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part of this material is based on slides from Carlos Guestrin, and
from Eric Xing
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You should know

Events

e discrete random variables, continuous random variables, compound
events

Axioms of probability
e What defines a reasonable theory of uncertainty

Independent events
Conditional probabilities
Bayes rule and beliefs

Joint probability distribution
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Expected values

Given discrete random variable X, the expected value of X,
written E[X] is

EX]=) zP(X =z)
TEX

We also can talk about the expected value of functions of X

E[f(X) =) f(z)P(X =z)

TeX
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Covariance

Given two discrete r.v.’s X and Y, we define the
covariance of Xand Y as

Cov(X,Y) = E[(X — E(X))(Y — E(Y))]
L I S

e.g., X=gender, Y=playsFootball <«
or X=gender, Y=leftHanded

Remember: E[X]=) zP(X =)

TeEX
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Your first consulting Job@g@ 1)

" A
m A billionaire from the suburbs of Seattle asks
you a question:

He says: | have thumbtack, if | flip it, what's the
probability it will fall with the nail up?

You say: Please flip it a few times:

N LN L b

You say: The probability is: . &
He says: Why???

You say: Because...
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Thumbtack — Binomial Distribution
1 * By ‘
ils) = 1- &

>’,<‘1 >\<9_ ?<3 >l<L/ c;<g ern‘l‘tclt/(y /eig—f-(,\_gv}cﬂ
8 x ésc([~9)x9 ()-@) —{”3\1
.. g =/ & (l-—e)\xj/

m Flips are i.i.d.:
Independent events

Identically distributed according to Binomial
distribution

m Sequence D of oy Heads and a5 Tails

AT e
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Maximum Likelihood Estimation
" J

m Data: Observed set D of oy Heads and o Tails

m Hypothesis: Binomial distribution

m Learning 0 is an optimization problem
What's the objective function?

m MLE: Choose 0 that maximizes the probability of
observed data:

) = arg mgax P(D|0)

= arg m@ax In P(D | 6)
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Maximum Likelihood Estimate for ©

"
U_ A
0 = In P(D | 6
argmgax nP(D|0) YN
= arg mgax INnOH (1 —0)T

= Set derivative to zero: |4 | P(D|0) =0
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—~

m Set derivative to zero:

d
— InP(D|0) =0
5 MP(D]0)

0 = argm{)ax InP(D | 0) Do ol
0, = Aemax g0 P, 0 4 oI (1)
:‘é’ H
o 04%"94_@&9)&0)
VL o(\"S(n—@\ 5iw(\~éj
+<9x + 2° '?ﬂ—'g)
f - %,

—

Xy, + =
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How many flips do | need?

~ aH
OviLe =
" apy + ar
axruqum
[‘ka]k‘qooﬂ
ES+‘M4’(“C
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E = owswx P(pl o)

Bayesian Learning /¢

" A
- m Use Bayes rule:

P(D | 9)P(6)
M“Zf ~  P(D)

m Or equivalently:

P(0|D) o P(D|0)P(0)




Be|ta prior distribution — P(0)
" SN

A 0'3]_] 1(1 9);37’1 1 Mean:
P(0) = ~ Beta(By, 3
@ B(BH BT) € a( H: T) Mode:

m Likelihood function: P(D|0) = 6%%(1 —0)*T
m Posterior: P(0 | D) o« P(D|0)P(0)
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Posterior distribution
"
~ m Prior: Beta(B8y. 37)
m Data: ay heads and a tails

m Posterior distribution:

P(0 | D) ~ Beta(By + oy, Br + ar)
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Beta(30,20)

MAP for Beta distribution '

O _ ;3?

pButan—1(1 — g)Ar+ar—1
BB + oz, Br + aT)

ameter value

~ Beta(By+aoy, Br+ar)

P(0 | D) =

m MAP: use most likely parameter:

) = argmax P(0 | D) = ﬁdf”"*g* -
0 = oLy + Py tPr

m Beta prior equivalent to extra thumbtack flips
m As N — oo, prior is “forgotten”
m But, for small sample size, prior is important!
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Lejeune Dirichlet

Dirichlet distribution

e number of heads in N flips of a two-sided coin
o follows a binomial distribution
e Beta is a good prior (conjugate prior for binomial)

Johann Peter Gustav Lejeune Dirichlet

e what it's not two-sided, but k-sided? S

. . . . . Died 5 May 1859 (aged 54)
e follows a multinomial distribution N o e
e Dirichlet distribution is the conjugate prior o orel m=emen
Institutions University of Berlin
University of Breslau
University of Géttingen
1 K ( 1) Alma mater University of Bonn
. (83 ]_ - Doctoral advisor Simeon Poisgon
P(el ’ 92 ) ==e BK) o B H 92’ Doctoral students iif:i:z::;::nstcin
(a) . Leopold Kronecker

(A Rudolf Lipschitz
Carl Wilhelm Borchargt

Known for Dirichlet function
Dirichlet eta function
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Estimating Parameters

o Maximum Likelihood Estimate (MLE): choose
0 that maximizes probability of observed data D

AN

0 = arg m@ax P(D|0)

e Maximum a Posteriori (MAP) estimate: choose
0 that is most probable given prior probability
and the data

6 = argmax P(0|D)

0
= arg m@ax = P(Dp‘(z;f)(e)
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You should know

e Probability basics
e random variables, events, sample space, conditional probs, ...
e independence of random variables
e Bayes rule
e Joint probability distributions
e calculating probabilities from the joint distribution

e Point estimation
e maximum likelihood estimates
e maximum a posteriori estimates
o distributions — binomial, Beta, Dirichlet, ...
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Example: Bernoulli model '+

e Data:
e We observed Niid coin tossing: 0={1,0, 1, ..., 0}

e Representation:

Binary r.v: x =0}

e Model: . (1-6 forx=0 |
X)=-+ — N .

6 forx=1 P(x)=6"(1-0)

e How to write the likelihood of a single observation x;?

P(Z‘\‘i ) - (9"3:’ (1 . 9)1—):5

e The likelihood of datasetD={x/, ..., x\}:

N
S1-x;

iml

N N _ v\
P(x. %Xy |O) =[P, |O) =] [(67A-0)"") =67 (1-0)7 =o"=1-0)"*
i=1 i=1
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Conditional Independence

Definition: X is conditionally independent of Y given Z, if the
probability distribution governing X is independent of the
value of Y, given the value of Z

(Vi,5, k) P(X = ;]Y =y, Z = z,) = P(X = 24| Z = z)

Which we often write

P(X|Y,Z) = P(X|2)

E.g.,
P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Slide 19



