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Questions:

Can you use Naive Bayes for a combination of
discrete and real-valued X?

How can we easily model just 2 of n attributes as
dependent?

What does the decision surface of a Naive Bayes
classifier look like? What about Logistic Regression?

How would you select a subset of X/'s?



Relaxing Cond Indep in Naive Bayes: HW4, Q1.3

 What if we have Y boolean, X=<X1, X2, ... Xn>, and we
believe all Xi are cond indep given Y,@xcept for X1, )@

Py) P xS
FC \//I<7<1 xl.,,fx‘,p} = () PCx %q X"'\ ‘

P(x) -

Shara e PO %, e e P

)XD_—"X’\:{)P(XQ_. . ﬁ%
- M Méxslﬁ-%}._

PCX1y) | //‘L

P55 V%%, %) PCo%, 19



Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X =2 Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes)

 Assume some functional form for P(X]Y), P(Y)

« Estimate parameters of P(X|Y), P(Y) directly from training data
 Use Bayes rule to calculate P(Y|X= x)

Discriminative classifiers (e.g., Logistic regression)
 Assume some functional form for P(Y|X)
« Estimate parameters of P(Y|X) directly from training data




Use Nalve Bayes or Logisitic Regression?

Consider
« Restrictiveness of modeling assumptions

« Rate of convergence (in amount of training data) toward
asymptotic hypothesis
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Naive Bayes vs Logistic Regression

Consider Y boolean, X, continuous, X=<X, ... X >

Number of parameters:
« NB:4n +1
 LR: n+1

Estimation method:
 NB parameter estimates are uncoupled
* LR parameter estimates are coupled



G.Naive Bayes vs. Logistic Regreel‘,sion

Generative and Discriminative classifiers l > S 5 ex,v(@'§>

* Asymptotic comparison (# training examples 2 infinity)
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* when conditional independence assumptions correct, and 0y=0;, 'K\;Lﬂ%)
* GNB, LR produce identical classifiers L
. . : : 1s S awe 45
« when conditional independence assumptions incorrect Levered Copm
* LR is less biased — does not assume cond indep. in its parameter [\15
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 though we did derive form of P(Y|X) assuming cond indep

» therefore expected to outpefform GNB when both are given infinite

training data, and cond ind¢p ass/ummﬁﬁis incorrect
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Nailve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]
« Generative and Discriminative classifiers

« Non-asymptotic analysis (see [Ng & Jordan, 2002] )
« convergence rate of parameter estimates — how many training examples
SO

needed to assure good estimates? \i
 GNB order log n (where n = # of attributes in X) ¢ &
« LR order n e 0 )VJ‘/_:‘

T
. . e am exarp
GNB converges more quickly to its (perhaps less accurate) asymptotic
estimates

Informally: because LR’s parameter estimates are coupled, but GNB'’s are
not
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Rate of covergence: logistic regression
[Ng & Jordan, 2002]

Let &), ,, be logistic regression trained on m examples in n dimensions. Then with
high probability:

e(hDis,m) < E(hDis,oo) + O(\/% log %)

Implication: if we want e(th's,m) < €(hDis,oo> + €0
for some constant €(), it suffices to pick order n examples

—> Convergences to its asymptotic classifier, in order n» examples
(result follows from Vapnik’s structural risk bound, plus fact that VCDim of n
dimensional linear separators is n )
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Rate of covergence: naive Bayes parameters
[Ng & Jordan, 2002]

Let any e€1,0 > 0 and any [ > 0 be fixed. As-
sume that for some fixed pg > 0, we have that

po <ply=T) < 1—pg. Let m = O((1/€%) log(n/s)).
Then with probability at least 1 —9, after m ex-
amples:

1. For discrete inputs, |p(z;|ly = b) — p(z;|ly =
b)| < €1, and [p(y = b) —p(y = b)| < €1, for
all 1, b.

2. For continuous inputs, |L;,—p— fijy=s| < €1,
and |62 — 07| < 1, for all i, b.
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learning
repository. Plots are of generalization error vs. m (averaged over 1000 random
train/test splits). Dashed line is logistic regression: solid line is naive Bayes,



Summary: Nalve Bayes and Logistic Regression

* Modeling assumptions
— Naive Bayes more biased (cond. indep)
— Both learn linear decision surfaces if we assume o, =0
« Convergence rate (n=number training examples)
— Naive Bayes ~ O(log n)
— Logistic regression ~O(n)
* Bottom line

— Naive Bayes converges faster to its (potentially too restricted) final
hypothesis
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What you should know:

» Logistic regression
— Functional form follows from Naive Bayes assumptions

 For Gaussian Naive Bayes assuming variance o;, = 0,
» For discrete-valued Naive Bayes too

— But training procedure picks parameters without the
conditional independence assumption

— MLE training: pick W to maximize P(Y | X, W)
— MAP training: pick W to maximize P(W | X,Y)
* ‘regularization’
* helps reduce overfitting

« Gradient ascent/descent
— General approach when closed-form solutions unavailable

» (Generative vs. Discriminative classifiers
— Bias vs. variance tradeoff
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Question

You have 100 medical patients to train a ‘will survive surgery’
classifier

You want the absolute most accurate classifier you can get

You also want a good estimate of how accurate it is (so you
know whether or not to use it!)

what do you do?



Estimating Accuracy,
and Confidence in this Estimate



Two Definitions of Error

The true error of hypothesis i with respect to
target function f and distribution D is the
probability that i will misclassify an instance
drawn at random according to D.

errorp(h) = E%[f(l) # h(x)]

The sample error of h with respect to target
function f and data sample S is the proportion of
examples h misclassifies

errors(h) = 71..%55 (f(x) # h(x))
Where 6(f(x) # h(z)) is 1 if f(x) # h(x), and 0

otherwise.

How well does errorg(h) estimate errorp(h)?



Problems Estimating Error

1. Bias: It S is the training set, errorg(h) is (almost always) optimistically biased
bias = Elerrorg(h)] — errorp(h)

This 1s also true if any part of the training procedure used any part of S, e.g. for

feature engineering, feature selection, parameter tuning, ...

For an unbiased estimate, 7 and S must be chos!en independently

2. Variance: Even with unbiased S, errors(h) may still vary from errorp(h)

Variance of X is Var(X) = E[(X — E[X])Q]
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Example

Hypothesis h misclassifies 12 of the 40 examples in

S
12

— = .30
40

errorg(h) =

What is errorp(h)?
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Estimators

Experiment:

1. choose sample S of size n according to
distribution D

2. measure errorg(h)

errors(h) is a random variable (i.e., result of an
experiment)

errors(h) is an unbiased estimator for errorp(h)

Given observed errorg(h) what can we conclude
about errorp(h)?
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Confidence Intervals

It

e S contains n examples, drawn independently of
h and each other

e > 30
Then

e With approximately 95% probability, errorp(h)
lies in interval

errors(h)(1 — errors(h))
n

errorg(h) £ 1.96
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Confidence Intervals

It

e S contains n examples, drawn independently of
h and each other

o > 30
Then

e With approximately N% probability, errorp(h)
lies in interval

_errors(h)(1 —errors(h))

n

:150% 68% 80% 90% 95% 98% 99%

0.67 1.00 1.28 1.64 1.96 2.33 2.58
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errorg(h) is a Random Variable

Rerun the experiment with different randomly
drawn S (of size n)

Probability of observing r misclassified examples:
Binomial distribution for n =40,p =0.3

0.14 . . . . r . .
0.12} 110
0.1f B
0.08+ B -
0.06+

0 5 10 15 20 25 30 35 40

P(r)

P(r) = rl(n —r)! errorp(h) (1 —errorp(h))"™"



Normal Distribution Approximates Bino-
mial

errorg(h) follows a Binomial distribution, with
® Imean fleyrorg(h) = €7°7°07°'p(h,)

e standard deviation o, (1)

errorp(h)(1 —errorp(h))

O-(jl‘l‘()l'_q(h) — n

Approximate this by a Normal distribution with
® mean [l o (1) = errorp(h)

e standard deviation o, (1)

errors(h)(1 — errorg(h))

0-(-‘-1'1'01'5;(11) ~

n



Normal Probability Distribution

3

2

-1 0 1 2 3

80% of area (probability) lies in p + 1.28¢

N% of area (probability) lies in p + zyo

ZN -

:150% 68% 80% 90% 95% 98% 99%

0.67 1.00 1.28 1.64 1.96 2.33 2.58




Cross Validation
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Question

You have 100 medical patients to train a ‘will survive surgery’
classifier

You want the absolute most accurate classifier you can get

You also want a good estimate of how accurate it is (so you
know whether or not to use it!)

what do you do?
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K-Fold Cross Validation

|ldea: train multiple times, leaving out a disjoint subset of data
each time for testing. Average the test accuracies.

Partition data into K disjoint subsets

Fork=1to K
testData = kth subset
h < classifier trained on all data except for testData
accuracy(k) = accuracy of h on testData

end

FinalAccuracy = mean of the K recorded accuracies
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Leave-One-Out Cross Validation

This is just k-fold cross validation leaving out one example each
iteration

Partition data into K disjoint subsets, each containing one example
Fork=1to K
testData = kth subset
h < classifier trained on all data except for testData
accuracy(k) = accuracy of h on testData
end

FinalAccuracy = mean of the K recorded accuracies
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K-Fold Cross Validation

Given a data set containing N examples, k-fold cross
validation yields a nearly unbiased estimate of the
accuracy expected when training on a randomly drawn
sample of size N * (k-1)/k

What should we do with our 100 medical patient examples?

1. estimate accuracy using leave-one-out cross validation

— this will provide an estimate of expected accuracy when training
on 99 examples

2. train final classifier using all 100 examples

— this will provide classifier with higher expected accuracy than
training on 99 examples, but high accuracy is our goal



Supervised Feature Selection



Supervised Feature Selection

Problem: Wish to learn f: X 2 Y, where X=<X,, ... X
But suspect not all X are relevant

Approach: Preprocess data to select only a subset of the X
« Score each feature, or subsets of features

— How?
« Search for useful subset of features to represent data

— How?
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Scoring Individual Features X

Common scoring methods:

« Training or cross-validated accuracy of single-feature
classifiers f: X, 2 Y

« Estimated mutual information between X;and Y :

. B R o _ P(Xz-:k,Y=y)
I(X;,Y) = ;%:P(Xz kY =910 5 B = o)

2 statistic to measure independence between X, and Y

« Domain specific criteria
— Text: Score “stop” words (“the”, “of”, ...) as zero
— fMRI: Score voxel by T-test for activation versus rest condition
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Choosing Set of Features to learn F: XY

Common methods:

Forward1: Choose the n features with the highest scores

Forward2:
— Choose single highest scoring feature X,

— Rescore all features, conditioned on the set of
already-selected features
« E.g., Score(X:| X,) = 1(X,Y |X,)
» E.g, Score(X| X,) = Accuracy(predicting Y from X and X,)

— Repeat, calculating new scores on each iteration,
conditioning on set of selected features
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Choosing Set of Features

Common methods:

Backward1: Start with all features, delete the n with lowest
scores

Backward?2: Start with all features, score each feature

conditioned on assumption that all others are included.
Then:

— Remove feature with the lowest (conditioned) score
— Rescore all features, conditioned on the new, reduced feature set
— Repeat



Feature Selection: Text Classification

Approximately 105 words in English [Rogati&Yang, 2002]

0.7

0.6 —©
" \'— — —%
_ eIl LD DT el e
o knn DF+CHI MAX
5 0.5F oxmimm i e knn IG+CHI MAX cut —xX
= 2 knn CHI MAX+CHI AVG cut

+ svim IG+CHI MAX cut

: — = |
202 nb GEN CHI
04 :
- svim IG cut

= roc DF+CHI MAX
03 I 1 ! + svim IG+CHI MAX .

-~
—3¢
=
e nb CHI MAX
oo O =7~ nb CHI MAX+CHI AVG
*
£x
©
L
=
O

= roc IG+CHI MAX cut %
= roc CHI MAX
1 3 5 10 15 20 25
Percent features
Figure 2: Top 3 feature selection methods for Reuters-21578 (Macro F1)

|G=information gain, chi= x? , DF=doc frequency,



Impact of Feature Selection on Classification of

fMRI Data

[Pereira et al., 2005]

Accuracy classifying
category of word read

by subject
'
#voxels mean | subjects

2338 320B  332B  424B  474B  496B 7B 868

50 0.735 0.783 0.817 0.55 0.783 0.75 0.8 0.65 0.75
100 0.742 0.767 0.8 0.533  0.817 0.85  0.783 0.6 0.783
200 0.737 0.783 0.783 0.517 0817 0.883 0.75 0.583  0.783
300 0.75 0.8 0.817 0.567 0.833 0.883 0.75 0.583 0.767
400 0.742 0.8 0.783  0.583 0.85 0.833  0.75  0.583 0.75
800 0.735 0.833 0.817 0.567 0.833  0.833 0.7 0.55 0.75
1600 0.698 0.8 0.817 0.45 0.783  0.833 0.633 0.5 0.75
all (~2500) 0.638 0.767 0.767 0.25 0.75 0.833 0.567 0.433 0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to
use a certain number of voxels for each subject. The highlighted line corresponds to the

best mean accuracy, obtained using 300 voxels.

Each feature X is a voxel, scored by error in regression to predict X, from Y



Approach 2: Regularization

Key idea: add penalty to learning objective, to penalize
large weights.

_ [yl
W = arg max AR(W) + zl:ln PY'| X" W)

Integrates ‘feature selection’ style pressure on weights,
into learning algorithm — pushes them toward zero

* e.g., try L2 penalty which follows from N(0,o) prior
ROW) = [[Wll; = 3w}




Approach 2: Regularization

Integrate ‘feature selection’ style pressure on weights,
into learning algorithm

_ [yl
W = arg max AR(W) + zl:ln PY'| X" W)

* L2 penalty which follows from N(0,o) prior
ROW) = [[Wll; = 3w}

L1 penalty = sum of magnitudes of weights
« encourages weights of zero

ROV) =Wl = 3 i




Approach 2: Regularization

Key idea: add L1 penalty to learning objective, to
penalize large weights

L1 penalty = sum of magnitudes of weights

L2 penalty = sum of squares of weights

* think about L1 vs L2 for logistic regression...
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Interesting Facts about L1, L2 regularization
for Logistic Regression [Ng,2004]

* Logistic regression with L1 regularization requires a
number of training examples that grows
logarithmically with the number of irrelevant features

* Logistic regression with L2 regularization requires a
number of training examples that grows
linearly with the number of irrelevant features

So, if we suspect most of our features are irrelevant
then L1 regularization is wise
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Summary: Supervised Feature Selection

Approach 1: Preprocess data to select only a subset of the X

« Score each feature

— Mutual information, prediction accuracy, ...
* Find useful subset of features based on their scores

— Greedy addition/deletion of features to pool

— Considered independently, or in context of other selected features
Always do feature selection using training set only (why?)

— Often use nested cross-validation loop:
« Outer loop to get unbiased estimate of final classifier accuracy
* Inner loop to get unbiased feature scores for feature selection

Approach 2: use L1 or L2 regularization of parameters
* put pressure within training algorithm toward weights = 0



