mathsf{T}}\mathbf{w} + C \text{ #mistakes} \\
 & \text{s.t. } (\mathbf{w}^{\mathsf{T}}\mathbf{x}_{j} + b) \text{ } y_{j} \geq 1 \quad \forall j
\end{array}$$

Maximize margin and minimize # mistakes on training data

C - tradeoff parameter

Not QP ⊗

0/1 loss (doesn't distinguish between near miss and bad mistake)

Support Vector Machine with soft margins

Allow "error" in classification

Soft margin approach

 $\begin{array}{ll} \xi_j & \text{- "slack" variables} \\ & = (>1 \text{ if } x_j \text{ misclassifed}) \\ \text{pay linear penalty if mistake} \end{array}$

C - tradeoff parameter (chosen by cross-validation)

Still QP ©

Primal and Dual Forms for Soft Margin SVM

Primal form: solve for w, b in the projected higher dim. space

$$\min_{\mathbf{w},b} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{l=1}^M \xi_l$$

s.t.
$$y_l(\mathbf{w}^T \Phi(\mathbf{x}_l) + b) \ge 1 - \xi_l \quad \forall l \in \text{ training examples}$$

 $\xi_l \ge 0 \qquad \forall l \in \text{ training examples}$

Dual form: solve for $\, \alpha_1 ... \alpha_M \,$ in the original low dim. space

$$\max_{\alpha_1...\alpha_M} \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j=1}^{M} \sum_{k=1}^{M} \alpha_j \alpha_k y_j y_k \ \kappa(\mathbf{x_j}, \mathbf{x_k})$$

s.t.
$$0 \le \alpha_l \le C$$
 $\forall l \in \text{ training examples}$ $\sum_{l=1}^{M} \alpha_l y_l = 0$

both are QP problems with a single local optimum ©

SVM Soft Margin Decision Surface using Gaussian Kernel

Circled points are the <u>support vectors</u>: training examples with non-zero α_l

Points plotted in original 2-D space.

Contour lines show constant $\hat{f}(\mathbf{x})$

$$\hat{f}(\mathbf{x}) = b + \sum_{l=1}^{M} \alpha_l \ y_l \ \kappa(\mathbf{x}, \mathbf{x}_l) = b + \sum_{l=1}^{M} \alpha_l \ y_l \exp(-\|\mathbf{x} - \mathbf{x}_l\|^2 / 2\sigma^2)$$

SVM Summary

- Objective: maximize margin between decision surface and data
- Primal and dual formulations
 - dual represents classifier decision in terms of *support vectors*
- Kernel SVM's
 - learn linear decision surface in high dimension space, working in original low dimension space
- Handling noisy data: soft margin "slack variables"
 - again primal and dual forms
- SVM algorithm: Quadratic Program optimization
 - single global minimum

SVM: PAC Results?

VC dimension: examples

What is VC dimension of

- $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$ - $VC(H_2)=3$
- For H_n = linear separating hyperplanes in n dimensions, $VC(H_n)=n+1$

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

Structural Risk Minimization [Vapnik]

Which hypothesis space should we choose?

Bias / variance tradeoff

SRM: choose H to minimize bound on expected true error!

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$

* unfortunately a somewhat loose bound...

Margin-based PAC Results [Shawe-Taylor, Line of the part of the p such that the sign of $w \cdot x$ predicts y. For $\gamma > 0$ the error rate of w on distribution D relative to safety margin γ , denoted $\ell_{\gamma}(w, D)$ is defined as follows.

Let S be a sample of m pairs drawn IID from the distribution D. The sample S can be viewed as an empirical distribution on pairs. We are interested in bounding $\ell_0(w, D)$ in terms of $\ell_0(w, S)$ and the margin γ . Bartlett and Shawe-Taylor use fat shattering arguments [2] to show that with probability at least $1-\delta$ over the choice of the sample S we have the following simultaneously for all weight vectors w with ||w|| = 1 and margins $\gamma > 0$.

$$|l_0(w,D)| \leq \ell_\gamma(w,S) + 27.18 \sqrt{\frac{\log^2 m + 84}{m\gamma^2}} + O\left(\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + 27.18 \sqrt{\frac{\log^2 m + 84}{m\gamma^2}} + O\left(\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + 27.18 \sqrt{\frac{\log^2 m + 84}{m\gamma^2}} + O\left(\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + 27.18 \sqrt{\frac{\log^2 m + 84}{m\gamma^2}} + O\left(\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + 27.18 \sqrt{\frac{\log^2 m + 84}{m\gamma^2}} + O\left(\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + 27.18 \sqrt{\frac{\log^2 m + 84}{m\gamma^2}} + O\left(\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + 27.18 \sqrt{\frac{\log^2 m + 84}{m\gamma^2}} + O\left(\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + 27.18 \sqrt{\frac{\log^2 m + 84}{m\gamma^2}} + O\left(\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + 27.18 \sqrt{\frac{\log^2 m + 84}{m\gamma^2}} + O\left(\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + O\left(\sqrt{\frac{\log^2 m + 84}{m\gamma^2}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + O\left(\sqrt{\frac{\log^2 m + 84}{m\gamma^2}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + O\left(\sqrt{\frac{\log^2 m + 84}{m\gamma^2}}\right)$$
 recall:
$$|l_0(w,D)| \leq \ell_\gamma(w,S) + O\left(\sqrt{\frac{\log^2 m + 84}{m\gamma^2}}\right)$$

Maximizing Margin as an Objective Function

- We've talked about many learning algorithms, with different objective functions
- 0-1 loss
- sum sq error
- · maximum log data likelihood
- MAP
- · maximum margin

How are these all related?

SVM vs. Logistic Regression

SVM: Hinge loss

$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

<u>Logistic Regression</u>: <u>Log loss</u> (-ve log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$

What you need to know

Primal and Dual optimization problems

Kernel functions

Support Vector Machines

- · Maximizing margin
- · Derivation of SVM formulation
- Slack variables and hinge loss
- · Relationship between SVMs and logistic regression
 - 0/1 loss
 - Hinge loss
 - Log loss