Learning from Labeled and Unlabeled Data

Optional reading:see reading list on final slide

Machine Learning 10-601

April 1, 2009

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

When can Unlabeled Data improve supervised learning?

Important question! In many cases, unlabeled data is plentiful, labeled data expensive

- Medical outcomes (x=<symptoms,treatment>, y=outcome)
- Text classification (x=document, y=relevance)
- Customer modeling (x=user actions, y=user intent)
- Sensor interpretation (x=<video,audio>, y=who's there)

When can Unlabeled Data help supervised learning?

Problem setting (the PAC learning setting):

- Set X of instances drawn from unknown distribution P(X)
- Wish to learn target function f: X→ Y (or, P(Y|X))
- Given a set H of possible hypotheses for f

Given:

- i.i.d. labeled examples $L = \{\langle x_1, y_1 \rangle \dots \langle x_m, y_m \rangle\}$
- i.i.d. unlabeled examples $U = \{x_{m+1}, \dots x_{m+n}\}$

Wish to find hypothesis with lowest true error:

$$\widehat{f} \leftarrow \arg\min_{h \in H} \Pr_{x \in P(X)} [h(x) \neq f(x)]$$

Idea 1: Use Labeled and Unlabeled Data to Train Bayes Net for P(X,Y)

Idea 1: Use Labeled and Unlabeled Data to Train Bayes Net for P(X,Y), then infer P(Y|X)

What CPDs are needed?

How do we estimate them from fully observed data?

Υ	X1	X2	Х3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

Supervised: Naïve Bayes Learner

Train:

For each class y_i of documents

1. Estimate $P(Y=y_j)$

- X_1 X_2 X_3 X_4
- 2. For each word w_i estimate $P(X=w_i \mid Y=y_j)$

Classify (doc):

Assign doc to most probable class

$$\widehat{P}(y_j|doc) \leftarrow \frac{\widehat{P}(y_j) \prod_i \widehat{P}(w_i|y_j)}{\sum_k \widehat{P}(y_k) \prod_i \widehat{P}(w_i|y_k)}$$

^{*} assuming words w_i are conditionally independent, given class

What if we have labels for only *some* documents?

Learn P(Y|X)

Υ	X1	X2	X3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

What if we have labels for only *some*documents? [Nigam et al., 2000]

Learn P(Y|X)

Υ	X1	X2	Х3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

EM: Repeat until convergence

- 1. Use probabilistic labels to train classifier h
- 2. Apply h to assign probabilistic labels to unlabeled data

[Nigam et al., 2000]

E Step:

$$P(y_{i} = c_{j} | d_{i}; \hat{\theta}) = \frac{P(c_{j} | \hat{\theta}) P(d_{i} | c_{j}; \hat{\theta})}{P(d_{i} | \hat{\theta})}$$

$$= \frac{P(c_{j} | \hat{\theta}) \prod_{k=1}^{|d_{i}|} P(w_{d_{i,k}} | c_{j}; \hat{\theta})}{\sum_{r=1}^{|C|} P(c_{r} | \hat{\theta}) \prod_{k=1}^{|d_{i}|} P(w_{d_{i,k}} | c_{r}; \hat{\theta})}.$$

M Step:

$$\hat{\theta}_{w_t|c_j} \equiv P(w_t|c_j; \hat{\theta}) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} N(w_t, d_i) P(y_i = c_j | d_i)}{|V| + \sum_{s=1}^{|V|} \sum_{i=1}^{|\mathcal{D}|} N(w_s, d_i) P(y_i = c_j | d_i)},$$

$$\hat{\theta}_{c_j} \equiv P(c_j|\hat{\theta}) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} P(y_i = c_j|d_i)}{|\mathcal{C}| + |\mathcal{D}|}.$$

 w_t is t-th word in vocabulary

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0		Iteration 1	Iteration 2
intelligence		D DD	
artificial understanding DD w dist	Using one labeled example per	D lecture cc D^{\star} $DD:DD$	$\begin{array}{c} DD \\ \text{lecture} \\ \text{cc} \\ DD:DD \\ \text{due} \end{array}$
identical rus arrange games dartmouth natural cognitive logic proving	class	handout due problem set tay Dam yurttas homework kfoury	D^{\star} homework assignment handout set hw exam problem DD am
prolog knowledge human representation field	Words sorted by P(w course) P(w : course)	sec postscript exam solution assaf	postscript solution quiz chapter ascii

20 Newsgroups

Why/When will this work?

 What's best case? Worst case? How can we test which we have?

Summary: Semisupervised Learning with EM and Naïve Bayes Model

- If all data is labeled, corresponds to supervised training of Naïve Bayes classifier
- If all data unlabeled, corresponds to unsupervied, mixture-ofmultinomial clustering
- If both labeled and unlabeled data, then unlabeled data helps if the Bayes net modeling assumptions are correct (e.g., P(X) is a mixture of class-conditional multinomials with conditionally independent X_i)

Of course we could use Bayes net models other than Naïve Bayes

Idea 2: Use U to reweight labeled examples

- Most learning algorithms minimize errors over labeled examples
- But we really want to minimize error over future examples drawn from the same underlying distribution (ie., true error of hypothesis)
- If we know the underlying distribution P(X), we could weight each labeled training example <x,y> by its probability according to P(X=x)
- Unlabeled data allows us to estimate P(X)

Idea 2: Use U to reweight labeled examples L

Use $U \to \widehat{P}(X)$ to alter the loss function

• Wish to minimize true error:

$$\widehat{f} \leftarrow \arg\min_{h \in H} \sum_{x \in X} \widehat{\delta(h(x))} \neq f(x)$$

if its argument is true, then 1, else 0

Usually approximate this by training error:

$$\widehat{f} \leftarrow \arg\min_{h \in H} \frac{1}{L} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

Which equals:

$$\widehat{f} \leftarrow \arg\min_{h \in H} \sum_{x \in X} \delta(h(x) \neq y) \left[\frac{n(x, L)}{|L|} \right]$$

n(x,L) = number of times x occurs in L

• We can produce a better approximation by incorporating U:

$$\widehat{f} \leftarrow \arg\min_{h \in H} \sum_{x \in X} \delta(h(x) \neq f(x)) \left[\frac{n(x,L) + n(x,U)}{|L| + |U|} \delta(n(x,L) > 0) \right]$$

Reweighting Labeled Examples

Wish to find

$$\widehat{f} \leftarrow \arg\min_{h \in H} \sum_{x \in X} \delta(h(x) \neq f(x)) \left[\delta(n(x, L) > 0) \frac{n(x, L) + n(x, U)}{|L| + |U|} \right]$$

Already have algorithm (e.g., decision tree learner) to find

$$\widehat{f} \leftarrow \arg\min_{h \in H} \frac{1}{L} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

Just reweight examples in L, and have algorithm minimize

$$\widehat{f} \leftarrow \arg\min_{h \in H} \frac{1}{L} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y) \, \frac{n(x, L) + n(x, U)}{|L| + |U|}$$

Or if X is continuous, use L+U to estimate p(X), and minimize

$$\widehat{f} \leftarrow \arg\min_{h \in H} \frac{1}{L} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y) \ \widehat{p}(x)$$

Reweighting Labeled Examples: Summary

- Simple, very general idea
- But I haven't seen this discussed or attempted anywhere in the literature...
- Why not?

3. Use U to Detect/Preempt Overfitting

- Overfitting is a problem for many learning algorithms (e.g., decision trees, neural networks)
- The symptom of overfitting: complex hypothesis h2 performs better on training data than simpler hypothesis h1, but worse on test data
- Unlabeled data can help detect overfitting, by comparing predictions of h1 and h2 over the unlabeled examples
 - Key insight: The rate at which h1 and h2 disagree on U should be bounded by the rates at which they each disagree with L, unless overfitting is occurring

4. Use U to Detect/Preempt Overfitting

Define metric over $H \cup \{f\}$

Organize H into complexity classes, sorted by P(h)

Let h_i^* be ny point.

Prefer h_1^* , h_2^* , or h_3^* ? $h_1^* \xrightarrow{\text{ON}} h_2^* \xrightarrow{\text{ON}} h_3^*$ $h_1^* \xrightarrow{\text{ON}} h_2^* \xrightarrow{\text{ON}} h_3^*$ Let h_i^* be hypothesis with lowest $\hat{d}(h, f)$ in H_i

$$h_1^*$$
 h_2^* h_3^* h_3^*

- Definition of distance metric
 - Non-negative d(f,g) >= 0;
 - symmetric d(f,g)=d(g,f);
 - triangle inequality $d(f,g) \le d(f,h) + d(h,g)$
- Classification with zero-one loss:

$$d(h_1, h_2) \equiv \int \delta(h_1(x) \neq h_2(x)) p(x) dx$$

Regression with squared loss:

$$d(h_1, h_2) \equiv \sqrt{\int (h_1(x) - h_2(x))^2 p(x) dx}$$

Idea: Use U to Avoid Overfitting

Note:

- $\hat{d}(h_i^*, f)$ optimistically biased (too short)
- $\hat{d}(h_i^*, h_i^*)$ unbiased
- Distances must obey triangle inequality!

$$d(h_1, h_2) \le d(h_1, f) + d(f, h_2)$$

- \rightarrow Heuristic:
 - Continue training until $\hat{d}(h_i, h_{i+1})$ fails to satisfy triangle inequality

Procedure TRI

- Given hypothesis sequence $h_0, h_1, ...$
- Choose the last hypothesis h_{ℓ} in the sequence that satisfies the triangle inequality $d(h_k, h_{\ell}) \leq d(\widehat{h_k}, \widehat{P_{Y|X}}) + d(\widehat{h_{\ell}}, \widehat{P_{Y|X}})$ with every preceding hypothesis h_k , $0 \leq k < \ell$. (Note that the inter-hypothesis distances $d(h_k, h_{\ell})$ are measured on the unlabeled training data.)

Experimental Evaluation of TRI

[Schuurmans & Southey, MLJ 2002]

- Use it to select degree of polynomial for regression
- Compare to alternatives such as cross validation, structural risk minimization, ...

Figure 5: Target functions used in the polynomial curve fitting experiments (in order): $step(x \ge 0.5)$, sin(1/x), $sin^2(2\pi x)$, and a fifth degree polynomial.

Figure 4: An example of minimum squared error polynomials of degrees 1, 2, and 9 for a set of 10 training points. The large degree polynomial demonstrates erratic behavior off the training set.

Approximation ratio:

Results using 200 unlabeled, t labeled

true error of selected hypothesis

true error of best hypothesis considered

Cross validation (Ten-fold)

Structural risk minimization

		t = 20	TRI	$\overline{\text{CVT}}$	SRM	RIC	GCV	BIC	AIC	FPE	ADJ
ı		25	1.00	1.06	1.14	7.54	5.47	15.2	22.2	25.8	1.02
	Worst	→ 50	1.06	1.17	1.39	224	118	394	585	590	1.12
	performance	75	1.17	1.42	3.62	5.8e3	3.9e3	9.8e3	1.2e4	1.2e4	1.24
	in top .50 of	95	1.44	6.75	56.1	6.1e5	3.7e5	7.8e5	9.2e5	8.2e5	1.54
	trials	100	2.41	1.1e4	2.2e4	1.5e8	6.5e7	1.5e8	1.5e8	8.2e7	3.02

t = 30	TRI	CVT	SRM	RIC	GCV	BIC	AIC	FPE	ADJ
25	1.00	1.08	1.17	4.69 34.8 258 4.7e3	1.51	5.41	5.45	2.72	1.06
50	1.08	1.17	1.54	34.8	9.19	39.6	40.8	19.1	1.14
75	1.19	1.37	9.68	258	91.3	266	266	159	1.25
95	1.45	6.11	419	4.7e3	2.7e3	4.8e3	5.1e3	4.0e3	1.51
100	2.18	643	1.6e7	1.6e7	1.6e7	1.6e7	1.6e7	1.6e7	2.10

Table 1: Fitting $f(x) = \text{step}(x \ge 0.5)$ with $P_x = U(0,1)$ and $\sigma = 0.05$. Tables give distribution of approximation ratios achieved at training sample size t = 20 and t = 30, showing percentiles of approximation ratios achieved in 1000 repeated trials.

t = 20	TRI	CVT	SRM	RIC	GCV	BIC	AIC	FPE	ADJ
25	2.04	1.03	1.00	1.00	1.06	1.00	1.01	1.58	1.02
50	3.11	1.37	1.33	1.34	1.94	1.35	1.61	18.2	1.32
75	3.87	2.23	2.30	2.13	10.0	2.75	4.14	1.2e3	1.83
		9.45							
100	8.92	105	526	105	2.0e7	2.1e3	2.7e5	2.4e7	6.30

t = 30	TRI	CVT	SRM	RIC	GCV	$_{\mathrm{BIC}}$	AIC	FPE	ADJ
25	1.50	1.00	1.00	1.00	1.00	1.00	1.00	1.02	1.01
50	3.51	1.16	1.03	1.05	1.11	1.02	1.08	1.45	1.27
75	4.15	1.64	1.45	1.48	2.02	1.39	1.88	6.44	1.60
95	5.51	5.21	5.06	4.21	26.4	5.01	19.9	295	3.02
100	9.75	124	1.4e3	20.0	9.1e3	28.4	9.4e3	1.0e4	8.35

Table 4: Fitting $f(x) = \sin^2(2\pi x)$ with $P_x = U(0, 1)$ and $\sigma = 0.05$. Tables give distribution of approximation ratios achieved at training sample size t = 20 and t = 30, showing percentiles of approximation ratios achieved in 1000 repeated trials.

Bound on Error of TRI Relative to Best Hypothesis Considered

Proposition 1 Let h_m be the optimal hypothesis in the sequence $h_0, h_1, ...$ (that is, $h_m = \arg\min_{h_k} d(h_k, P_{Y|X})$) and let h_ℓ be the hypothesis selected by TRI. If (i) $m \le \ell$ and (ii) $d(h_m, P_{Y|X}) \le d(h_m, P_{Y|X})$ then

$$d(h_{\ell}, P_{Y|X}) \leq 3d(h_m, P_{Y|X}) \tag{6}$$

Extension to TRI:

Adjust for expected bias of training data estimates [Schuurmans & Southey, MLJ 2002]

Procedure ADJ

- Given hypothesis sequence $h_0, h_1, ...$
- For each hypothesis h_{ℓ} in the sequence
 - multiply its estimated distance to the target $d(h_{\ell}, \widehat{P}_{Y|X})$ by the worst ratio of unlabeled and labeled distance to some predecessor h_k to obtain an adjusted distance estimate $d(\widehat{h_{\ell}, P_{Y|X}}) = d(\widehat{h_{\ell}, P_{Y|X}}) \frac{d(h_k, h_{\ell})}{d(\widehat{h_k}, h_{\ell})}$.
- Choose the hypothesis h_n with the smallest adjusted distance $d(h_n, P_{Y|X})$.

Experimental results: averaged over multiple target functions, outperforms TRI

What you should know

- 1. Unlabeled can help EM learn Bayes nets for P(X,Y)
 - If we assume the Bayes net structure is correct
- Using unlabeled data to reweight labeled examples gives better approximation to true error
 - If we assume examples drawn from stationary P(X)
- Use unlabeled data to detect/preempt overfitting
 - If we assume priors over H that correctly order hypotheses

Further Reading

- <u>Semi-Supervised Learning</u>, O. Chapelle, B. Sholkopf, and A. Zien (eds.), MIT Press, 2006. (excellent book)
- EM for Naïve Bayes classifiers: K.Nigam, et al., 2000. "Text Classification from Labeled and Unlabeled Documents using EM", Machine Learning, 39, pp.103—134.
- Model selection: D. Schuurmans and F. Southey, 2002. "Metric-Based methods for Adaptive Model Selection and Regularization," Machine Learning, 48, 51—84.