Midterm: wed, March 4 open book, notes absolutely no communication – wireless or other

Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

March 2, 2009

Midterm Course Correction Survey* (5 min)

1. if you could change just one thing to improve the course, what should we do?

2. if you could pick just one thing to keep because it's helpful, what is that?

^{*} anonymous survey

Machine Learning:

Study of algorithms that

- improve their <u>performance</u> P
- · at some task T -> learn f:x>>Y or P(Y/x, 0)
- with experience E > precollect data

 with fully obs vars.

 (EM) incompletely obs)

best fitty data (MLE for D)
best fitty (data + priows) MAP

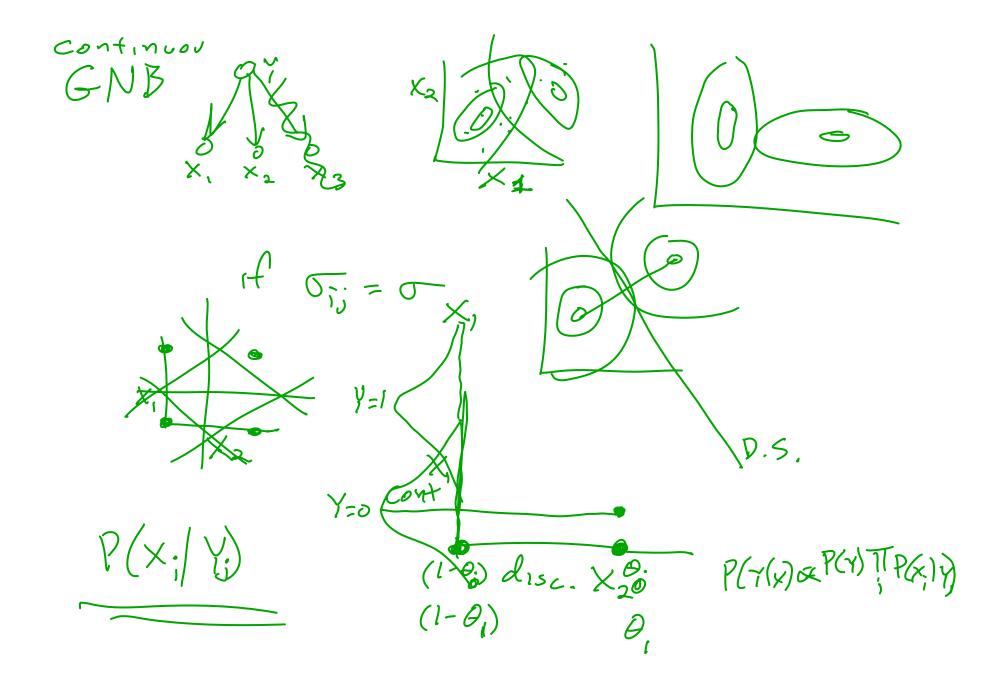
Some topics we've covered:

- Decision trees
 - overfitting, pruning
 - information gain, entropy
- Basic probability
 - MLE's, MAP
 - manipulating probabilities
 - Bayes rule
- Naïve Bayes
 - conditional indep.
 - Discrete, Gaussian
- Logistic regression
 - derive from Naïve Bayes
 - Conditional likelihood
 - gradient descent

- Logistic regression
 - derive from Naïve Bayes
 - Conditional likelihood
 - MLE, MAP, regularization
 - gradient descent
- Cross validation, feature selection, regularization,
- Linear regression
 - probabilistic interpretation
- Bayes nets
 - representation of joint distrib.
 - cond. indep./ D-separation
 - simple inference
 - learning from fully observed data
 - learning using EM
 - clustering using EM

learn A:x >> Y or P(7/x) Given a learning tust. n a leurno 1. Pick apresentation - model class hypothesis space 2. pick an objective en. 2. pick

det. ENN(0,0) fit the data - MLikelihood


De argmax TTP(x2,2) D

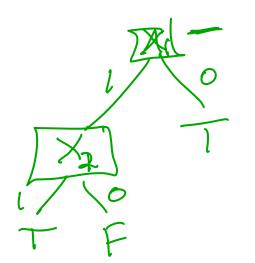
Rexamples

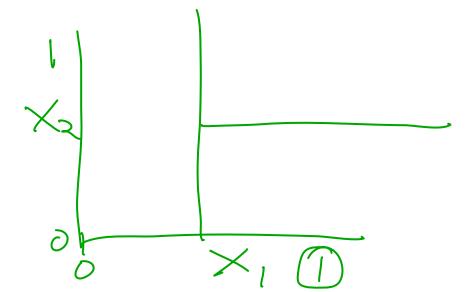
MAP

De arsmax PCD[Ex2, yes]

2. 1. 01.2. 2-2 Y= F(x) + E MCLE = argmax TTP(re/xeb) app(xeyela). PCB) Mux Likelchood arsmax [TP(w,z10)] < EM ds W 70352

$$\ln P(Y|X) = -m + \sum_{i} \ln \frac{P(x_{i}|Y=1)}{P(x_{i}|Y=0)}$$


$$\log \operatorname{reg} P(Y|X) = \frac{1}{(x_{i}|Y=0)}$$


$$\Pr(Y=0|X) = \frac{\operatorname{exp(x_{i}|Y=0)}}{\operatorname{exp(x_{i}|X=0)}}$$

$$\ln \frac{P(Y=1|X)}{P(Y=0|X)} = \sum_{i} w_{i} x_{i}$$

$$\ln \frac{P(Y=1|X)}{P(Y=1|X)}$$

$$\Pr(Y=1|X)$$

