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A Bayes network represents the joint probability distribuﬁon
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of CPD’s
 Each node denotes a random variable

* Edges denote dependencies

« CPD for each node X; defines P(X./ Pa(X,))

« The joint distribution over all variables is defined as

P(X1...Xn) = [[ P(X;|Pa(X)))

Pa(X) = immediate parents of X in the graph



Inference in Bayes Nets

In general, intractable (NP-complete)

For certain cases, tractable
— Assigning probability to fully observed set of variables
— Or if just one variable unobserved

— Or for singly connected graphs (ie., no undirected loops)
» Variable elimination
» Belief propagation

For multiply connected graphs
o Junction tree
» Loopy belief propagation
Sometimes use Monte Carlo methods

— Generate many samples according to the Bayes Net distribution,
then count up the results

Variational methods for tractable approximate solutions



Conditional Independence, Revisited

« We said:

— Each node is conditionally independent of its non-descendents,
given its immediate parents.

* Does this rule give us all of the conditional independence
relations implied by the Bayes network?
— No!
— E.g., X1 and X4 are conditionally indep given {X2, X3}
— But X1 and X4 not conditionally indep given X3

— For this, we need to understand D-separation @\
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Easy Network 1: Head to Tail @\
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let's use p(a,b) as shorthand for p(A=a, B=b)



Easy Network 2: Tail to Tail @
prove A cond indep of B given C? ie., p(a,b|c) = p(alc) p(b|c) /@
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let's use p(a,b) as shorthand for p(A=a, B=b)



Easy Network 3: Head to Head (n)
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let's use p(a,b) as shorthand for p(A=a, B=b)




Easy Network 3: Head to Head (n)
prove A cond indep of B given C? NO! \@
/

Summary:
* p(a,b)=p(a)p(b)
* p(a,b|c) NotEqual p(alc)p(b]c)

Explaining away.
e.g.,

« A=earthquake
 B=Dbreakin
 C=motionAlarm



X and Y are conditionally independent given Z,

if and only if X and Y are D-separated by Z.
[Bishop, 8.2.2]

Suppose we have three sets of random variables: X, Y and Z

X and Y are D-separated by Z (and therefore conditionally
indep, given Z) iff every path from any variable in X to any
variable in Y is blocked

A path from variable A to variable B is blocked if it includes a
node such that either

1. arrows on the path meet either head-to-tail or tail-to-tail at the
node and this node is in Z

2. the arrows meet head-to-head at the node, and neither the
node, nor any of its descendants, is in Z



X and Y are D-separated by Z (and therefore conditionally
indep, given Z) iff every path from any variable in X to any
variable in Y is blocked

A path from variable A to variable B is blocked if it includes a
node such that either

1. arrows on the path meet either head-to-tail or tail-to-tail at the
node and this nodeisinZ }

2. the arrows meet head-to-head at the node, and neither the
node, nor any of its descendants, is in Z
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X4 indep of X1 given X2? 7Te=< \
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X and Y are D-separated by Z (and therefore conditionally
indep, given Z) iff every path from any variable in X to any
variable in Y is blocked by Z

A path from variable A to variable B is blocked by Z if it includes
a node such that either

1. arrows on the path meet either head-to-tail or tail-to-tail at the
node and this node is in Z

2. the arrows meet head-to-head at the node, and neither the
node, nor any of its descendants, is in Z ( %
4
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X4 indep of X1 given X3?2 Mo oo @\
X4 indep of X1 given {X3, X2}? Y 7 /@

X4 indep of X1 given {}? \
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X and Y are D-separated by Z (and therefore conditionally
indep, given Z) iff every path from any variable in X to any
variable in Y is blocked

A path from variable A to variable B is blocked if it includes a
node such that either

1. arrows on the path meet either head-to-tail or tail-to-tail at the
node and this node is in Z

2. the arrows meet head-to-head at the node, and neither the
node, nor any of its descendants, is in Z

a indep of b given c?

a indep of b given {} ?

a indep of b given f ?




Markov Blanket

The Markov blanket of a node x; comprises the set
of parents, children and co-parents of the node. It
has the property that the conditional distribution of
x;, conditioned on all the remaining variables in the
graph, is dependent only on the variables in the
Markov blanket.

from [Bishop, 8.2]



Java Bayes Net Applet

http://www.pmr.poli.usp.br/ltd/Software/javabayes/Home/applet.html

by Fabio Gagliardi Cozman



What You Should Know

Bayes nets are convenient representation for encoding
dependencies / conditional independence

BN = Graph plus parameters of CPD’s
— Defines joint distribution over variables

— Can calculate everything else from that

— Though inference may be intractable

Reading conditional independence relations from the

graph

— Each node is cond indep of non-descendents, given only its
parents

— D-separation

— ‘Explaining away’



Learning in Bayes Nets

Four categories of learning problems
— Graph structure may be known/unknown
— Variable values may be observed/unobserved

Easy case: known graph structure, training data is fully
observed, learn CPD parameters

Interesting case: known graph structure, training data is
only partly observed, learn CPD parameters



Learning CPTs from Fully Observed Data

« Example: Consider learning

the parameter @
 MLE (Max Likelihood

Estimate) is

Y= (=t ap =g s =1)
o147 7 S0 =i =)

kth training
example

0

 Remember why?



MLE estimate of &s|;; from fully observed data

@ Qllergy
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Maximum likelihood estimate
6 — arg maxlog P(data|0)
0 -

- Our case: Wl hood Headade Qose>
K
P(datal0) = || P(fr,ak, Sk, hie, ng;)
k=1
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Estimate & from partly observed data

What if FAHN observed, but not S? @. Alera

Can’t calculate MLE ,/.\.

HGadashe s>
0 «— arg max log | [ P(fx, ak, Sk, Pk, ng|6)

k

Let X be all observed variable values (over all examples)
Let Z be all unobserved variable values

Can't calculate MLE:
0 «— arg m@ax log P(X, Z|6)
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Estimate & from partly observed data

What if FAHN observed, but not S? q /\-U-)

Can’t calculate MLE ‘/CD\.

Gadacd Qose>
0 «— arg max log 11 P(fe: ak, sk, by, ng|6)
k

Let X be all observed variable values (over all examples)
Let Z be all unobserved variable values

Can’t calculate MLE:
0 < arg m@ax log P(X, Z1|0)

EM seeks” to estimate:
0 «— arg mgax EZ|X,9[Iog P(X, Z|0)]

* EM guaranteed to find local maximum



+ EM seeks estimate: C O

0 — arg mgax EZ|X79[Iog P(X, Z|0)] o~ >

\gadach O

* here, observed X={F,A,H,N}, unobserved Z={S}

K
log P(X,Z|9) = Z log P(fk)—l—log P(ak,)—|—log P(sk,|fk,ak)+log P(hk|sk)+log P(nk|5k’)
k=1

K 1

Ex|z0llogP(X, Z|0)] = Y > P(sgp = ilfy, ag, by, np)
k=1i=0

[logP(f)+10og P(ay)+l0g P(sg|frar)+10g P(hy|si)+109 P(ng|sg)]



EM Algorithm

EM is a general procedure for learning from partly observed data
Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})
Define Q(0/|9) = EP(ZlX,@) [log P(X, Zlgl)]

lterate until convergence:
» E Step: Use X and current 6 to calculate P(Z|X,0)

* M Step: Replace current 6 by
6 — arg max Q(0'10)

Guaranteed to find local maximum.
Each iteration increases EP(ZlX 0) log P(X, Z|6")]



E Step: Use X, 0, to Calculate P(Z|X,0)
observed X={F,A,H,N}, C :: 2 -
unobserved Z={S}

« How? Bayes net inference problem.

A4
P(Sk — l\fkakhknk,ﬁ) — P(:/ pk thgch}

F[SK:/JLL 7zL7z"’>+7D<5k:O/Q 4 b, WQ




E Step: Use X, 0, to Calculate P(Z|X,0)

observed X={F,A,H,N}, C :: 2
unobserved Z={S}

« How? Bayes net inference problem.

P(Sg = 1| frarhgny, 0) =

P(S, =1, frarhing|0)

S e 1 h 9 —
I ( k |fkak ETE 6) — P(Sk =1, kakhknk 9) P(S — O, avhin 0)
=1, f | k JEAENENE



EM and estimating s R Few

observed X = {F,A,H,N}, unobserved Z={S} 1/\/ O‘

A Al

E step: Calculate for each training example, k

_ _ _ P(Sk = 1, fraghgng|0)

P8y = xaghing, 6) = Blsi] = P(Sk =1, fraghgng|0) + P(Sy = 0O, frarhgng|6)
PG 1A EHNY

M step: update all relevant parameters. For example:

Y L 6(fr =1i,ap = j) Elsg]
Os)ij K : :
D=1 6(fr =1,a, = J)

Y L 6(fr =d,a5 =j,sp = 1)
.esi' — . :
Recall MLE was: 9 SE_6(fe = iyag = )




EM and estimating 6 N
R

More generally, &adach
Given observed set X, unobserved set Z of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable

M step:
Calculate estimates similar to MLE, but
replacing each count by its expected count
6(Y =1) = EzxglY] 6(Y =0) = (1 — EzxlY])




Using Unlabeled Data to Help Train

Naive Bayes Classifier

Learn P(Y|X)

Y [X1 |[X2 |X3 |X4
1 0O (0 |1 1
0O |0 |1 0 |0
0O |0 |0 |1 0
?7 10 |1 1 0
? 10 |1 0 |1




E step: Calculate for each training example, k

the expected value of each unobserved variable

Evy vl £
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EM and estimating 6 N
R

More generally, &adach
Given observed set X, unobserved set Z of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable

M step:

Calculate estimates similar to MLE, but
replacing each count by its expected count

(Y =1) = EzxglY] 6(Y =0) = (1 — EzxlY]D

P(x;1Yz0) P(x;[Y= (>




