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Today:

 Artificial neural networks
* Backpropagation

» Cognitive modeling

+ Deep belief networks

Reading:
* Mitchell: Chapter 4
» Bishop: Chapter 5

Optional:
* Le: ICML 2012 paper (on website)

Logistic Regression is linear classifier

Assumes the following functional form for P(Y | X):

P(Y = 1X) = L

Decision boundary:

P(Y =0|X) =2 P(Y =1|X)
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(Linear Decision Boundary)

1+ exp(—(wo + >, wi X;))

[slide: Aarti Singh]




Artificial Neural Networks tolearnf: X 2> Y

+ f might be non-linear function
» X (vector of) continuous and/or discrete vars
» Y (vector of) continuous and/or discrete vars

» Represent f by network of logistic units

« Each unit is a logistic function
1

1+ exp(wg + X; wiz;)

unit output =

* MLE: train weights of all units to minimize sum of squared
errors of predicted network outputs

* MAP: train to minimize sum of squared errors plus weight
magnitudes

Multilayer Networks of Sigmoid Units
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Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10!
e Connections per neuron ~ 10472
e Scene recognition time ~ .1 second
¢ 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process




Sigmoid Unit
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net =X w; x;
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o(x) is the sigmoid function
1
l+e”

Nice property: d‘l’i(;) =o(z)(1 —o(x))
We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

M(C)LE Training for Neural Networks

» Consider regression problem f:X->Y , for scalar Y

y=1(x)+¢

assume noise N(0,0,), iid

deterministic

» Let's maximize the conditional data likelihood

W «— arg mme}x In HP(YZ|XZ,W)
l
W —argmin 3 (y' — f(a'))?
!

I

Learned
neural network




MAP Training for Neural Networks

» Consider regression problem f:X->Y , for scalar Y

y = f(x) + € —_noise N(0,,)

deterministic

lGaussian P(W) = N(0O,cI)

W —argmax In P(W) [1 P! xtw)
l
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Gradient Descent
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Backpropagation Algorithm (MLE)
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Initialize all weights to small random numbers.

Until satisfied, Do

e For each training example, Do U W)

1. Input the training example to the network
and compute the network outputs

2. For each output unit k
0 < or(1 — op)(tr. — o) Xg = Inp'Jt
3. For each hidden unit h ty = target output

on+on(l—op) X wpidy 04 = Observed unit

k€outputs
. output
4. Update each network weight w; ;
w;j + w;j+ Aw;j Wij = wt from i tOj

where

Aw,;.,- = 77(5_7'1137‘




More on Backpropagation

e Gradient descent over entire network weight

vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error

minimum

— In practice, often works well (can run multiple

times)

e Often include weight momentum «

Aw; j(n) = nd;x; j + alw; j(n — 1)

e Minimizes error over training examples

— Will it generalize well to subsequent

examples?

e Training can take thousands of iterations —

slow!

e Using network after training is very fast

Overfitting in ANNs

Error versus weight updates (example 1)
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Dealing with Overfitting

BEEEEREE:

Our learning algorithm involves a parameter - ———————
n=number of gradient descent iterations

How do we choose n to optimize future error?

(note: similar issue for logistic regression, decision trees, ...)

e.g. the n that minimizes error rate of neural net over future data

Dealing with Overfitting

EEEEEEEES

Our learning algorithm involves a parameter
n=number of gradient descent iterations
How do we choose n to optimize future error?

» Separate available data into training and validation set
» Use training to perform gradient descent
* n €< number of iterations that optimizes validation set error

- gives unbiased estimate of optimal n
(but a biased estimate of true error)




K-Fold Cross Validation

Idea: train multiple times, leaving out a disjoint subset of data each time
for test. Average the test set accuracies.

Partition data into K disjoint subsets

For k=1to K
testData = kth subset
h & classifier trained* on all data except for testData
accuracy(k) = accuracy of h on testData

end

FinalAccuracy = mean of the K recorded testset accuracies

* might withhold some of this to choose number of gradient decent steps

Leave-One-Out Cross Validation

This is just k-fold cross validation leaving out one example each iteration

Partition data into K disjoint subsets, each containing one example
For k=1to K
testData = kth subset
h & classifier trained* on all data except for testData
accuracy(k) = accuracy of h on testData
end
FinalAccuracy = mean of the K recorded testset accuracies

* might withhold some of this to choose number of gradient decent steps




Dealing with Overfitting

Cross-validation

Regularization — small weights[imply NN'is linear (low VC
dimension)

| ngjsfir autput

xo

WX

Control number of hidden units — low complexity

[slide: Aarti Singh]

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].
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Learning Hidden Layer Representations

Tnputs Outputs

/AN
/-

A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — (01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001
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Inputs Outputs

Training

JRAD
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Sum of squared errors for each output unit
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Inputs Outputs

Training

Hidden unit encoding for input 0 1000000
T
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. . Inputs Outputs
Training
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Neural Nets for Face Recognition

left strt rght up

inputs

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces
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Learned Hidden Unit Weights

left strt rght up Learned Weights
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30x32 |

Typical input images

http://www.cs.cmu.edu/~tom/faces.html

Deep Be“ef Networks [Hinton & Salakhutdinov, 2006]

* Problem: training networks with many hidden layers
doesn’t work very well
— local minima, very slow training if initialize with zero weights

* Deep belief networks
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Deep Belief Networks

[Hinton & Salakhutdinov, 2006]

original image
reconstructed from

2000-1000-500-30 DBN

reconstructed from
2000-300, linear PCA

versus

Encoding of digit images in two dimensions
[Hinton & Salakhutdinov, 2006]

784-2 linear encoding (PCA) 784-1000-500-250-2 DBNet

CENONBWN -0
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Deep Belief Networks: Training
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Pretraining Unrolling Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the “data” for training the next RBM in the stack. After the pretraining, the RBMs are
“unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

[Hinton & Salakhutdinov, 2006]

Restricted Boltzman Machine

 Bipartite graph, logistic activation

* Inference: fill in any nodes, estimate other
nodes

* consider v;, h; are boolean variables

1
P(h; =1lv) = 1+ exp(},; wijvi)
Ploi=1h)=— L
S T T (S, wighy)
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Very Large Scale Use of DBN'’s [Quoc Le, et al., ICML, 2012]

Data: 10 million 200x200 unlabeled images, sampled from YouTube
Training: use 1000 machines (16000 cores) for 1 week

Learned network: 3 multi-stage layers, 1.15 billion parameters

Achieves 15.8% accuracy classifying 1 of 20k categories in ImageNet data
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Images
that most
excite the
feature:

Image
synthesized
to most
excite the
feature:

Living thing
Plant
Animal
Tree
Flower
Bird
Flower
Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish
Salmon

Semantic Memory Model Based on ANN’s

[McClelland & Rogers, Nature
2003]

Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish
Salmon
Item

Pretty
Tall

Living
Green

Relation

No hierarchy given.

Train with assertions, ~
ings
e.g., Can(Canary,Fly) Feathers
Scales
Gills
Roots
Skin

Attribute
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Humans act as though they have a hierarchical memory
organization

1. Victims of Semantic Dementia progressively lose knowledge of objects

But they lose specific details first, general properties later, suggesting
hierarchical memory organization

Thing
/\
NonLiving Living
2. Children appear to learn general Plant  Animal
categories and properties first,
following the same hierarchy, top Fish ?rd

down’.
Canary

Question: What learning mechanism could produce this
emergent hierarchy?

* some debate remains on this.

Memory deterioration follows semantic hierarchy
[McClelland & Rogers, Nature 2003]
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Epoch 250 ~ Epoch750  Epoch 2,500 Epoch 500 Epoch 1,500 Epoch 2,500
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Figure 4 | The process of differentiation of conceptual representations. The representations are those seen in the feedforward
network model shown in FIG. 3. a | Acquired patterns of activation that represent the eight objects in the training set at three pointsin
the leaming process (epochs 250, 750 and 2,500). Early in leaming, the pattems are undifferentiated; the first difference to appear is
between plants and animals. Later, the patterns show clear differentiation at both the superordinate (plant-animal) and intermediate
(bird-fish/tree—flower) levels. Finally, the individual concepts are differentiated, but the overall hierarchical organization of the similarity
structure remains. b | A standard hierarchical clustering analysis program has been used to visualize the similarity structure in the

ANN Also Models Progressive Deterioration

[McClelland & Rogers, Nature

2003]
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average effect of noise in inputs to hidden layers
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What you should know: Artificial Neural Networks

+ Highly non-linear regression/classification

* Vector-valued inputs and outputs

» Potentially millions of parameters to estimate

« Hidden layers learn intermediate representations

+ Actively used to model distributed computation in brain

+ Gradient descent, local minima problems
» Overfitting and how to deal with it

* Many extensions
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