Today:
- Generative – discriminative classifiers
- Linear regression
- Decomposition of error into bias, variance, unavoidable

Readings:
- Mitchell: “Naïve Bayes and Logistic Regression” (see class website)
- Ng and Jordan paper (class website)
- Bishop, Ch 9.1, 9.2

Logistic Regression

Consider learning \(f: X \rightarrow Y \) where
- \(X \) is a vector of real-valued features, \(< X_1, ... X_n > \)
- \(Y \) is boolean
- assume all \(X_i \) are conditionally independent given \(Y \)
- model \(P(X_i \mid Y = y_k) \) as Gaussian \(N(\mu_{ik}, \sigma_i) \)
- model \(P(Y) \) as Bernoulli \((\pi) \)

Then \(P(Y|X) \) is of this form, and we can directly estimate \(W \)
\[
P(Y = 1|X = < X_1, ... X_n >) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}
\]

Furthermore, same holds if the \(X_i \) are boolean
- trying proving that to yourself

Train by gradient ascent estimation of \(w \)'s (no assumptions!)
MLE vs MAP

- Maximum conditional likelihood estimate
 \[W \leftarrow \arg \max_W \ln \prod_l P(Y^l|X^l, W) \]
 \[w_i \leftarrow w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]

- Maximum a posteriori estimate with prior \(W \sim N(0, \sigma I) \)
 \[W \leftarrow \arg \max_W \ln[P(W) \prod_l P(Y^l|X^l, W)] \]
 \[w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]

Generative vs. Discriminative Classifiers

Training classifiers involves estimating \(f: X \rightarrow Y, \) or \(P(Y|X) \)

Generative classifiers (e.g., Naïve Bayes)
- Assume some functional form for \(P(Y), P(X|Y) \)
- Estimate parameters of \(P(X|Y), P(Y) \) directly from training data
- Use Bayes rule to calculate \(P(Y=y|X=x) \)

Discriminative classifiers (e.g., Logistic regression)
- Assume some functional form for \(P(Y|X) \)
- Estimate parameters of \(P(Y|X) \) directly from training data
- NOTE! even though our derivation of the form of \(P(Y|X) \) made GNB-style assumptions, the training procedure for Logistic Regression does not!
Use Naïve Bayes or Logistic Regression?

Consider

• Restrictiveness of modeling assumptions

• Rate of convergence (in amount of training data) toward asymptotic hypothesis
 – i.e., the learning curve

Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X = \langle X_1 \ldots X_n \rangle$

Number of parameters to estimate:

• NB: $P(Y) \sim \mathcal{N}, \mu_{Y=1}, \mu_{Y=0}, \sigma_{Y=1}, \sigma_{Y=0}$
 \[
 \frac{1}{1 + 4N}
 \]

• LR: $P(Y = 0 | X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$
 $P(Y = 1 | X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$
Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X=<X_1 \ldots X_n>$

Number of parameters:
• NB: $4n +1$
• LR: n+1

Estimation method:
• NB parameter estimates are uncoupled
• LR parameter estimates are coupled

G.Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X_i conditionally independent of X_k given Y
2. $P(X_i | Y = y_k) = N(\mu_{ik}, \sigma_{ik})$, \leftarrow not $N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:
• GNB (assumption 1 only)
• GNB2 (assumption 1 and 2)
• LR

Which method works better if we have infinite training data, and...
• Both (1) and (2) are satisfied \Rightarrow GNB = GNB2 = LR
• Neither (1) nor (2) is satisfied \Rightarrow GNB \geq GNB2, LR \geq GNB2
• (1) is satisfied, but not (2) \Rightarrow GNB \geq LR
Recall two assumptions deriving form of LR from GNB:
1. X_i conditionally independent of X_k given Y
2. $P(X_i | Y = y_k) = N(\mu_{ik}, \sigma_i)$, \(\not= N(\mu_{ik}, \sigma_k)\)

Consider three learning methods:
- GNB (assumption 1 only) -- decision surface can be non-linear
- GNB2 (assumption 1 and 2) -- decision surface linear
- LR -- decision surface linear, trained differently

Which method works better if we have infinite training data, and...

- Both (1) and (2) are satisfied: $\text{LR} = \text{GNB2} = \text{GNB}$
- Neither (1) nor (2) is satisfied: $\text{LR} > \text{GNB2}, \ \text{GNB} > \text{GNB2}$
- (1) is satisfied, but not (2): $\text{GNB} > \text{LR}, \ \text{LR} > \text{GNB2}$

What if we have only finite training data?

They converge at different rates to their asymptotic (= data) error

Let $\epsilon_{A,n}$ refer to expected error of learning algorithm A after n training examples

Let d be the number of features: \(<X_1 \ldots X_d>\)

\[
\epsilon_{\text{LR,n}} \leq \epsilon_{\text{LR,\infty}} + O\left(\sqrt{\frac{d}{n}}\right) \quad \lambda = n
\]
\[
\epsilon_{\text{GNB,n}} \leq \epsilon_{\text{GNB,\infty}} + O\left(\sqrt{\log d \frac{d}{n}}\right) \quad \psi = n
\]

So, GNB requires $n = O(\log d)$ to converge, but LR requires $n = O(d)$
Some experiments from UCI data sets

[Ng & Jordan, 2002]

Naïve Bayes vs. Logistic Regression

The bottom line:

GNB2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR is better than GNB2 because training procedure does not make assumptions 1 or 2 (though our derivation of the form of P(Y|X) did).

But GNB2 converges more quickly to its perhaps-less-accurate asymptotic error

And GNB is both more biased (assumption 1) and less (no assumption 2) than LR, so either might beat the other
What you should know:

- Logistic regression
 - Functional form follows from Naïve Bayes assumptions
 - For Gaussian Naïve Bayes assuming variance $\sigma_{i,k} = \sigma_i$
 - For discrete-valued Naïve Bayes too
 - But training procedure picks parameters without the conditional independence assumption
 - MLE training: pick W to maximize $P(Y \mid X, W)$
 - MAP training: pick W to maximize $P(W \mid X, Y)$
 - regularization: e.g., $P(W) \sim N(0, \sigma)$
 - helps reduce overfitting

- Gradient ascent/descent
 - General approach when closed-form solutions for MLE, MAP are unavailable

- Generative vs. Discriminative classifiers
 - Bias vs. variance tradeoff
Regression

So far, we’ve been interested in learning $P(Y|X)$ where Y has discrete values (called ‘classification’)

What if Y is continuous? (called ‘regression’)

• predict weight from gender, height, age, …

• predict Google stock price today from Google, Yahoo, MSFT prices yesterday

• predict each pixel intensity in robot’s current camera image, from previous image and previous action

Regression

Wish to learn $f:X \rightarrow Y$, where Y is real, given $\{<x^1,y^1>…<x^n,y^n>\}$

Approach:

1. choose some parameterized form for $P(Y|X; \theta)$
 (θ is the vector of parameters)

2. derive learning algorithm as MLE or MAP estimate for θ
1. Choose parameterized form for $P(Y|X; \theta)$

Assume Y is some deterministic $f(X)$, plus random noise

$$y = f(x) + \epsilon \quad \text{where} \quad \epsilon \sim N(0, \sigma)$$

Therefore Y is a random variable that follows the distribution

$$p(y|x) = N(f(x), \sigma) = N(\mu, \sigma)$$

and the expected value of y for any given x is $f(x) = \mu = w_0 + w_1 x$

Consider Linear Regression

$$p(y|x) = N(f(x), \sigma)$$

E.g., assume $f(x)$ is linear function of x

$$p(y|x) = N(w_0 + w_1 x, \sigma)$$

$$E[y|x] = w_0 + w_1 x$$

Notation: to make our parameters explicit, let’s write

$$W = \langle w_0, w_1 \rangle$$

$$p(y|x; W) = N(w_0 + w_1 x, \sigma)$$
Training Linear Regression:

\[p(y|x; W) = N(w_0 + w_1 x, \sigma) \]

How can we learn \(W \) from the training data?

Learn Maximum Conditional Likelihood Estimate!

\[
W_{MCLE} = \arg \max_W \prod_i p(y_i|x_i, W) \\
W_{MCLE} = \arg \max_W \sum_l \log p(y_l|x_l, W)
\]

where

\[
p(y|x; W) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2} \left(\frac{y - f(x, W)}{\sigma} \right)^2}
\]
Training Linear Regression

Learn Maximum Conditional Likelihood Estimate

\[W_{MCLE} = \arg \max_W \sum_i \ln p(y^i|x^i, W) \]

where

\[p(y|x; W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(y - f(x; W))^2} \]

so:

\[W_{MCLE} = \arg \min_W \sum_i (y - f(x; W))^2 \]
Training Linear Regression:
Learn Maximum Conditional Likelihood Estimate

\[W_{MCLE} = \arg \min_W \sum_l (y - f(x; W))^2 \]

Can we derive gradient descent rule for training?

\[\frac{\partial \sum_l (y - f(x; W))^2}{\partial w_i} = \sum_l 2(y - f(x; W)) \frac{\partial(y - f(x; W))}{\partial w_i} \]
\[= \sum_l -2(y - f(x; W)) \frac{\partial f(x; W)}{\partial w_i} \]

How about MAP instead of MLE estimate?

\[W = \arg \max_W \lambda R(W) + \sum_l \ln P(Y_l | X_l; W) \]
\[R(W) = ||W||_2^2 = \sum_i w_i^2 \]
Regression – What you should know

Under general assumption \(p(y|x; W) = N(f(x; W), \sigma) \)

1. MLE corresponds to minimizing sum of squared prediction errors

2. MAP estimate minimizes SSE plus sum of squared weights

3. Again, learning is an optimization problem once we choose our objective function
 • maximize data likelihood
 • maximize posterior prob of W

4. Again, we can use gradient descent as a general learning algorithm
 • as long as our objective fn is differentiable wrt W
 • though we might learn local optima ins

5. Almost nothing we said here required that f(x) be linear in x

Bias/Variance Decomposition of Error
Bias and Variance

given some estimator Y for some parameter θ, we define

the **bias** of estimator $Y = E[Y] - \theta$

the **variance** of estimator $Y = E[(Y - E[Y])^2]$

e.g., define Y as the MLE estimator for probability of heads, based on n independent coin flips biased or unbiased?

variance decreases as $\sqrt{1/n}$

Bias – Variance decomposition of error

Reading: Bishop chapter 9.1, 9.2

- Consider simple regression problem $f: X \rightarrow Y$

$y = f(x) + \varepsilon$

noise $N(0, \sigma)$

deterministic

What are sources of prediction error?

$$E_D \left[\int_y \int_x (h(x) - f(x))^2 p(y|x)p(x) dy dx \right]$$

learned estimate of $f(x)$
Sources of error

• What if we have perfect learner, infinite data?
 – Our learned $h(x)$ satisfies $h(x) = f(x)$
 – Still have remaining, *unavoidable error*

 $$\sigma^2$$

• What if we have only n training examples?

• What is our expected error
 – Taken over random training sets of size n, drawn from distribution $D = p(x,y)$

\[
E_D \left[\int_y \int_x (h(x) - f(x))^2 p(y|x) p(x) dy dx \right]
\]
Sources of error

\[E_D \left[\int_y \int_x (h(x) - f(x))^2 p(y|x)p(x)dydx \right] \]

= unavoidable Error + bias\(^2\) + variance

bias\(^2\) = \int (E_D[h(x)] - f(x))^2 p(x)dx

variance = \int E_D[(h(x) - E_D[h(x)])^2]p(x)dx