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A Bayes network represents the joint probability distribuﬁon
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of CPD’s
 Each node denotes a random variable

* Edges denote dependencies

« CPD for each node X; defines P(X./ Pa(X,))

« The joint distribution over all variables is defined as

P(X1...Xn) = [[ P(X;|Pa(X)))

Pa(X) = immediate parents of X in the graph



EM Algorithm s

EM is a general procedure for learning from partly observéd data
Given observed variables X, unobserved Z (e.g., X={F,A,H,N}, Z={S})
Define Q(0/|9) = EP(Z|X,9) [log P(X, ZIH,)]

lterate until convergence:

 E Step: For each training example k, use observed X, and current 6
to calculate P(Z,|X,,0)

* M Step: Replace current 6 by § «— arg max Q(6'|0)
0/

Guaranteed to find local maximum in Ep(zx g)[log P(X, Z|0')]



EM and estimating 6 LS

More generally, Gadach
Given observed set X, unobserved set Z of boolean random vars

Iterate E,M steps to convergence:

E step: Calculate for each training example, k

the expected value of each unobserved variable
(i.e., the probability that its value is 1)

M step:
Calculate estimates similar to MLE, but
replacing each count by its expected count
6(Y =1) = EzxglY] 6(Y =0) = (1 — EzxylY])




Using Unlabeled Data to Help Train

Naive Bayes Classifier

Learn P(Y|X)

Y [X1 |[X2 |X3 |X4
1 0O (0 |1 1
0O |0 |1 0 |0
0O |0 |0 |1 0
?7 10 |1 1 0
? 10 |1 0 |1




E step: Calculate for each training example, k

the expected value of each unobserved variable
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EM and estimating 6

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k
the expected value of each unobserved variable Y

P(y(k) = 1) [1,; P(zi(k)|y(k) = 1)
k)| = P(y(k) = 1|lxz1(k),...zn(k);0) = :

M step: Calculate estimates similar to MLE, but
replacing each count by its expected count

let's use y(k) to indicate value of Y on kth example



EM and estimating 6
&) &) &

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y

P(y(k) = DL Pai(k)ly(k) = 1)
> j—o P(y(k) = 5) IT; P(ai(k) |y (k) = j)

Epiyix,..xy)y(k)] = P(y(k) = 1|z1(k), ... 2N (k); 0) =

M step: Calculate estimates similar to MLE, but
replacing each count by its expected count

——

b = P(Xs = 1Y = m) = DEPUE) = ). n(0) oz (8) =

2.k Py(k) = mlan() .y (K)

MLE would be: P(X; = j|Y = m) = Zkﬂ()Mz’(k):j))

2k 0(y(k) = m)




Inputs: Collections D' of labeled documents and D% of unlabeled documents.

Build an initial naive Bayes classifier, 8, from the labeled documents, D!, only. Use maximum
a posteriori parameter estimation to find # = arg maxg P(D|#)P(8) (see Equations 5 and 6).

Loop while classifier parameters improve, as measured by the change in [.(€|D;z) (the com-
plete log probability of the labeled and unlabeled data

e (E-step) Use the current classifier, #, to estimate component membership of each unla-
beled document, i.e., the probability that each mixture component (and class) generated

each document, P(c;j|d;;0) (see Equation 7).

e (M-step) Re-estimate the classifier, #, given the estimated component membership

of each document. Use maximum a posteriori parameter estimation to find 6 =
arg maxg P(D|8)P(8) (see Equations 5 and 6).

Output: A classifier, 9, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]




Experimental Evaluation

 Newsgroup postings
— 20 newsgroups, 1000/group
« Web page classification

— student, faculty, course, project
— 4199 web pages

 Reuters newswire articles
— 12,902 articles

— 90 topics categories



Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common
course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0 Iteration 1 Iteration 2
mteligence word w ranked by by i
artificial P(w|Y=cour'se) / lecture lecture
understanding P(le z COUI"S@) ce ce
DDw D* DD:DD
dist DD:DD due
identical handout D*
rus due homework
arrange problem assignment,
games set handout
dartmouth tay set
natural D Dam hw
cognitive . yurttas exam
logic Using one labeled homework problem
proving example per class kfoury D Dam
prolog sec postscript
knowledge postscript solution
human exam quiz
representation solution chapter
field assaf ascii
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Usupervised clustering

Just extreme case for EM with
zero labeled examples...



Clustering

« Given set of data points, group them

* Unsupervised learning

« Which patients are similar? (or which earthquakes,
customers, faces, web pages, ...)
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Mixture Distributions

Model joint P(X1,...Xn) as mixture of multiple distributions.

Use discrete-valued random var Z to indicate which mixture
component IS being use for each random draw

So P(X.. ZP —4) P(X.. X]Z§:>

?\c)& Q ,{ts-ﬁ,\j,wl, \acMCYq‘/-g

Mixture of Gaussian clustering: - Xosig of

* Assume each data point X=<X1, ... Xn> is generated by
mixture of Gaussians, as follows:

1. randomly choose a cluster z, according to P(Z=z)

2. randomly generate a data point <x1,x2 .. xn> according
to N(u,, 2,)




EM for Mixture of Gaussian Clustering

Let's simplify to make this easier:

1. assume X=<X, ... X,>, and the X are conditionally independent
given Z.

P(X|Z =j) = N(Xilpji, 0i)
i

2. assume only 2 clusters (values of Z), and Vi, j,0,; = o

2
P(X) = ) P(Z=jlm) [ N(=ilpji o)
j=1 i

3. Assume o known, m; ... g u;; ... ug; Unknown

Observed: X=<X, ... X >

Unobserved: Z
X)) &) &)



EM

Given observed variables X, unobserved Z

Define Q(0/|0) = E | x yllog P(X, Z|0")]

where 0 = (7, 1;;) @ @ @

lterate until convergence:

» E Step: Calculate P(Z(n)|X(n), 6) for each example X(n).
Use this to construct Q(6'|6)

* M Step: Replace current 6 by
6 — arg max Q(0'10)




EM — E Step

Calculate P(Z(n)|X(n),6) for each observed example X(n

X(n)=<x,(n), x,(n), ... Xx¢(n)>.
Xy X X

P(z(n)|z(n) = k,0) P(z(n) =k|0)
Yi—gp((n)]z(n) = 4,0) P(z(n) = j|0)

P(2(n) = klz(n),0) =

[[1; P(zi(n)|z(n) = k,0)] P(z(n) = k[0)
Yo Il P(zi(n)|z(n) = j,0) P(z(n) = j|6)

P(z(n) = kla(n),0) =

[IT; N (2i(n)|pg,i, 0)] (e (1 = m)(F=R)
> i=ollls N (ai(n) |5 0)] (w3 (1 —m)(1=3))

P(z(n) = klz(n),0) =




EM - M Step

First consider update for n

, 0 = <7T7 ﬂyz>
Q16) = F71x:4l109 (X, Z16")] = Eliog P(X|20')+i0g P(Z|6)

7t has no influence

Count
oo

By x 109 P(Z|7")| = Eyx g [log (7' 2n 7M1 — 2/)2n(1=2()))]

T« arg max Ey x gllog P(Z|7")]

X)X

= EZ|X,9 [(Z z(n)> log 7’ + (Z(l — z(n))) log(1l — ﬂ'/)]
= (Z EZ|X,9[z(n)]> log 7'+ <Z EZ|X,9[(1 — z(n)])) log(1—7")

oOF log P(Z|r' —
ZIXﬁ[;?/ (2=l _ (Z EZ|X,0[Z(n)]> %-I- (Z Ez xol(1— Z(n)])> 1(_173/

ery:lE[z(n)] :i N St
(Zﬁ[zl E[z(n)]) + (Zﬁ[zl(l - E[Z(n)])) anz:l [z(n)]

T




Now consider update for y;
Q(0'10) = Ey x gllog P(X, Z]0")] = Ellog P(X|Z, 9’)+Iczg P(Z|0")]

i < arg m/E'i'X Ele,Q[log P(XlZ, 9/)] @

EM - M Step

w; has no influence

Yp=1 P(z(n) = jlz(n),0) wi(n)

i ¢

Y1 P(z(n) = jlz(n),6)

Compare above to ;i

MLE if Z were
observable:

S 0GM) =4) @)
SN 6(z(n) =)

0 = <7T7 :U’jz>



EM — putting it together

Given observed variables X, unobserved Z
Define Q(0'|0) = Ey x gllog P(X, Z|6")]

where 6 = (, 1j;)

&) X)X

lterate until convergence:

« E Step: For each observed example X(n), calculate P(Z(n)|X(n), 6)

[[T; N (@i (n)|pg,ir )] (wF (1 = m)(1=R))

z(n) = x(n),0) = . .
S N EX ) R =T R L)

* M Step: Update 0 — argmaxQ(6'|0)

e LS B o SN PG = jla(n).0)_ai(n)

N =1 g Ypey P(z(n) = jlz(n),6)




Mixture of Gaussians applet

 Run applet
http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.html



What you should know about EM

For learning from partly unobserved data
MLEstof 8 = arg max log P(datal|0)

EM estimate: 6 = arg max Ey|x gllog P(X, Z|6)]
Where X is observed part of data, Z is unobserved

EM for training Bayes networks
Can also develop MAP version of EM

Can also derive your own EM algorithm for your own
problem

— write out expression for EZ|X79[Iog P(X, Z|0)]

— E step: calculate EZ|X79[Iog P(X, Z|0)]

— M step: find its derivative wrt 6, and set it to zero



Learning Bayes Net Structure



How can we learn Bayes Net graph structure?

In general case, open problem

« can require lots of data (else high risk of overfitting)

e can use Bayesian methods to constrain searc}

VAN, >
One key result; A ~
* Chou Liu algorithm: finds “best” tree-structured network

« What's best?

— suppose P(X) is true distribution, T(X) is our tree-structured
network

— minimize Kullback-Leibler divergence:

KL(P(X),T(X)) =) P(X = z;)log -

1




Chou-Liu Algorithm

Key result:

To minimize KL(P,T), the tree network must be a tree
whose edges maximize the total mutual information

I(A,B) =" P(a,b)log P];é?}bé)
a b

l.e., tree such that sum of I(X,Y) over all edges is maximum

T(X = x;)

KL(P(X),T(X)) = Z P(X = ;) log



Chou-Liu Algorithm

Ny
. for each gart of vars A,B, use data to estimate P(A,B)

Tle, )
. for each pair of vars A,B calculate A
LA
P(a, b) ) B)
= P(a,b)l

. calculate the maximum spanning tree over the set of
variables (given M vars, this costs only O(M?) time)

. add arrows to the edges to form a dlre%tgg %cycllc
graph _ P A

. learn the CPD'’s for this graph ?Cﬁ\;) spa})



