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part of this material is based on slides from Carlos Guestrin, and 
from Eric Xing 
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You should know 
•  Events  

•  discrete random variables, continuous random variables, compound 
events 

•  Axioms of probability 
•  What defines a reasonable theory of uncertainty 

•  Independent events 
•  Conditional probabilities 
•  Bayes rule and beliefs 
•  Joint probability distribution 
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Expected values 
Given discrete random variable X, the expected value of X, 

written E[X] is 

We also can talk about the expected value of functions of X 
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Covariance 

Given two discrete r.v.’s X and Y, we define the 
covariance of X and Y as 

e.g., X=gender, Y=playsFootball 
or     X=gender, Y=leftHanded 

Remember: 
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Maximum Likelihood Estimate for Θ 
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Dirichlet distribution 
•  number of heads in N flips of a two-sided coin 

•  follows a binomial distribution 
•  Beta is a good prior (conjugate prior for binomial) 

•  what it’s not two-sided, but k-sided? 
•  follows a multinomial distribution 
•  Dirichlet distribution is the conjugate prior 
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Estimating Parameters 
•  Maximum Likelihood Estimate (MLE): choose 
θ that maximizes probability of observed data 

•  Maximum a Posteriori (MAP) estimate: choose 
θ that is most probable given prior probability 

and the data 
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You should know 

•  Probability basics 
•  random variables, events, sample space, conditional probs, … 
•  independence of random variables 
•  Bayes rule 
•  Joint probability distributions 
•  calculating probabilities from the joint distribution 

•  Point estimation  
•  maximum likelihood estimates 
•  maximum a posteriori estimates 
•  distributions – binomial, Beta, Dirichlet, … 
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Conditional Independence   
Definition: X is conditionally independent of Y  given Z, if the 

probability distribution governing X is independent of the 
value of Y, given the value of Z 

Which we often write  

E.g., 


