10-601
Machine Learning

Support Vector Machine

Types of classifiers

We can divide the large variety of classification approaches into roughly three major
types

1. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors

2. Generative:
- build a generative statistical model
- e.g., Bayesian networks

3. Discriminative
- directly estimate a decision rule/boundary
- e.g., decision tree

Ranking classifiers

3
®
|_]

B-¢-&-|®-

TAaIC 4. IVULIIIALIACU DLULED 11Ul Caull 1Cal iy atgurivineeg AR N lavoiagc uveL Clever ’ll"l‘ll'“l“,‘ >
&
E MODEL CAL ACC FsC LET ROC APR BEP RMS MXE MEAN OPT-SEL
083
1 BST-DT PLT .R43%* 779 .939 .963 .938 L920% .880 .896 .896 917
] RF PLT RT2* 305 034%* 957 .93 .930 851 858 892 .ROR
g BAG-DT 846 781 038% [962% 937% 918 845 872 RRT* .899
5 BST-DT 1SO R26% RG0O* H29* 052 921 LO25% .854 815 885 O1T*
= RF 872 790 034%* O57 93 .930 .829 830 (884 890
7 BAG-DT PLT 841 774 O3R8%* L062* .937* 918 .36 852 882 895
3 RF 150 RG1* 861 923 946 910 925 836 776 880 895
% BAG-DT 150 826 843 .033%* 054 021 915 .32 791 RTT 804
= IR pLT | .824 760 895 038 .808 913 831 836 862 880
fi N ™ 803 762 910 936 892 L899 811 821 .854 885
SVM 150 813 836%* .92 025 882 911 B4 744 852 882
ANN PLT 815 748 910 936 .92 399 LTR3 785 846 8TH
ANN 1SO 803 836 908 924 876 891 T 718 .842 884
BST-DT .834%* R16 .939 .963 938 L920% 598 605 828 8351
KNN PLT THT L8R9 018 872 7 742 764 815 .837
KNN .7H6 LRRG 91 872 729 T8 K10 830 J
KNN 150 755 (882 907 854 738 706 809 844
BST-STMP PLT 724 RT6 008 853 716 754 791 SO8
SVM S17 895 938 S99 Al A6T LT81 810
BST-STMP 1S0 . 709 873 R09 835 695 646 .7T80 810
BST-STAMP T4 R76 908 853 .394 382 710 [
DT 150 648 318 838 756 590 589 709
DT 64T .824 843 762 TTT 562 607 .T08 .763
DT PLT 651 .824 843 762 TTT H75 594 .T06 761
LR 636 823 852 743 734 620 645 700 710
LR 150 627 SIS 847 735 742 LGOS 589 692 703
LR PLT 630 823 852 743 734 593 604 (685 695
NB 1S0O 079 779 820 727 733 572 .Hhh 654 661
NB PLT D76 T80 .824 LT38 735 H3T 559 LG50 654
NB 496 562 JTR1 825 LT38 735 347 -.633 AR AR89
v
#J 1« 50f8 » 1 85x11in O = # | JJ
N P N

Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised

Learning Algorithms, ICML 2006

Regression classifiers

Recall our regression classifiers

+1 if sign(w'x+b)=0

-1 if sign(w'x+b)<0

Regression classifiers

Recall our regression classifiers

®
. /
/
® /
o ’
o /
/
/
/
° ® // o o .
/ Line closer to the
/ .
/! @ Py blue nodes since
/
’ ® many of them are
/ ® far away from the

’ @ boundary

Regression classifiers

Recall our regression classifiers
. I T ..i\2
mmwz(y -W X')
]

e

PY ® Goes over all points
® ’ X (even in LR
® ’ settings)

/ Line closer to the

/@ P blue nodes since

/ ° many of them are

/ ® far away from the
/ o boundary

Regression classifiers

Recall our regression classifiers

Many more
possible classifiers
\ »
Y4
O ®)
71 /
® I ///
/d
. 21 I X4
y oy 12T
/ }/1 //
/ I I
. . ///I ,/ .
// /
L} 1)
7 / 1// I
7 / l 1
P d / I
.7 / il I
Y
s / /1 L
7 I
I
I

min,, E(yi —w ' x")?

e

Goes over all points
X (even in LR
settings)

Line closer to the
blue nodes since
many of them are
far away from the
boundary

Max margin classifiers

* Instead of fitting all points, focus on boundary points

sLearn a boundary that leads to the largest margin from both
sets of points

) ® / From all the
/ .
O / possible boundary
® A lines, this leads to
¢ 4 the largest margin
4 on both sides
O 4
¢ / ® [)
/
/
/ o ()
/
4 o
4 o

Max margin classifiers

* Instead of fitting all points, focus on boundary points

» Learn a boundary that leads to the largest margin from points on both
sides

o ® K
O D /
PY .\/ « Intuitive, ‘makes
2D sense’
/
® o J/ \ ° - Easy to do cross
,! validation
® ® :
/// ® » Some theoretical
K) support
/ ® * Works well in practice
/

Max margin classifiers

* Instead of fitting all points, focus on boundary points

» Learn a boundary that leads to the largest margin from points on both
sides

® / Also known as linear
o ol // support vector
S D machines (SVMs)

® o ,’/\ o
I

These are the vectors ®
supporting the boundary

/
/
/

Specifying a max margin
classifier

A
.t c\as® < Class +1 plane

T boundary

\NTX‘\’bg‘\—’\ /\
1,40=0 Class -1 plane
W . & c\as® A g
X

Classify as +1 if wix+b = 1

Classify as -1 if wix+b < - 1

Undefined if -1 <wx+b < 1

Specifying a max margin
classifier

Is the linear separation
assumption realistic?

\NTX—\"O;O A : : :
. sS - We will deal with this shortly,

_A ct c\a
WP pred! but lets assume it for now
Classify as +1 if wix+b = 1
Classify as -1 if wix+b < - 1

Undefined if -1 <wx+b < 1

Maximizing the margin

Classify as +1 if w'x+b =1
Classify as -1 if wix+b<-1

A
. & c\as®
y X N\ Undefined if -1 <wTx+b <1
—+A

o %
T +p=0
\N X S —«
= dict ©12°
\NT X—\"O P"e

* Lets define the width of the margin by M

* How can we encode our goal of maximizing M in terms of
our parameters (w and b)?

» Lets start with a few obsevrations

Maximizing the margin

/ Classify as +1 if w'x+b = 1
_iA Classify as -1 if wix+b=<-1
T)Q\"O . .
W =0 Undefined if -1 <wTx+b <1
W _ s)

* Observation 1: the vector w is orthogonal to the +1 plane

* Why?

Let u and v be two points on the +1 plane,
then for the vector defined by u and v we have

wl(u-v) =0

Corollary: the vector w is orthogonal to the -1 plane

Maximizing the margin

Classify as +1 if w'x+b =1
Classify as -1 if wix+b=<-1
Undefined if -1 <w'x+b <1

* Observation 1: the vector w is orthogonal to the +1 and -1 planes

» Observation 2: if x* is a point on the +1 plane and x- is the closest point
to x* on the -1 plane then

X" =AW + X
Since w is orthogonal to both planes

we need to ‘travel’ some distance
along w to get from x* to x-

Putting it together

wli xt +b=+1
=

wh (AW + x7) + b = +1

=
wix +b +AwTw = +1
=

-1 +Aw'w = +1

==

We can now define M in A= 2/wWwTw
terms of w and b

Putting it together

=
M=lAw = Alw ElAVw'w

—
T
AW W 2
T B T
W W W W

M=2

We can now define M in
terms of w and b

Finding the optimal parameters

We can now search for the optimal parameters by finding a
solution that:

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes wTw)

Several optimization methods can be used:
Gradient descent, simulated annealing, EM
etc.

Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:

T
u Ru ;
+d u+c

min,,

subject to n inequality constrain

a, U, + a.u .= b, ;
i T api, + Quadratic term

a u+a,u,+..<b When a problem can be
specified as a QP problem we
can use solvers that are better
than gradient descent or

patily + QU+ =D simulated annealing

and k equivalency constraints:

a

AUy + Ayl + o= b

n+k

SVM as a QP problem

Min (w'w)/2

subject to the following inequality
constraints:

For all xin class + 1

wWix+b = 1 A total of n
constraints if
we have n

Wx+b < -1 input samples

For all xin class - 1

T
w . U Ru

+d"u+c

min,,
subject to n inequality constraints:
a,u, + a, U, +...< b,

a, u +a, ,u,+..<b

n

and k equivalency constraints:

Ay + Ay Uy + o= b,

n+l1

Ayl + Ay Uy + o= b

n+k

Non linearly separable case

» So far we assumed that a linear plane can perfectly

separate the points

 But this is not usally the case
- hoise, outliers

Hard to solve (two

o o® minimization problems)

How can we convert this to a
QP problem?

- Minimize training errors?
min wTw
min #errors

- Penalize training errors:

min wTw+C*(#errors)

Hard to encode in a QP
problem

Non linearly separable case

* Instead of minimizing the number of misclassified points we can
minimize the distance between these points and their correct plane

The new optimization problem is:

T n

. W W

min,, +EC£i
2 i=1

subject to the following inequality
constraints:

For all x; in class + 1

wix+b = 1- ¢
For all x;in class - 1
wix+b < -1+ ¢,

Wait. Are we missing
something?

Final optimization for non
linearly separable case

The new optimization problem is:

subject to the following inequality
constraints:

For all x;in class + 1
T

WiX+h = 1-¢ A total of n

For all x; in class - 1 constraints

Wix+b < -1+ ¢,

For all i
Another n
g =0 constraints

Where we are

Two optimization problems: For the separable and non separable cases

T
W W

min
For all xin class + 1
wix+b = 1

For all xin class - 1

wix+b < -1

T n
. WW
min,, +EC£i

2 Z
For all x;in Class + 1

Wix+b = 1- ¢
For all x;in class - 1

Wix+b < -1+ ¢,

For all i
g=0 ,
¢ /
[]
¢ o/ ,
° °® / /
° / / /
/ ; y:
/
° / / //
* / /
/ / /7 ©
/ / / °
/ /’ / °
// / // ° °
/ / /
/ / /
y / ya e

Where we are

Two optimization problems: For the separable and non separable cases

w'w x
min,, +EC£i
2
s
Forall x in Class + 1

Min (w'w)/2
For all xin class + 1
WTX+b > 1 WTX+b = 1' Ei

: For all x;in class - 1
Forall xin class - 1

WiX+b < -1+ ¢
wix+b < -1 |

For all i

g=0

* Instead of solving these QPs directly we will solve a dual
formulation of the SVM optimization problem

» The main reason for switching to this type of representation
is that it would allow us to use a neat trick that will make our
lives easier (and the run time faster)

An alternative (dual)
representation of the SVM QP

Min (w'w)/2
: : . For all xin class +1
» We will start with the linearly separable case

T
* Instead of encoding the correct classification rule WiX+b = 1

and constraint we will use LaGrange muiltiplies to For all xin class -1

encode it as part of the our minimization problem
wix+b < -1

Why? U

Min (w'w)/2
(WTx+b)y, = 1

An alternative (dual)
representation of the SVM QP

Min (w'w)/2

(WTx;+b)y, = 1
» We will start with the linearly separable case

* Instead of encoding the correct classification rule a
constraint we will use Lagrange multiplies to encode it as
part of the our minimization problem

Recall that Lagrange muiltipliers can be
applied to turn the following problem:

i 2
min, X

st.x=Db .
N 4 Allowed min
~ -,

min, max_, X2 -o(x-b) = “\

st.a=0 ?

Global min

Lagrange multiplier for SVMs

Dual formulation Original formulation
T
min,, , max, sz — Eai[(wal. +b)y, —1] Min (WTw)/2

Ty + >
o, =0 Yi (w X b)yl =1

Using this new formulation we can derive w and b by
taking the derivative w.r.t. w and a leading to:

W= Eaixiyi
j

b=yl.—wal.

for 1 st. a;>0

Finally, taking the derivative w.r.t. b we get:

Eaiyi=0

Dual SVM - interpretation

W=Eaixiyz'

For o’s that are not

Dual SVM for linearly separable
case

. W W
Substituting w into our target min,,,, — - Eai[(WT'xi +b)y; —1]
function and using the o
additional constraint we get: ;=0 Vi
w=) Xy,
Dual formulation 2

1 b=y, -w'x,
max,) «, _5 a0y X X;
i i,]

for i st. a,>0
Eaiyi =0 E(xiyl. =0

o.=0 Yi

l

Dual SVM for linearly separable
case

Our dual target function: _l
9 max,, Eai 5 Eaiaj},iij‘<j
l 1,]
EaiYi -0 Dot product for all
l. training samples

o, =0 Vi Dot product for with
training samples

To evaluate a new sample x; /

we need to compute:
P WTX.+b=EOC.Y-X.X.+b
J 1177177
i

Is this too much computational work (for
example when using transformation of the

data)?

Classifying in 1-d

Can an SVM correctly What about this?
classify this data?

Classifying in 1-d

Can an SVM correctly
classify this data?

X2

And now?

Quadratic kernels

« While working in higher dimensions is max,, Eai —Eaiajyiyfb(xi)@(xj)
beneficial, it also increases our running time " bl
because of the dot product computation Eaiyi =0
* However, there is a neat trick we can use :

o, =0 Vi
» consider all quadratic terms for x,, X, ... X, — ___ misthe

number of

The v2 1 features in
termwill Y m#1linear terms each vector
become .
clear in the D(x) =
next slide X

. *—— m quadratic terms
\/Exlxz

: *+— m(m-1)/2 pairwise terms
V2x,.,%,

Dot product for quadratic kernels

How many operations do we need for the dot product?

| 1
V2%, W2g
V2x, 2z,
D(x)D(2) = =22xizi+2x e +E 22)6)6 2,2, +1
Xlz ° 212 i i
; E) N
2 72 m m m(m-1)/2 m

’\/Exlxz ’\/EZIZZ
’\/E'xm—l'xm ﬁzm—lzm

The kernel trick

How many operations do we need for the dot product?

=22xizi+2x Z; +E E2xx 2,2, +1

i j=i+l

m m m(m-1)/2 =~ m?

However, we can obtain dramatic savings by noting that

(xz+1)°* = (x.2)* +2(x2) +1

= (Exiz.)2 +22x.z.+1

/=v 22xizi+l2x +2JEH]2xx 2,2, +1

We only ne'ed m Note that to evaluate a new sample
operations! we are also using dot products so
we save there as well

Where we are

Our dual target function: To evaluate a new sample x;

1 we need to compute:
max Eai —Ezaiajyiijixj
i i

i

Eaiyi =0 /
Vi

o, =0
mr operations where r
are the number of

support vectors (o,>0)

Wij+b=EOCin.X.+b

mn? operations at each
iteration

Other kernels

» The kernel trick works for higher order polynomials as well.

* For example, a polynomial of degree 4 can be computed using
(x.z+1)*and, for a polynomial of degree d (x.z+1)¢

* Beyond polynomials there are other very high dimensional basis
functions that can be made practical by finding the right Kernel
Function

-Radial-Basis-style Kernel Function:

K(x,z) = exp(— (x2_o§))

- Neural-net-style Kernel Function: K(x,z) = tanh(kx.z - 6)

Dual formulation for non linearly
separable case

Dual target function: To evaluate a new sample x;
we need to compute:

max, Zai _;;jaianiijin
Eaiyi=0 Wij+b=zal.inin+b

C>a,=z0 Vi

\ The only difference is

that the o,'s are now
bounded

Why do SVMs work?

* If we are using huge features spaces (with kernels) how come we
are not overfitting the data?

- Number of parameters remains the same (and most are set to 0)

- While we have a lot of input values, at the end we only care
about the support vectors and these are usually a small group of
samples

- The minimization function acts as a sort of regularization tern
leading to reduced overfitting

Multi-class classification with
SVMs

What if we have data from more than two

classes?
* Most common solution: One vs. all
o - create a classifier for each class against
O ® all other data
O ® . .
° - for a new point use all classifiers and
¢ ° o compare the margin for all selected
classes
® o
O O
® ® Note that this is not necessarily valid
® ® since this is not what we trained the

SVM for, but often works well in
practice

Important points

» Difference between regression classifiers and SVMs’
« Maximum margin principle

 Target function for SVMs

* Linearly separable and non separable cases

* Dual formulation of SVMs

» Kernel trick and computational complexity

