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When can Unlabeled Data improve supervised learning?

Important question! In many cases, unlabeled data is plentiful, labeled
data expensive

Medical outcomes (x=<symptoms,treatment>, y=outcome)

Text classification (x=document, y=relevance)

Customer modeling (x=user actions, y=user intent)

Sensor interpretation (x=<video,audio>, y=who’s there)



When can Unlabeled Data help supervised learning?

Problem setting (the PAC learning setting):

« Set X of instances drawn from unknown distribution P(X)
» Wish to learn target function f: X2 Y (or, P(Y|X))

» Given a set H of possible hypotheses for f

Given:
* ii.d.labeled examples L = {{(z1,y1)---{(Tm,ym)}
* iid.unlabeled examples U = {x,, 4 1,... Tpgn}

Wish to find hypothesis with lowest true error:

f—argmin Pr [h(z) # f(z)]

heH reP(X)



ldea 1: Use Labeled and Unlabeled Data to
Train Bayes Net for P(X,Y)



ldea 1: Use Labeled and Unlabeled Data to Train
wacrosmenceser 3AYES Nt for P(X,Y), then infer P(Y|X)

How do we estimate them
from fully observed data?

How do we estimate them Y X 1 X2 X3 X4

from partly observed?
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Supervised: Nalve Bayes Learner
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Train.

For each class y; of documents

1. Estimate P(Y=y,) &) &) &
2. For each word w; estimate P(X=w; | Y=y,)
Classify (doc):

Assign doc to most probable*class

P(y;) IT; P(w;ly;)
>k Pyp) TT; P(w;lyg)

P(y;|doc) «

* assuming words w; are conditionally independent, given class
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What if we have labels for only some
documents?

Learn P(Y|X)

Y | X1 |X2 | X3 |X4
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What if we have labels for only some
documents? [Nigam et al., 2000]

Learn P(Y|X) Y |X1|X2 [X3 |X4
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EM: Repeat until convergence

1. Use probabilistic labels to train classifier h

2. Apply h to assign probabilistic labels to unlabeled data
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[Nigam et al., 2000]

E Step:
P (d;|6)
_ P(c;|0) HLdill P(wq; , cj; )
S P (e, |0) T Pwa,  |eri )
w, is t-th word in vocabulary
M Step: \

1+ 3020 N(wr, di)P(yi = cjlds)
|V| -+ Z'Vl lDl N(ws, di)P(yi = ledi)

s=1

HTUtl(.'j = P('U)tl(:j;()) =

p)

) o _ L+ 350 Plyi = ¢jldi)
Oy = Pleall) = e oy



Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common

course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0

Iteration 1

[teration 2

intelligence
DD
artificial
understanding
DDw
dist
identical
rus
arrange
games
dartmouth
natural
cognitive
logic
proving
prolog
knowledge
human
representation

field

Using one
labeled

example per

class

Words sorted
by P(w|course) /
P(w| : course)

DD
D
lecture
ce
Di
DD:DD
handout
due
problem
set
tay
D Dam
yurttas
homework
kfoury
sec
postscript
exam
solution
assaf

D
DD
lecture
ce
DD:DD
due
D’k
homework
assignment,
handout
set
hw
exam
problem
D Dam
postscript
solution
quiz
chapter
ascii
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Why/When will this work?

« What's best case? Worst case? How can we
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Summary : Semisupervised Learning with EM and
Nalve Bayes Model

If all data is labeled, corresponds to supervised training of Naive
Bayes classifier

If all data unlabeled, corresponds to unsupervied, mixture-of-
multinomial clustering

If both labeled and unlabeled data, then unlabeled data helps if the
Bayes net modeling assumptions are correct (e.g., P(X) is a mixture
of class-conditional multinomials with conditionally independent X.)

Of course we could use Bayes net models other than Naive Bayes
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ldea 2: Use U to reweight labeled examples
Most learning algorithms minimize errors over labeled examples

But we really want to minimize error over future examples drawn
from the same underlying distribution (ie., true error of hypothesis)

If we know the underlying distribution P(X), we could weight each
labeled training example <x,y> by its probability according to P(X=x)

Unlabeled data allows us to estimate P(X)
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ldea 2: Use U to reweight labeled examples L

Use U — P(X) to alter the loss function
if its argument

 Wish to minimize true error: is true, then 1,

_ _ else O
f—argmin Y §(h(z) # f(z))P(x)
heH ‘=
» Usually approximate this by training error:
A 1
o in — d(h
f « arg ;%'BL@%@ (h(z) # y)
’ n(x,L) =
Which equals: . nflmb)er of
feargmin »  §(h(z) #y) [n(xL’L)] WS 2¢
hel ex L] occurs in L

» We can produce a better approximation by incorporating U:

n(z, L) + n(z, U)
L]+ |U]

farg min m%;( 6(h(z) # f(x)) [ 6(n(z,L) > 0)



Reweighting Labeled Examples

Wish to find

i | n(x, L) + n(z,U)
e aramip 3 6010 # £ |3t 1) > 05 DS

Already have algorithm (e.g., decision tree learner) to find

_ 1
f < arg min — > §(h(z) #y)
(zr,y)EL

Just reweight examples in L, and have algorithm minimize

n(z, L) +n(z,U)
L] + U

. 1
f—argmin — Y. 6(h(x) # )
(x,y)eL

Or if X is continuous, use L+U to estimate p(X), and minimize

Feargmine Y 5(h(a) £ ) pa)

heH L (g EL
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Reweighting Labeled Examples: Summary

« Simple, very general idea

« But | haven't seen this discussed or attempted anywhere
In the literature...

 Why not?
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3. Use U to Detect/Preempt Overfitting

Overfitting is a problem for many learning algorithms (e.g., decision
trees, neural networks)

The symptom of overfitting: complex hypothesis h2 performs better
on training data than simpler hypothesis h1, but worse on test data

Unlabeled data can help detect overfitting, by comparing predictions
of h1 and h2 over the unlabeled examples
— Key insight: The rate at which h1 and h2 disagree on U should be

bounded by the rates at which they each disagree with L, unless
overfitting is occurring
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4. Use U to Detect/Preempt Overfitting f

Define metric over H U {f}
definition — A(h1; ha) = [ 6(hi(z) # ha(@))p(a)da

R £ 1 .() Trve e¥Vox
estimates <l d(hl’f) Ifl fz b(h ( ) 7 yi)
N\ 1
d(h1, he) = vl . O(hi(z) # ha(2))

Organize H into complexity classes, sorted by P(h)

Let h* be hypothesis with lowest d(h, f) in H,
Prefer h*, hj, or h%? | |
] Uw *

hl —uwn' lz 113

fab £ fxv
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 Definition of distance metric
— Non-negative d(f,g) >= 0,
— symmetric d(f,g)=d(q,1);
— triangle inequality d(f,g)< d(f,h)+d(h,g)

» Classification with zero-one loss:
A(h1,h2) = [ 8(h1 () # ho(2))p()da

* Regression with squared loss:

d(hy, h2) = \/ [ (@) = ha(2))?p()de




Idea: Use U to Avoid Overfitting

Note:
e d(h?, f) optimistically biased (too short)
o d(h}, h3) unbiased
e Distances must obey triangle inequality!

d(hi,he) < d(hy, f) +d(f, ho)

— Heuristic:

e Continue training until J(h,-, h;y1) fails to satisfy
triangle inequality



Procedure TRI

e Given hypothesis sequence hg, hy, .

e Choose the last hypotheqlg hg in the sequence that satisfies the triangle
inequality d(hyg, hy) < d(h,c B )+ d(hy, Pylx) with every preceding hypoth-
esis hi, 0 < k < £. (Note that the inter-hypothesis distances d(hy, hy) are
measured on the unlabeled training data.)

h}k/ - h; . h_’;

Ay




Experimental Evaluation of TRI
[Schuurmans & Southey, MLJ 2002]

 Use 1t to select degree of polynomial for regression

« Compare to alternatives such as cross validation,
structural risk minimization, ...
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Figure 5: Target functions used in the polynomial curve fitting experiments
in order): step(z > 0.5), sin(1/z), sin?(27z), and a fifth degree polynomial.
p gree poly
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Figure 4: An example of minimum squared error polynomials of degrees
1, 2, and 9 for a set of 10 training points. The large degree polynomial
demonstrates erratic behavior off the training set.
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Results using 200 unlabeled, t labeled

Cross validation (Ten-fold)
Structural risk minimization

t =20 (TRI} CVT SRM RIC GCV BIC AIC FPE | ADJ
25| 1.00|1.06 1.14 7.54 547 152 222 258 |1.02
50 | 1.06 | 1.17 1.39 224 118 394 585 590 | 1.12
7| 117 | 142  3.62 5.8e3 3.9e3 98e3 1.2e4 1.2¢4 | 1.24
95| 1.44 | 6.75 56.1 6.1ed 3.7ed T.8ed 9.2ed 8.2ed | 1.54

100 | 2.41 | 1.1ed 2.2e4 1.5e8 6.5e7 1.5e8 1.5e8 8.2e7 | 3.02

t=230 |(TRD| CVT SRM RIC GCV BIC AIC FPE | ADJ
25 |1.00 [ 1.08 117 460 151 541 545 272 |1.06
50 | 1.08 | 1.17 1.54 348 919 396 40.8 191 |1.14
75119 | 1.37 9.68 258 913 266 266 159 |1.25
05 | 1.45 | 6.11 419  47e3 27e3 4.8¢3 5.le3 4.0e3 | 151
100 | 2.18 | 643  1.6e7 1.6e7 1.6e7 1.6e7 1.6e7 1.6e7 | 2.10

Table 1: Fitting f(z)=step(z > 0.5) with P, =U(0,1) and 0 =0.05. Tables
give distribution of approximation ratios achieved at training sample size
t = 20 and ¢ = 30, showing percentiles of approximation ratios achieved in
1000 repeated trials.



=20 | TRI | CVT SRM RIC GCV BIC AIC FPE | ADJ
251204103 100 1.00 1.06 1.00 1.01 1.58 | 1.02
o0 [ 3.11 | 1.37 133 1.34 1.94 135 1.61 182 | 1.32
7387223 230 213 100 275 414 1.2e3|1.83
951 5.11 | 945 884 826 5.0e3 11.8 829 1.8e5 | 3.94
100 | 8.92 | 105 526 105 2.0e7 2.1e3 2.7ed 2.4e7 | 6.30
t=30|TRI | CVT SRM RIC GCV BIC AIC FPE |ADJ
25150 |1.00 1.00 1.00 1.00 1.00 1.00 1.02 |1.01
501|351 (116 1.03 1.05 1.11 1.02 1.08 1.45 |1.27
751415164 145 1.48 202 1.39 1.88 6.44 |1.60
95| 5.51 521 5.06 421 264 5.01 199 295 |3.02
100 [ 9.75 | 124  1.4e3 20.0 9.1e3 284 9.4e3 1.0e4 |8.35

Table 4: Fitting f(z)=sin*(2rz) with P,=U(0, 1) and 0 =0.05. Tables give

distribution of approximation ratios achieved at training sample size £ = 20
and ¢t = 30, showing percentiles of approximation ratios achieved in 1000

repeated trials.



Bound on Error of TRI Relative to Best Hypothesis Considered

Proposition 1 Let h,, be the optimal hypothesis in the sequence hy, hq, ...
(that is, h,, = argminy, d(hy, B.x)) and let hy be the hypothesis selected by

TRI. If (i) m < € and (ii) d(hm, Pax) < d(hm, Pox) then

d(hf PY]X) < 3d(h"rn= PY]X) (6)



Extension to TRI:

Adjust for expected bias of training data estimates
[Schuurmans & Southey, MLJ 2002]

Procedure ADJ

e GGiven hypothesis sequence hg, hq, ...
e For each hypothesis hy in the sequence

i —

— multiply its estimated distance to the target d(hy, Pyx) by the worst
ratio of unlabeled and labeled distance to some predecessor Ay to

a——
s LY

obtain an adjusted distance estimate d(h;,\Pylx) = d(hs, R W)%\%
d(hy hg

i —

e Choose the hypothesis h, with the smallest adjusted distance d(h,,, Byx).

Experimental results: averaged over multiple target functions,
outperforms TRI
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What you should know

Unlabeled can help EM learn Bayes nets for P(X,Y)

« If we assume the Bayes net structure is correct

Using unlabeled data to reweight labeled examples gives better
approximation to true error

« If we assume examples drawn from stationary P(X)

Use unlabeled data to detect/preempt overfitting

« If we assume priors over H that correctly order hypotheses
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Further Reading

« Semi-Supervised Learning, O. Chapelle, B. Sholkopf, and A. Zien
(eds.), MIT Press, 2006. (excellent book)

« EM for Naive Bayes classifiers: K.Nigam, et al., 2000. "Text
Classification from Labeled and Unlabeled Documents using EM",
Machine Learning, 39, pp.103—134.

* Model selection: D. Schuurmans and F. Southey, 2002. “Metric-
Based methods for Adaptive Model Selection and
Regularization,” Machine Learning, 48, 51—84.




