Today: Learning representations II
- Artificial neural networks
- PCA
- ICA
- CCA

Readings:
- Bishop Ch. 12 through 12.1
- “A Tutorial on PCA,” J. Schlens
- Wall et al., 2003

Neural Nets for Face Recognition

90% accurate learning head pose, and recognizing 1-of-20 faces
Semantic Memory Model Based on ANN's
[McClelland & Rogers, Nature 2003]

Train with assertions, e.g., Can(Canary,Fly)
Humans act as though they have a hierarchical memory organization

1. Victims of Semantic Dementia progressively lose knowledge of objects. But they lose specific details first, general properties later, suggesting hierarchical memory organization.

Thing	NonLiving	Living	Plant	Animal
Fish	Bird	Canary		

2. Children appear to learn general categories and properties first, following the same hierarchy, top down.

Question: What learning mechanism could produce this emergent hierarchy?

* some debate remains on this.

Memory deterioration follows semantic hierarchy

(a) Picture naming responses for JL

<table>
<thead>
<tr>
<th>Item</th>
<th>Sept. '91</th>
<th>March '92</th>
<th>March '93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bird</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Chicken</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duck</td>
<td>+</td>
<td>Bird</td>
<td>Dog</td>
</tr>
<tr>
<td>Swan</td>
<td>+</td>
<td>Bird</td>
<td>Animal</td>
</tr>
<tr>
<td>Eagle</td>
<td>Duck</td>
<td>Bird</td>
<td>Horse</td>
</tr>
<tr>
<td>Ostrich</td>
<td>Swan</td>
<td>Bird</td>
<td>Animal</td>
</tr>
<tr>
<td>Peacock</td>
<td>Duck</td>
<td>Bird</td>
<td>Vehicle</td>
</tr>
<tr>
<td>Penguin</td>
<td>Duck</td>
<td>Bird</td>
<td>Part of animal</td>
</tr>
<tr>
<td>Rooster</td>
<td>Chicken</td>
<td>Chicken</td>
<td>Dog</td>
</tr>
</tbody>
</table>

(b) [McClelland & Rogers, *Nature* 2003]

(c) IF’s delayed copy of a camel

(d) DC’s delayed copy of a swan
ANN Also Models Progressive Deterioration

[McClelland & Rogers, Nature 2003]
Training Networks on Time Series

• Suppose we want to predict next state of world
 – and it depends on history of unknown length
 – e.g., robot with forward-facing sensors trying to predict next sensor reading as it moves and turns

• Idea: use hidden layer in network to capture state history

(a) Feedforward network
(b) Recurrent network
Training Networks on Time Series

How can we train recurrent net??

Summary: Neural Networks

- Represent highly non-linear decision surfaces
- Learn $f: X \rightarrow Y$, where Y is vector (e.g., image)
- Hidden layer represents re-representation of input
 - to optimize prediction accuracy (minimize sum sq error)
- Role in modeling human cognition
- Local minimum problems solving for MLE/MAP parameters using gradient descent
Learning Lower Dimensional Representations

- Supervised learning of lower dimension representation
 - Hidden layers in Neural Networks
 - Fisher linear discriminant

- Unsupervised learning of lower dimension representation
 - Principle Components Analysis (PCA)
 - Independent components analysis (ICA)
 - Canonical correlation analysis (CCA)

Principle Components Analysis

- Idea:
 - Given data points in d-dimensional space, project into lower dimensional space while preserving as much information as possible
 - E.g., find best planar approximation to 3D data
 - E.g., find best planar approximation to 10^4 D data
 - In particular, choose projection that minimizes the squared error in reconstructing original data
Principle Components Analysis

- Like auto-encoding neural networks, learn re-representation of input data that can best reconstruct it.
 - Learned encoding is linear function of inputs (not logistic).
 - No local minimum problems when training!
 - Given d-dimensional data \(X \), learns d-dimensional representation, where
 - the dimensions are orthogonal
 - top \(k \) dimensions are the \(k \)-dimensional linear re-representation that minimizes reconstruction error (sum of squared errors).

PCA Example

\[
\text{face}_i = \sum_k c_{ik} \text{eigenface}_k
\]

Thanks to Christopher DeCoro

Reconstructing a face from the first N components (eigenfaces)

Adding 1 additional PCA component at each step

Adding 8 additional PCA components at each step

In this next image, we show a similar picture, but with each additional face representing an additional 8 principle components. You can see that it takes a rather large number of images before the picture looks totally correct.

Learned Hidden Unit Weights

Typical input images

http://www.cs.cmu.edu/~tom/faces.html
PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, where nth vector is
\[x^n = (x^n_1 \ldots x^n_d) \]

We can represent these in terms of any d orthogonal vectors \(u_1 \ldots u_d \)
\[x^n = \sum_{i=1}^{d} z^n_i u_i; \quad u_i^T u_j = \delta_{ij} \]

PCA: given \(M < d \). Find \(\langle u_1 \ldots u_M \rangle \)
that minimizes \(E_M = \sum_{n=1}^{N} ||x^n - \bar{x}^n||^2 \)
where \(\bar{x}^n = \bar{x} + \sum_{i=1}^{M} z^n_i u_i \)

\[\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x^n \]

Note we get zero error if \(M = d \), so all error is due to missing components.

Therefore,
\[E_M = \sum_{i=M+1}^{d} \sum_{n=1}^{N} [u_i^T (x^n - \bar{x})]^2 \]
\[= \sum_{i=M+1}^{d} u_i^T \Sigma u_i \]

Covariance matrix:
\[\Sigma = \sum_{n=1}^{N} (x^n - \bar{x})(x^n - \bar{x})^T \]
\[\Sigma_{ij} = \sum_{n=1}^{N} (x^n_i - \bar{x}_i)(x^n_j - \bar{x}_j) \]

This minimized when \(u_i \) is eigenvector of \(\Sigma \), the covariance matrix of \(X \).

i.e., minimized when:
\[\Sigma u_i = \lambda_i u_i \]
PCA

Minimize \(E_M = \sum_{i=M+1}^{d} u_i^T \Sigma u_i \)

\(\rightarrow \Sigma u_i = \lambda_i u_i \quad \text{Eigenvector of} \ \Sigma \)

\(\text{Eigenvalue (scalar)} \)

\(\rightarrow E_M = \sum_{i=M+1}^{d} \lambda_i \)

PCA algorithm 1:
1. \(X \leftarrow \) Create N x d data matrix, with one row vector \(x^n \) per data point
2. \(X \leftarrow \) subtract mean \(\bar{x} \) from each row vector \(x^n \) in \(X \)
3. \(\Sigma \leftarrow \) covariance matrix of \(X \)
4. Find eigenvectors and eigenvalues of \(\Sigma \)
5. PC's \(\leftarrow \) the M eigenvectors with largest eigenvalues

PCA Example

\(\bar{x}^n = \bar{x} + \sum_{i=1}^{M} z_i^n u_i \)
PCA Example

\[\bar{x}^n = \bar{x} + \sum_{i=1}^{M} z_i^n u_i \]

Reconstructed data using only first eigenvector (M=1)

Very Nice When Initial Dimension Not Too Big

What if very large dimensional data?
- e.g., Images (d, \(10^4\))

Problem:
- Covariance matrix \(\Sigma\) is size (d x d)
- \(d=10^4 \Rightarrow |\Sigma| = 10^8\)

Singular Value Decomposition (SVD) to the rescue!
- pretty efficient algs available, including Matlab SVD
- some implementations find just top N eigenvectors
SVD

\[
X = USV^T
\]

Data \(X\), one row per data point

\(US\) gives coordinates of rows of \(X\) in the space of principle components

\(S\) is diagonal, \(S_k > S_{k+1}\). \(S_k^2\) is kth largest eigenvalue

Rows of \(V^T\) are unit length eigenvectors of \(X^TX\)

If cols of \(X\) have zero mean, then \(X^TX = \Sigma\) and eigenvects are the Principle Components

Singular Value Decomposition

To generate principle components:

- Subtract mean \(\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x^n\) from each data point, to create zero-centered data
- Create matrix \(X\) with one row vector per (zero centered) data point
- Solve SVD: \(X = USV^T\)
- Output Principle components: columns of \(V\) (= rows of \(VT\))
 - Eigenvectors in \(V\) are sorted from largest to smallest eigenvalues
 - \(S\) is diagonal, with \(S_k^2\) giving eigenvalue for kth eigenvector
Singular Value Decomposition

To project a point (column vector \(x \)) into PC coordinates:

\[
V^T x
\]

If \(x_i \) is \(i \)th row of data matrix \(X \), then

• (\(i \)th row of \(US \)) = \(V^T x_i^T \)
• \((US)^T = V^T X^T \)

To project a column vector \(x \) to M dim Principle Components subspace, take just the first M coordinates of \(V^T x \)

Independent Components Analysis (ICA)

• PCA seeks orthogonal directions \(<Y_1 \ldots Y_M> \) in feature space \(X \) that minimize reconstruction error

• ICA seeks directions \(<Y_1 \ldots Y_M> \) that are most statistically independent. I.e., that minimize \(I(Y) \), the mutual information between the \(Y_i \):

\[
I(Y) = \sum_{j=1}^{J} H(Y_j) - H(Y)
\]