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Support Vector Machine



Types of classifiers

We can divide the large variety of classification approaches into roughly three major
types

1. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors

2. Generative:
- build a generative statistical model
- e.g., Bayesian networks

3. Discriminative
- directly estimate a decision rule/boundary
- e.g., decision tree



Ranking classifiers
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Regression classifiers

Recall our regression classifiers

+1 if sign(w'x+b)=0

-1 if sign(w'x+b)<0




Regression classifiers

Recall our regression classifiers
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Regression classifiers

Recall our regression classifiers
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Regression classifiers

Recall our regression classifiers

Many more
possible classifiers
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Max margin classifiers

* Instead of fitting all points, focus on boundary points

sLearn a boundary that leads to the largest margin from both
sets of points
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Max margin classifiers

* Instead of fitting all points, focus on boundary points

» Learn a boundary that leads to the largest margin from points on both
sides

o ® K
O D /
PY .\/ « Intuitive, ‘makes
2D sense’
/
® o J/ \ ° - Easy to do cross
,! validation
® ® :
/// ® » Some theoretical
K ) support
/ ® * Works well in practice
/




Max margin classifiers

* Instead of fitting all points, focus on boundary points

» Learn a boundary that leads to the largest margin from points on both
sides

® / Also known as linear
o ol // support vector
S D machines (SVMs)
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Specifying a max margin
classifier

A
.t c\as® < Class +1 plane

T boundary

\NTX‘\’bg‘\—’\ /\
1,40=0 Class -1 plane
W . & c\as® A g
X

Classify as +1 if wix+b = 1

Classify as -1 if wix+b < - 1

Undefined if -1 <wx+b < 1



Specifying a max margin
classifier

Is the linear separation
assumption realistic?

\NTX—\"O;O A : : :
. sS - We will deal with this shortly,

_A ct c\a
WP pred! but lets assume it for now
Classify as +1 if wix+b = 1
Classify as -1 if wix+b < - 1

Undefined if -1 <wx+b < 1



Maximizing the margin

Classify as +1 if w'x+b =1
Classify as -1 if wix+b<-1

A
. & c\as®
y X N\ Undefined if -1 <wTx+b <1
—+A

o %
T +p=0
\N X S —«
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* Lets define the width of the margin by M

* How can we encode our goal of maximizing M in terms of
our parameters (w and b)?

» Lets start with a few obsevrations



Maximizing the margin

/ Classify as +1 if w'x+b = 1
_iA Classify as -1 if wix+b=<-1
T)Q\"O . .
W =0 Undefined if -1 <wTx+b <1
W _ s )

* Observation 1: the vector w is orthogonal to the +1 plane

* Why?

Let u and v be two points on the +1 plane,
then for the vector defined by u and v we have

wl(u-v) =0

Corollary: the vector w is orthogonal to the -1 plane



Maximizing the margin

Classify as +1 if w'x+b =1
Classify as -1 if wix+b=<-1
Undefined if -1 <w'x+b <1

* Observation 1: the vector w is orthogonal to the +1 and -1 planes

» Observation 2: if x* is a point on the +1 plane and x- is the closest point
to x* on the -1 plane then

X" =AW + X
Since w is orthogonal to both planes

we need to ‘travel’ some distance
along w to get from x* to x-



Putting it together

wli xt +b=+1
=

wh (AW + x7) + b = +1

=
wix +b +AwTw = +1
=

-1 +Aw'w = +1

==

We can now define M in A= 2/wWwTw
terms of w and b



Putting it together

=
M=lAw = Alw ElAVw'w
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M=2

We can now define M in
terms of w and b



Finding the optimal parameters

We can now search for the optimal parameters by finding a
solution that:

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes wTw)

Several optimization methods can be used:
Gradient descent, simulated annealing, EM
etc.



Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:

T
u Ru ;
+d u+c

min,,

subject to n inequality constrain

a, U, + a.u .= b, ;
i T api, + Quadratic term

a u+a,u,+..<b When a problem can be
specified as a QP problem we
can use solvers that are better
than gradient descent or

patily + QU+ =D simulated annealing

and k equivalency constraints:

a

AUy + Ayl + o= b

n+k



SVM as a QP problem

Min (w'w)/2

subject to the following inequality
constraints:

For all xin class + 1

wWix+b = 1 A total of n
constraints if
we have n

Wx+b < -1 input samples

For all xin class - 1

T
w . U Ru

+d"u+c

min,,
subject to n inequality constraints:
a,u, + a, U, +...< b,

a, u +a, ,u,+..<b

n

and k equivalency constraints:

Ay + Ay Uy + o= b,

n+l1

Ayl + Ay Uy + o= b

n+k



Non linearly separable case

» So far we assumed that a linear plane can perfectly

separate the points

 But this is not usally the case
- hoise, outliers

Hard to solve (two

o o® minimization problems)

How can we convert this to a
QP problem?

- Minimize training errors?
min wTw
min #errors

- Penalize training errors:

min wTw+C*(#errors)

Hard to encode in a QP
problem



Non linearly separable case

* Instead of minimizing the number of misclassified points we can
minimize the distance between these points and their correct plane

The new optimization problem is:

T n

. W W

min,, +EC£i
2 i=1

subject to the following inequality
constraints:

For all x; in class + 1

wix+b = 1- ¢
For all x;in class - 1
wix+b < -1+ ¢,

Wait. Are we missing
something?




Final optimization for non
linearly separable case

The new optimization problem is:

subject to the following inequality
constraints:

For all x;in class + 1
T

WiX+h = 1-¢ A total of n

For all x; in class - 1 constraints

Wix+b < -1+ ¢,

For all i
Another n
g =0 constraints




Where we are

Two optimization problems: For the separable and non separable cases
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Where we are

Two optimization problems: For the separable and non separable cases

w'w  x
min,, +EC£i
2
s
Forall x in Class + 1

Min (w'w)/2
For all xin class + 1
WTX+b > 1 WTX+b = 1' Ei

: For all x;in class - 1
Forall xin class - 1

WiX+b < -1+ ¢
wix+b < -1 |

For all i

g=0

* Instead of solving these QPs directly we will solve a dual
formulation of the SVM optimization problem

» The main reason for switching to this type of representation
is that it would allow us to use a neat trick that will make our
lives easier (and the run time faster)



An alternative (dual)
representation of the SVM QP

Min (w'w)/2
: : . For all xin class +1
» We will start with the linearly separable case

T
* Instead of encoding the correct classification rule WiX+b = 1

and constraint we will use LaGrange muiltiplies to For all xin class -1

encode it as part of the our minimization problem
wix+b < -1

Why? U

Min (w'w)/2
(WTx+b)y, = 1



An alternative (dual)
representation of the SVM QP

Min (w'w)/2

(WTx;+b)y, = 1
» We will start with the linearly separable case

* Instead of encoding the correct classification rule a
constraint we will use Lagrange multiplies to encode it as
part of the our minimization problem

Recall that Lagrange muiltipliers can be
applied to turn the following problem:

i 2
min, X

st.x=Db .
N 4 Allowed min
~ -,

min, max_, X2 -o(x-b) = “\

st.a=0 ?

Global min




Lagrange multiplier for SVMs

Dual formulation Original formulation
T
min,, , max, sz — Eai[(wal. +b)y, —1] Min (WTw)/2

Ty + >
o, =0 Yi (w X b)yl =1

Using this new formulation we can derive w and b by
taking the derivative w.r.t. w and a leading to:

W= Eaixiyi
j

b=yl.—wal.

for 1 st. a;>0

Finally, taking the derivative w.r.t. b we get:

Eaiyi=0



Dual SVM - interpretation

W=Eaixiyz'

For o’s that are not




Dual SVM for linearly separable
case

. W W
Substituting w into our target min,,,, — - Eai[(WT'xi +b)y; —1]
function and using the o
additional constraint we get: ;=0 Vi
w= ) Xy,
Dual formulation 2

1 b=y, -w'x,
max, ) «, _5 a0y X X;
i i,]

for i st. a,>0
Eaiyi =0 E(xiyl. =0

o.=0 Yi

l



Dual SVM for linearly separable
case

Our dual target function: _l
9 max,, Eai 5 Eaiaj},iij‘<j
l 1,]
EaiYi -0 Dot product for all
l. training samples

o, =0 Vi Dot product for with
training samples

To evaluate a new sample x; /

we need to compute:
P WTX.+b=EOC.Y-X.X.+b
J 1177177
i

Is this too much computational work (for
example when using transformation of the

data)?



Classifying in 1-d

Can an SVM correctly What about this?
classify this data?




Classifying in 1-d

Can an SVM correctly
classify this data?

X2

And now?




Quadratic kernels

« While working in higher dimensions is max,, Eai —Eaiajyiyfb(xi)@(xj)
beneficial, it also increases our running time " bl
because of the dot product computation Eaiyi =0
* However, there is a neat trick we can use :

o, =0 Vi
» consider all quadratic terms for x,, X, ... X, — ___ misthe

number of

The v2 1 features in
termwill Y m#1linear terms each vector
become .
clear in the D(x) =
next slide X

. *—— m quadratic terms
\/Exlxz

:  *+— m(m-1)/2 pairwise terms
V2x,.,%,



Dot product for quadratic kernels

How many operations do we need for the dot product?

| 1
V2%, W2g
V2x, 2z,
D(x)D(2) = =22xizi+2x e +E 22)6)6 2,2, +1
Xlz ° 212 i i
; E ) N
2 72 m m m(m-1)/2 m

’\/Exlxz ’\/EZIZZ
’\/E'xm—l'xm ﬁzm—lzm



The kernel trick

How many operations do we need for the dot product?

=22xizi+2x Z; +E E2xx 2,2, +1

i j=i+l

m m m(m-1)/2 =~ m?

However, we can obtain dramatic savings by noting that

(xz+1)°* = (x.2)* +2(x2) +1

= (Exiz.)2 +22x.z.+1

/=v 22xizi+l2x +2JEH]2xx 2,2, +1

We only ne'ed m Note that to evaluate a new sample
operations! we are also using dot products so
we save there as well



Where we are

Our dual target function: To evaluate a new sample x;

1 we need to compute:
max Eai —Ezaiajyiijixj
i i

i

Eaiyi =0 /
Vi

o, =0
mr operations where r
are the number of

support vectors (o,>0)

Wij+b=EOCin.X.+b

mn? operations at each
iteration



Other kernels

» The kernel trick works for higher order polynomials as well.

* For example, a polynomial of degree 4 can be computed using
(x.z+1)*and, for a polynomial of degree d (x.z+1)¢

* Beyond polynomials there are other very high dimensional basis
functions that can be made practical by finding the right Kernel
Function

-Radial-Basis-style Kernel Function:

K(x,z) = exp(— (x2_o§) )

- Neural-net-style Kernel Function: K(x,z) = tanh(kx.z - 6)



Dual formulation for non linearly
separable case

Dual target function: To evaluate a new sample x;
we need to compute:

max, Zai _;;jaianiijin
Eaiyi=0 Wij+b=zal.inin+b

C>a,=z0 Vi

\ The only difference is

that the o,'s are now
bounded



Why do SVMs work?

* If we are using huge features spaces (with kernels) how come we
are not overfitting the data?

- Number of parameters remains the same (and most are set to 0)

- While we have a lot of input values, at the end we only care
about the support vectors and these are usually a small group of
samples

- The minimization function acts as a sort of regularization tern
leading to reduced overfitting



Multi-class classification with
SVMs

What if we have data from more than two

classes?
* Most common solution: One vs. all
o - create a classifier for each class against
O ® all other data
O ® . .
° - for a new point use all classifiers and
¢ ° o compare the margin for all selected
classes
® o
O O
® ® Note that this is not necessarily valid
® ® since this is not what we trained the

SVM for, but often works well in
practice




Important points

» Difference between regression classifiers and SVMs’
« Maximum margin principle

 Target function for SVMs

* Linearly separable and non separable cases

* Dual formulation of SVMs

» Kernel trick and computational complexity



