Naïve Bayes in a Nutshell

Bayes rule:

\[P(Y = y_k | X_1 \ldots X_n) = \frac{P(Y = y_k) P(X_1 \ldots X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1 \ldots X_n | Y = y_j)} \]

Assuming conditional independence among \(X_i\)'s:

\[P(Y = y_k | X_1 \ldots X_n) = \]

So, classification rule for \(X_{new} = < X_j, \ldots, X_n >\) is:

\[Y_{new} \leftarrow \arg \max_{y_k} \]
Naïve Bayes in a Nutshell

Bayes rule:
\[P(Y = y_k|X_1 \ldots X_n) = \frac{P(Y = y_k)P(X_1 \ldots X_n|Y = y_k)}{\sum_j P(Y = y_j)P(X_1 \ldots X_n|Y = y_j)} \]

Assuming conditional independence among \(X_i \)'s:
\[P(Y = y_k|X_1 \ldots X_n) = \frac{P(Y = y_k)\prod_i P(X_i|Y = y_k)}{\sum_j P(Y = y_j)\prod_i P(X_i|Y = y_j)} \]

So, classification rule for \(x^{new} = < x_1, \ldots, x_n > \) is:
\[Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k)\prod_i P(X_i^{new}|Y = y_k) \]

Another way to view Naïve Bayes (Boolean Y):
Decision rule: is this quantity greater or less than 1?
\[\frac{P(Y = 1|X_1 \ldots X_n)}{P(Y = 0|X_1 \ldots X_n)} = \frac{P(Y = 1)\prod_i P(X_i|Y = 1)}{P(Y = 0)\prod_i P(X_i|Y = 0)} \]
Naïve Bayes: classifying text documents

- Classify which emails are spam?
- Classify which emails promise an attachment?

How shall we represent text documents for Naïve Bayes?
Learning to classify documents: $P(Y|X)$

- Y discrete valued.
 - e.g., Spam or not
- $X = <X_1, X_2, \ldots, X_n> = \text{document}$

- X_i is a random variable describing…

Answer 1: X_i is boolean, 1 if word i is in document, else 0

e.g., $X_{\text{pleased}} = 1$

Issues?
Learning to classify documents: P(Y|X)

- Y discrete valued.
 - e.g., Spam or not
- X = <X₁, X₂, … Xₙ> = document

- Xᵢ is a random variable describing...

Answer 2:
- Xᵢ represents the \(i^{th} \) word position in document
- X₁ = “I”, X₂ = “am”, X₃ = “pleased”
- and, let’s assume the Xᵢ are iid (indep, identically distributed)
 \[P(Xᵢ|Y) = P(Xⱼ|Y) \quad (∀i, j) \]

Learning to classify document: P(Y|X)
the “Bag of Words” model

- Y discrete valued. e.g., Spam or not
- X = <X₁, X₂, … Xₙ> = document

- Xᵢ are iid random variables. Each represents the word at its position i in the document
- Generating a document according to this distribution = rolling a 50,000 sided die, once for each word position in the document
- The observed counts for each word follow a ??? distribution
Multinomial Distribution

- $P(\theta)$ and $P(\theta|D)$ have the same form

Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is \sim Multinomial($\theta = \{\theta_1, \theta_2, \ldots, \theta_k\}$)

$$P(D | \theta) = \theta_1^{a_1} \theta_2^{a_2} \ldots \theta_k^{a_k}$$

If prior is Dirichlet distribution,

$$P(\theta) = \frac{\prod_{i=1}^k \theta_i^{\beta_i-1}}{B(\beta_1, \ldots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \ldots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \text{Dirichlet}(\beta_1 + a_1, \ldots, \beta_k + a_k)$$

For Multinomial, conjugate prior is Dirichlet distribution.

Multinomial Bag of Words

- aardvark 0
- about 2
- all 2
- Africa 1
- apple 0
- anxious 0
- gas 1
- oil 1
- Zaire 0
MAP estimates for bag of words

Map estimate for multinomial

\[\theta_i = \frac{\alpha_i + \beta_i - 1}{\sum_{m=1}^{k} \alpha_m + \sum_{m=1}^{k} (\beta_m - 1)} \]

\[\theta_{\text{aardvark}} = P(X_i = \text{aardvark}) = \frac{\# \text{ observed 'aardvark'} + \# \text{ hallucinated 'aardvark'} - 1}{\# \text{ observed words} + \# \text{ hallucinated words} - k} \]

What \(\beta \)'s should we choose?

Naïve Bayes Algorithm – discrete \(X_i \)

- Train Naïve Bayes (examples)
 - for each value \(y_k \)
 - estimate \(\pi_k \equiv P(Y = y_k) \)
 - for each value \(x_{ij} \) of each attribute \(X_i \)
 - estimate \(\theta_{ijk} \equiv P(X_i = x_{ij} | Y = y_k) \)

- Classify \(X^{new} \)

\[
Y^{new} \leftarrow \arg \max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)
\]

\[
Y^{new} \leftarrow \arg \max_{y_k} \ \pi_k \prod_i \theta_{ijk}
\]

* Additional assumption: word probabilities are position independent

\[\theta_{ijk} = \theta_{mjk} \text{ for } i \neq m \]
Twenty NewsGroups

Given 1000 training documents from each group
Learn to classify new documents according to which newsgroup it came from

- comp.graphics
- comp.os.ms-windows.misc
- comp.sys.ibm.pc.hardware
- comp.sys.mac.hardware
- comp.windows.x
- alt.atheism
- soc.religion.christian
- talk.religion.misc
- talk.politics.mideast
- talk.politics.misc
- talk.politics.guns
- misc.forsale
- rec.autos
- rec.motorcycles
- rec.sport.baseball
- rec.sport.hockey
- sci.space
- sci.crypt
- sci.electronics
- sci.med

Naive Bayes: 89% classification accuracy

Learning Curve for 20 Newsgroups

For code and data, see
www.cs.cmu.edu/~tom/mlbook.html
click on "Software and Data"

Accuracy vs. Training set size (1/3 withheld for test)
What if we have continuous X_i?

Eg., image classification: X_i is real-valued i^{th} pixel

![Image of brain scans](image.png)

Naïve Bayes requires $P(X_i \mid Y=y_k)$, but X_i is real (continuous)

$$P(Y = y_k \mid X_1 \ldots X_n) = \frac{P(Y = y_k) \prod_i P(X_i \mid Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i \mid Y = y_j)}$$

Common approach: assume $P(X_i \mid Y=y_k)$ follows a Normal (Gaussian) distribution
Gaussian Distribution
(also called “Normal”)

$p(x)$ is a probability density function, whose integral (not sum) is 1

$$p(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2}$$

The probability that X will fall into the interval (a, b) is given by

$$\int_a^b p(x) \, dx$$

- Expected, or mean value of X, $E[X]$, is
 $$E[X] = \mu$$
- Variance of X is
 $$Var(X) = \sigma^2$$
- Standard deviation of X, σ_X, is
 $$\sigma_X = \sigma$$

What if we have continuous X_i?

Gaussian Naïve Bayes (GNB): assume

$$p(X_i = x | Y = y_k) = \frac{1}{\sqrt{2\pi \sigma_i^2}} e^{-\frac{1}{2} \left(\frac{x - \mu_{ik}}{\sigma_{ik}} \right)^2}$$

Sometimes assume variance
- is independent of Y (i.e., σ_i),
- or independent of X_i (i.e., σ_k)
- or both (i.e., σ)
Train Naïve Bayes (examples) for each value y_k

- for each attribute X_i estimate $P(X_i|Y = y_k)$
- class conditional mean μ_{ik}, variance σ_{ik}

Classify (X_{new})

\[
Y_{\text{new}} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{\text{new}}|Y = y_k)
\]

\[
Y_{\text{new}} \leftarrow \arg \max_{y_k} \pi_k \prod_i N(X_i^{\text{new}}, \mu_{ik}, \sigma_{ik})
\]

* probabilities must sum to 1, so need estimate only n-1 parameters...

Estimating Parameters: Y discrete, X_i continuous

Maximum likelihood estimates:

\[
\hat{\mu}_{ik} = \frac{1}{\sum_j \delta(Y^j = y_k)} \sum_j X_i^j \delta(Y^j = y_k)
\]

\[
\hat{\sigma}_{ik}^2 = \frac{1}{\sum_j \delta(Y^j = y_k)} \sum_j (X_i^j - \hat{\mu}_{ik})^2 \delta(Y^j = y_k)
\]
How many parameters must we estimate for Gaussian Naïve Bayes if Y has k possible values, X=<X1, … Xn>?

\[p(X_i = x | Y = y_k) = \frac{1}{\sqrt{2\pi \sigma_{ik}^2}} e^{-\frac{(x - \mu_{ik})^2}{2 \sigma_{ik}^2}} \]

What is form of decision surface for Gaussian Naïve Bayes classifier?

eg., if we assume attributes have same variance, indep of Y

\(\sigma_{ik} = \sigma \)
GNB Example: Classify a person’s cognitive state, based on brain image

- reading a sentence or viewing a picture?
- reading the word describing a “Tool” or “Building”?
- answering the question, or getting confused?

Mean activations over all training examples for Y=“bottle”

Y is the mental state (reading “house” or “bottle”) X_i are the voxel activities,
this is a plot of the μ’s defining P(X_i | Y=“bottle”)
Classification task: is person viewing a “tool” or “building”?

Where is information encoded in the brain?

Accuracies of cubical 27-voxel classifiers centered at each significant voxel [0.7-0.8]
Naïve Bayes: What you should know

• Designing classifiers based on Bayes rule

• Conditional independence
 – What it is
 – Why it’s important

• Naïve Bayes assumption and its consequences
 – Which (and how many) parameters must be estimated under different generative models (different forms for \(P(X|Y) \))
 • and why this matters

• How to train Naïve Bayes classifiers
 – MLE and MAP estimates
 – with discrete and/or continuous inputs \(X_i \)

Questions to think about:

• Can you use Naïve Bayes for a combination of discrete and real-valued \(X_i \)?

• How can we easily model just 2 of \(n \) attributes as dependent?

• What does the decision surface of a Naïve Bayes classifier look like?

• How would you select a subset of \(X_i \)’s?