
10-601 Machine Learning: Homework Assignment 2
Professor Tom Mitchell

Carnegie Mellon University
January 21, 2009

• The assignment is due at 1:30pm (beginning of class) on Monday, February 2, 2009.

• Submit writeups to Problem 1 and Problem 2 separately with your name on each problem.
Please do not staple the two writeups together.

• Write your name at the top right-hand corner of each page submitted.

• Each student must hand in their own answers to the following questions. See the course
webpage for the collaboration policies.

• Each question has the name of the TA who is the primary contact point for that question.
Feel free to ask the other instructors about any question, but that TA is the authority on
that question.

1 Probability [Purna: 30 points]

1.1 Basic Probability

Consider two events A and B.

1. Use only axioms of probability to prove that P (A∩ ∼ B) = P (A)− P (A ∩B)

2. P (A ∩B) ≥ P (A) + P (B)− 1. This is also known as Bonferroni’s Inequality.

3. The events A and B are disjoint, if P (A ∩ B) = 0. If P (A) = 1
3 and P (B) = 5

6 , then can A
and B be disjoint? Explain.

1.2 Statistical Independence

Two events A and B are statistically independent if P (A ∩B) = P (A)P (B).

1. If A and B are independent events, prove the following

(a) A and ∼ B are independent.

(b) ∼ A and ∼ B are independent.

2. Rob and Alice are alternately and independently flipping a coin. The first player to get a
head wins. Alice flips the coin first.

(a) If P (head) = 1
2 what is the probability that Alice wins? hint: Try to enumerate the

different settings under which Alice can win!

(b) Extra Credit: If P (head) = p, then what is the probability that Alice wins? Give your
answer in terms of p. hint: For 0 ≤ a ≤ 1

∑∞
i=0 a

i = 1/(1 − a). Given the expression
you have derived, would you flip first or second if you were playing the game? Why?
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1.3 Random Variables: Covariance vs. Independence

A random variable is a function mapping the sample space of a random process to real numbers.

1. The covariance of two random variables X and Y is defined as

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]

where E(X) is the expectation of X, and for a discrete X (i.e. X can take discrete values in
X ) is defined by

∑
x∈X xP (X = x). Prove that

Cov(X,Y ) = E(XY )− E(X)E(Y )

2. Let X and Y be discrete random variables which take values in {0, 1, 2}. If you believe the
following claims, give a proof, and if not a counter example, i.e. construct a joint probability
distribution which disproves the claim.

(a) If X and Y are independent, their covariance is zero.

(b) The converse is also true.

1.4 Conditional Probabilities

By now you all know the definition of conditional probability. It is defined as

P (A|B) =
P (A ∩B)
P (B)

(1)

In this question we will see how the probability of an event can change given our knowledge about
another related event. Two fair die are rolled together. Let the random variable S denote the sum
of the numbers read from the two.

1. What is the probability that S = 11?

2. If you know that the S is a prime number, then what is the above probability?
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2 Conditional independence and parameter estimation [Andy: 30
points]

Note: Throughout this problem, when asked about estimates, we are concerned with MLEs and not
MAP estimates. Assume you are given a training dataset comprised of m = 1,000 binary classed
examples (500 in the positive y = 1 class, 500 in the negative y = 0 class), each consisting of n =
10 binary valued attributes, generated from the following model, Mindp, which assumes conditional
independence between attributes, given their class:

Mindp : ∀i : 1 ≤ i ≤ n,∀x, y ∈ {0, 1} Pr(Xi = x|Y = y) = pindp
i,x,y

In other words, each example 〈〈x1, x2, . . . , xn〉, y〉 is generated by first picking a value y for the
class Y , then picking the value xi of each attribute Xi with probability pindp

i,xi,y
. Each attribute xi is

thus determined independently of the other attributes. We will also assume that the probability of
picking class Y = 1 is 0.5, i.e. P (Y = 1) = P (Y = 0) = 0.5.

1. How many free parameters, pindp
i,x,y, does this model have?

2. Now assume you are given a particular instance of such a model, where the parameters are
set as follows: ∀i : pindp

i,1,1 = .8 and pindp
i,1,0 = .6 (i.e., the probability of any attribute being set to

1 is 0.8 for a positive example, and 0.6 for a negative example). Assume you are also given a
single test example from the positive class, 〈x̄test, ytest〉 = 〈〈1, 1, 0, 0, 1, 1, 0, 1, 1, 1〉, 1〉.
What is the probability of the instance x̄test = 〈1, 1, 0, 0, 1, 1, 0, 1, 1, 1〉 being generated given
that the class is positive—in other words, what is Pr(x̄test|y = 1,Mindp)?

3. What is the Pr(y = 1|x̄test,Mindp)? (I.e., what is the predicted probability that the class is
1 under the model defined in Part 2?)

4. Based on the training data, what is the maximum likelihood estimator p̂indp
i,x,1 for the model

parameter pindp
i,x,1? What is the MLE p̂indp

i,x,0 for the model parameter pindp
i,x,0? Express your answer

in terms of properties of the training data, not the instantiated model parameters given in (2)
above).

5. Now consider a new model, Mdep, where no assumptions are made regarding the possible
dependencies between attributes:

Mdep : ∀x̄ : x̄ ∈ {0, 1}n, ∀y ∈ {0, 1} Pr(X̄ = x̄|Y = y) = pdep
x̄,y

In other words, each example 〈〈x1, x2, . . . , xn〉, y〉 is generated by first picking a value y for
the class Y , then picking an entire vector x̄ = 〈x1, x2, . . . , xn〉, with the probability of picking
that vector given by the parameter pdep

x̄,y . We will still assume that the probability of picking
class Y = 1 is 0.5, i.e. P (Y = 1) = P (Y = 0) = 0.5.

How many free parameters, pdep
x̄,y , does this model have? How does this compare to Mindp?

6. Let x̄test refer to the single test example of Part (2). Under this new Mdep, to find Pr(Y |x̄test)
you first need to estimate pdep

x̄test,1
and pdep

x̄test,0
. Given that you have 500 training examples of

each class generated from Mindp, but learned your estimates p̂dep
x̄test,1

and p̂dep
x̄test,0

over this
training data assuming Mdep:
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(a) What is the MLE p̂dep
x̄test,1

for the parameter pdep
x̄test,1

? (again, express this in terms of
properties of the training data.)

(b) Given that the training data was generated from Mindp using the parameters given in
Part 2, what is the probability that this MLE will be zero? I.e., what is Pr(p̂dep

x̄test,1
=

0), where the probability here is taken over different outcomes of the “experiment” of
generating the training data from Mindp.

(c) What is Pr(p̂dep
x̄test,0

= 0), assuming again that the data was generated using the Mindp

model from Part 2?

7. Consider this new set of training data:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y

0 1 0 1 1 1 0 1 1 0 0
1 1 0 1 1 1 0 1 1 0 0
1 1 1 0 1 1 1 0 1 0 0
1 1 1 1 0 1 0 0 1 0 1
0 1 0 0 0 1 1 1 0 0 1
1 1 0 0 0 1 1 0 0 0 1

(a) Based on this new training data, what are the maximum likelihood estimates p̂indp
i,x,y for

the parameters of the model Mindp?

(b) As we discussed in class, Dirichlet priors are commonly used when estimating parameters
to avoid zeros. If we assume a Dirichlet prior over each of the parameters in Mindp where
the parameters to the Dirichlet are α0 = α1 = 1, what are the MAP estimates for those
same pindp

i,x,y?

8. In one or two sentences, how does this problem relate to the discussion in class about condi-
tional independence and Näıve Bayes?
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