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Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:
e Probability of successful learning
e Number of training examples
e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented



Sample Complexity

How many training examples are sufficient to learn
the target concept?

1. If learner proposes instances, as queries to
teacher

e Learner proposes instance x, teacher provides
c()
2. If teacher (who knows ¢) provides training
examples

e teacher provides sequence of examples of form
(z,c(x))
3. If some random process (e.g., nature) proposes
instances

e instance x generated randomly, teacher
provides ¢(x)



Instances, Hypotheses, and More-General-Than

Instances X

x = <Sunny, Warm, High, Strong, Cool, Same>
x2: <Sunny, Warm, High, Light, Warm, Same>

Hypotheses H
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h = <Sunny, ?, ?, Strong, ?, 7>
}22: <Sumny, 7, 7, 72, 7, 7>

h3= <Sunny, ?, ?, ?, Cool, 7>

Specific

General



Sample Complexity: 3

Given:

e set of instances X

. v
e set of hypotheses H = gl’l X > I}
v
e set of possible target concepts ale:n7! } P[ X)
e training instances generatmown
probability distribution D over X

Learner observes a sequence D of training examples
of form (x,¢(x)), for some target concept ¢ € C

e instances x are drawn from distribution D
e teacher provides target value ¢(x) for each
Learner must output a hypothesis h estimating ¢

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: randomly drawn instances, noise-free
classifications



True Error of a Hypothesis

Instance space X P(X)=D

Where ¢

and h disagree

Definition: The true error (denoted
errorp(h)) of hypothesis h with respect to
target concept ¢ and distribution D is the
probability that ~ will misclassify an instance
drawn at random according to D.

errorp(h) = lfé%[c(a:) # h(x)]



Two Notions of Error

Training error of hypothesis h with respect to
target concept c

e How often h(z) # c(x) over training instances D

>zeD 0(c(z) 7= h(z))
D]

errorp(h) = xFE’E)[c(a:) #= h(x)] =

4 
Set of fraining

True error of hypothesis h with respect to ¢ examples

e How often h(x) # c¢(xz) over future instances
drawn at random from D

Probability
Prle(z) # h(z)] distribution

P(x)




Two Notions of Error

Can we bound
errorp(h)
Training error of hypothesis h with respect to in terms of
target concept ¢ errorp(h)
e How often h(z) # ¢(x) over training instances D 27

> zeD 0(c(z) # h(z))
D]

errorp(h) = xFE’E)[c(a:) #= h(x)] =

4 
Set of training

True error of hypothesis h with respect to ¢ examples

e How often h(x) # c¢(xz) over future instances
drawn at random from D

Probability
Prle(z) # h(z)] distribution

P(x)




h
errorpn(h) = Pr [c(z) # h(x)] = >0eD Oele) 7M@) Can we bound
zeD |D|
- errorp(h)
Set of training ,
examples in terms of
errorp(h)
errorp(h) = Pr[c(z) # h(z)] Probability ”
l z€D} distribution
P(x)

if D was a set of examples drawn from D and independent of h,
then we could use standard statistical confidence intervals to

determine that with 95% probability, errorp(h) lies in the interval:

errorp(h) (1 — errorp(h))

errorp(h) £ 1.96 .

but D is the fraining data for h ....




Version Spaces
Target concept is

the (usually
unknown) boolean

A hypothesis h is consistent with a set fn fo be learned

training examples D of target concept c if and ¢ X = {0,1}
only if h(z) = ¢(x) for each training example
(z,c(x)) in D.

Consistent(h, D) = (V{x,c(x)) € D) h(z) = ¢(x)

The version space, V .Sy p, with respect to
hypothesis space H and training examples D,
is the subset of hypotheses from H consistent
with all training examples in D.

VSyp={h € H|Consistent(h,D)}



Exhausting the Version Space

Hypothesis space H
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(r = training error, error = true error)

Definition: The version space V .Sy p is said
to be e-exhausted with respect to ¢ and D, if
every hypothesis A in V .Sy p has error less
than e with respect to ¢ and D. true error less

(Vh € VSy p) errorp(h) < €



How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D is not
e-exhausted (with respect to ¢) is less than

| H | 6—6772.



How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D is not

e-exhausted (with respect to ¢) is less than Any(!) learner
|H|e™ " that outputs

a hypothesis

Interesting! This bounds the probability that any C?”ﬁis'lrlem
consistent learner will output a hypothesis A with i @

training
error(h) > € examples (i.e.,

an h

contained in

VSy;5)
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What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most [Hle™ ™

Pr[(3h € H)s.t.(errorirqin(h) = O)A(errorirye(h) > €)] < |H|e ™"

T

Suppose we want this probability to be at most 6

1. How many training examples suffice?
1
m > ~(In|H| 4+ In(1/8))
€
2. If errory,q:n,(h) = 0 then with probability at least (1-0):

errortrue(h) < %(In |H|+1n(1/6))



Learning Conjunctions of Boolean

Literals
Eg.,
How many examples are sufficient to assure with X=¢<X1,X2,.. Xn>
probability at least (1 — d) that Each h € H constrains
: . ’ < each Xitobe 1,0, or
every h in V Sy p satisfies errorp(h) < e “don't care”

Use our theorem:

1 In other words, each h
m 2 E(ln |H] +1n(1/9)) is a rule such as:

=
If X2=0 and X5=1
Then Y=1, else Y=0

Suppose H contains conjunctions of constraints on
up to n boolean attributes (i.e., n boolean literals).




Learning Conjunctions of Boolean
Literals

How many examples are sufficient to assure with
probability at least (1 —d) that

every h in V Sy p satisfies errorp(h) < €

Use our theorem:
1
m > —(in|H| +In(1/5))

Suppose H contains conjunctions of constraints on

up to n boolean attributes (i.e., n boolean literals).
Then |H| = 3", and

m > %(m 3" 4 In(1/6))

or

p—t

m > —(nln3 4+ 1n(1/9))

m



PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < € < 1/2, and ¢ such that
0<d<1/2,

learner L will with probability at least (1 — §)
output a hypothesis h € H such that
errorp(h) < €, in time that is polynomial in
1/e, 1/6, n and size(c).




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using Sufficient condition:
H if for all ¢ € C, distributions D over X, € Holds if L requires

such that 0 < € < 1/2, and ¢ such that only a polynomial
0<d<1/2, number of training
learner L will with probability at least (1 4~ ) DL, Gt

‘ processing per
output a hypothesis h € H such that example is polynomial

errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).




Agnostic Learning

So far, assumed c € H

Agnostic learning setting: don’t assume ¢ € H

e What do we want then?

— The hypothesis h that makes fewest errors on

: training data
note ¢ here is

the difference e What is sample complexity in this case?

between the \
training error 1
and true error m 2> 2—62(111 |H| +1n(1/4))

derived from Hoeffding bounds:

Prlerrorp(h) > errorp(h) + €] < g~ 2me

/ /

true error  training error degree of overfitting



Additive Hoeffding Bounds — Agnostic Learning

Given m independent coin flips of coin with Pr(heads) = 6
bound the error in the maximum likelihood estimate 4

Pri0 > 04 ¢ < e 2me

Relevance to agnostic learning: for any single hypothesis h

2
Pr[erra"“true(h) > QTTOTtrain(h) + E] < 6_2m6

But we must consider all hypotheses in H
2
Pr((3h € H)erroriye(h) > erroriqgin(h)+e] < |H|e_2m6

So, with probability at least (1-8) every h satisfies

In|H|+ In%
2m

errortrue(h) < errortrain(h) + J



General Hoeffding Bounds

 When estimating parameter 0 inside [a,b] from m examples

_Dme2
P(10 - E[0]] > ¢) < 2¢(-)

 When estimating a probability 6 is inside [0,1], so
. 2
P(|6 — E[0]] > €) < 272%™

« And if we're interested in only one-sided error, then

P((E[A] — 0) > ¢) < e~ 2m€



What if H 1s not finite?

e (Can’tuse our result for finite H

* Need some other measure of complexity for H
— Vapnik-Chervonenkis (VC) dimension!



Shattering a Set of Instances

Definition: a dichotomy of a set S is a
partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

Instance space X




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

Instance space X

VC(H)=3




Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-3)7

ie., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-8) approximately (¢) correct

m > ~(41092(2/8) + 8VC(H) 1095(13/c))

Compare to our earlier results based on |H|:

m > 2(In(1/8) + In |H])



