

Machine Learning 10-601

Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University

September 20, 2012

Today:

- Logistic regression
- Generative/Discriminative classifiers

Readings: (see class website)

Required:

- Mitchell: “Naïve Bayes and Logistic Regression”

Optional

- Ng & Jordan

Logistic Regression

Idea:

- Naïve Bayes allows computing $P(Y|X)$ by learning $P(Y)$ and $P(X|Y)$
- Why not learn $P(Y|X)$ directly?

- Consider learning $f: X \rightarrow Y$, where
 - X is a vector of real-valued features, $\langle X_1 \dots X_n \rangle$
 - Y is boolean
 - assume all X_i are conditionally independent given Y
 - model $P(X_i | Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 - model $P(Y)$ as Bernoulli (π)
- What does that imply about the form of $P(Y|X)$?

$$P(Y = 1 | X = \langle X_1, \dots, X_n \rangle) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Derive form for $P(Y|X)$ for continuous X_i

$$\begin{aligned}
 P(Y = 1 | X) &= \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)} \\
 &= \frac{1}{1 + \frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)}} \\
 &= \frac{1}{1 + \exp(\ln \frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)})} \\
 &= \frac{1}{1 + \exp(-(\ln \frac{1-\pi}{\pi}) + \sum_i \ln \frac{P(X_i|Y=0)}{P(X_i|Y=1)})}
 \end{aligned}$$

$$P(x | y_k) = \frac{1}{\sigma_{ik} \sqrt{2\pi}} e^{\frac{-(x - \mu_{ik})^2}{2\sigma_{ik}^2}}$$

$$\sum_i \left(\frac{\mu_{i0} - \mu_{i1}}{\sigma_i^2} X_i + \frac{\mu_{i1}^2 - \mu_{i0}^2}{2\sigma_i^2} \right)$$

$$P(Y = 1 | X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

Very convenient!

$$P(Y = 1|X = \langle X_1, \dots, X_n \rangle) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

implies

$$P(Y = 0|X = \langle X_1, \dots, X_n \rangle) =$$

implies

$$\frac{P(Y = 0|X)}{P(Y = 1|X)} =$$

implies

$$\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} =$$

Very convenient!

$$P(Y = 1|X = \langle X_1, \dots, X_n \rangle) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

implies

$$P(Y = 0|X = \langle X_1, \dots, X_n \rangle) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{P(Y = 0|X)}{P(Y = 1|X)} = \exp(w_0 + \sum_i w_i X_i)$$

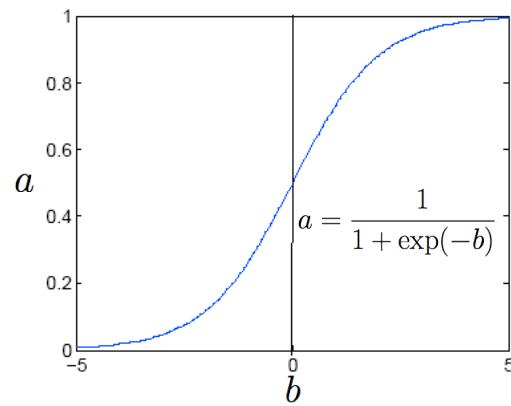
implies

$$\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = w_0 + \sum_i w_i X_i$$

linear
classification
rule!

$$\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = w_0 + \sum_i w_i X_i$$

Logistic function



$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

Logistic regression more generally

- Logistic regression when Y not boolean (but still discrete-valued).
- Now $y \in \{y_1 \dots y_R\}$: learn $R-1$ sets of weights

$$\text{for } k < R \quad P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^n w_{ki} X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^n w_{ji} X_i)}$$

$$\text{for } k = R \quad P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^n w_{ji} X_i)}$$

Training Logistic Regression: MCLE

- we have L training examples: $\{\langle X^1, Y^1 \rangle, \dots, \langle X^L, Y^L \rangle\}$
- maximum likelihood estimate for parameters W
$$W_{MLE} = \arg \max_W P(< X^1, Y^1 > \dots < X^L, Y^L > | W)$$
$$= \arg \max_W \prod_l P(< X^l, Y^l > | W)$$
- maximum conditional likelihood estimate

Training Logistic Regression: MCLE

- Choose parameters $W = \langle w_0, \dots, w_n \rangle$ to maximize conditional likelihood of training data

where

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

- Training data $D = \{\langle X^1, Y^1 \rangle, \dots, \langle X^L, Y^L \rangle\}$
- Data likelihood $= \prod_l P(X^l, Y^l | W)$
- Data conditional likelihood $= \prod_l P(Y^l | X^l, W)$

$$W_{MCLE} = \arg \max_W \prod_l P(Y^l | W, X^l)$$

Expressing Conditional Log Likelihood

$$l(W) \equiv \ln \prod_l P(Y^l | X^l, W) = \sum_l \ln P(Y^l | X^l, W)$$

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\begin{aligned} l(W) &= \sum_l Y^l \ln P(Y^l = 1 | X^l, W) + (1 - Y^l) \ln P(Y^l = 0 | X^l, W) \\ &= \sum_l Y^l \ln \frac{P(Y^l = 1 | X^l, W)}{P(Y^l = 0 | X^l, W)} + \ln P(Y^l = 0 | X^l, W) \\ &= \sum_l Y^l (w_0 + \sum_i w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_i w_i X_i^l)) \end{aligned}$$

Maximizing Conditional Log Likelihood

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

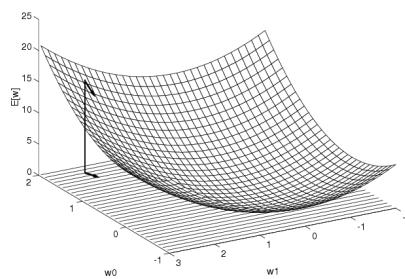
$$P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\begin{aligned} l(W) &\equiv \ln \prod_l P(Y^l|X^l, W) \\ &= \sum_l Y^l (w_0 + \sum_i^n w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_i^n w_i X_i^l)) \end{aligned}$$

Good news: $l(W)$ is concave function of W

Bad news: no closed-form solution to maximize $l(W)$

Gradient Descent



Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent:

Batch gradient: use error $E_D(\mathbf{w})$ over entire training set D

Do until satisfied:

1. Compute the gradient $\nabla E_D(\mathbf{w}) = \left[\frac{\partial E_D(\mathbf{w})}{\partial w_0} \dots \frac{\partial E_D(\mathbf{w})}{\partial w_n} \right]$
2. Update the vector of parameters: $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla E_D(\mathbf{w})$

Stochastic gradient: use error $E_d(\mathbf{w})$ over single examples $d \in D$

Do until satisfied:

1. Choose (with replacement) a random training example $d \in D$
2. Compute the gradient just for d : $\nabla E_d(\mathbf{w}) = \left[\frac{\partial E_d(\mathbf{w})}{\partial w_0} \dots \frac{\partial E_d(\mathbf{w})}{\partial w_n} \right]$
3. Update the vector of parameters: $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla E_d(\mathbf{w})$

Stochastic approximates Batch arbitrarily closely as $\eta \rightarrow 0$

Stochastic can be much faster when D is very large

Intermediate approach: use error over subsets of D

Maximize Conditional Log Likelihood: Gradient Ascent

$$\begin{aligned} l(W) &\equiv \ln \prod_l P(Y^l | X^l, W) \\ &= \sum_l Y^l (w_0 + \sum_i^n w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_i^n w_i X_i^l)) \end{aligned}$$

$$\frac{\partial l(W)}{\partial w_i} = \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))$$

Maximize Conditional Log Likelihood: Gradient Ascent

$$\begin{aligned}
 l(W) &\equiv \ln \prod_l P(Y^l | X^l, W) \\
 &= \sum_l Y^l (w_0 + \sum_i^n w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_i^n w_i X_i^l))
 \end{aligned}$$

$$\frac{\partial l(W)}{\partial w_i} = \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))$$

Gradient ascent algorithm: iterate until change $< \varepsilon$

For all i , repeat

$$w_i \leftarrow w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))$$

That's all for M(C)LE. How about MAP?

- One common approach is to define priors on W
 - Normal distribution, zero mean, identity covariance
- Helps avoid very large weights and overfitting
- MAP estimate

$$W \leftarrow \arg \max_W \ln P(W) \prod_l P(Y^l | X^l, W)$$

- let's assume Gaussian prior: $W \sim N(0, \sigma)$

MLE vs MAP

- Maximum conditional likelihood estimate

$$W \leftarrow \arg \max_W \ln \prod_l P(Y^l | X^l, W)$$

$$w_i \leftarrow w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))$$

- Maximum a posteriori estimate with prior $W \sim N(0, \sigma^2 I)$

$$W \leftarrow \arg \max_W \ln[P(W) \prod_l P(Y^l | X^l, W)]$$

$$w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))$$

MAP estimates and Regularization

- Maximum a posteriori estimate with prior $W \sim N(0, \sigma^2 I)$

$$W \leftarrow \arg \max_W \ln[P(W) \prod_l P(Y^l | X^l, W)]$$

$$w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))$$

called a “regularization” term

- helps reduce overfitting, especially when training data is sparse
- keep weights nearer to zero (if $P(W)$ is zero mean Gaussian prior), or whatever the prior suggests
- used very frequently in Logistic Regression

The Bottom Line

- Consider learning $f: X \rightarrow Y$, where
 - X is a vector of real-valued features, $\langle X_1 \dots X_n \rangle$
 - Y is boolean
 - assume all X_i are conditionally independent given Y
 - model $P(X_i | Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 - model $P(Y)$ as Bernoulli (π)
- Then $P(Y|X)$ is of this form, and we can directly estimate W
$$P(Y = 1 | X = \langle X_1, \dots, X_n \rangle) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$
- Furthermore, same holds if the X_i are boolean
 - trying proving that to yourself

Generative vs. Discriminative Classifiers

Training classifiers involves estimating $f: X \rightarrow Y$, or $P(Y|X)$

Generative classifiers (e.g., Naïve Bayes)

- Assume some functional form for $P(X|Y)$, $P(X)$
- Estimate parameters of $P(X|Y)$, $P(X)$ directly from training data
- Use Bayes rule to calculate $P(Y|X=x_i)$

Discriminative classifiers (e.g., Logistic regression)

- Assume some functional form for $P(Y|X)$
- Estimate parameters of $P(Y|X)$ directly from training data

Use Naïve Bayes or Logistic Regression?

Consider

- Restrictiveness of modeling assumptions
- Rate of convergence (in amount of training data) toward asymptotic hypothesis

Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X = \langle X_1 \dots X_n \rangle$

Number of parameters to estimate:

- NB:

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

- LR:

$$P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X = \langle X_1 \dots X_n \rangle$

Number of parameters:

- NB: $4n + 1$
- LR: $n+1$

Estimation method:

- NB parameter estimates are uncoupled
- LR parameter estimates are coupled

G.Naïve Bayes vs. Logistic Regression

Recall two assumptions deriving form of LR from GNBayes:

1. X_i conditionally independent of X_k given Y
2. $P(X_i | Y = y_k) = N(\mu_{ik}, \sigma_i)$, \leftarrow not $N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:

- GNB (assumption 1 only)
- GNB2 (assumption 1 and 2)
- LR

Which method works better if we have infinite training data, and...

- Both (1) and (2) are satisfied
- Neither (1) nor (2) is satisfied
- (1) is satisfied, but not (2)

G.Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:

1. X_i conditionally independent of X_k given Y
2. $P(X_i | Y = y_k) = N(\mu_{ik}, \sigma_i)$, \leftarrow not $N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:

- GNB (assumption 1 only)
- GNB2 (assumption 1 and 2)
- LR

Which method works better if we have *infinite* training data, and...

- Both (1) and (2) are satisfied
- Neither (1) nor (2) is satisfied
- (1) is satisfied, but not (2)

G.Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:

1. X_i conditionally independent of X_k given Y
2. $P(X_i | Y = y_k) = N(\mu_{ik}, \sigma_i)$, \leftarrow not $N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:

- GNB (assumption 1 only) -- decision surface can be non-linear
- GNB2 (assumption 1 and 2) – decision surface linear
- LR -- decision surface linear, trained differently

Which method works better if we have *infinite* training data, and...

- Both (1) and (2) are satisfied: $LR = GNB2 = GNB$
- Neither (1) nor (2) is satisfied: $LR > GNB2, GNB > GNB2$
- (1) is satisfied, but not (2) : $GNB > LR, LR > GNB2$

G.Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

What if we have only finite training data?

They converge at different rates to their asymptotic (∞ data) error

Let $\epsilon_{A,n}$ refer to expected error of learning algorithm A after n training examples

Let d be the number of features: $\langle X_1 \dots X_d \rangle$

$$\epsilon_{LR,n} \leq \epsilon_{LR,\infty} + O\left(\sqrt{\frac{d}{n}}\right)$$

$$\epsilon_{GNB,n} \leq \epsilon_{GNB,\infty} + O\left(\sqrt{\frac{\log d}{n}}\right)$$

So, GNB requires $n = O(\log d)$ to converge, but LR requires $n = O(d)$

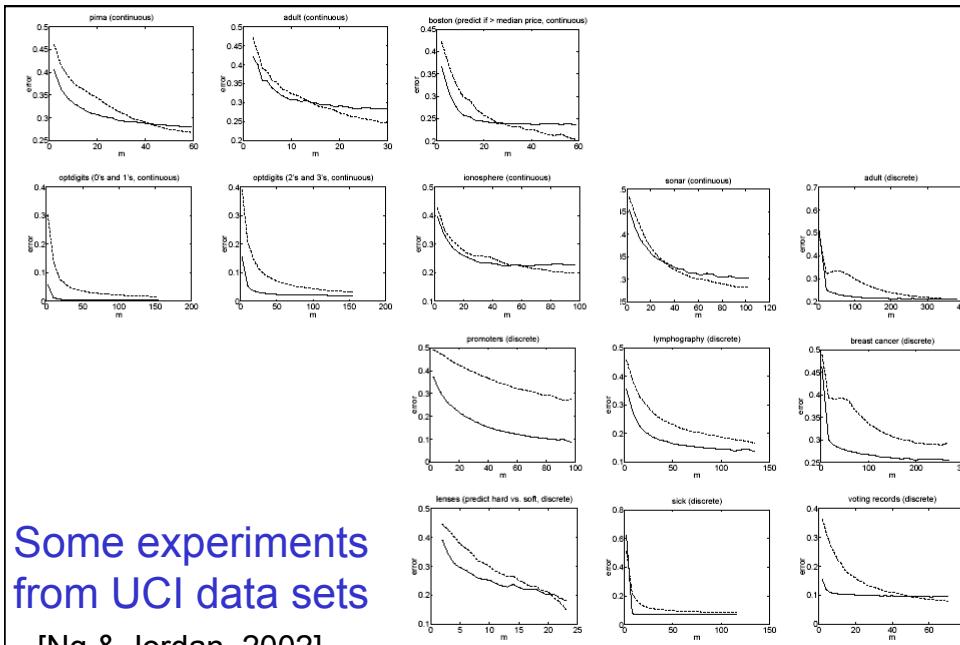


Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naïve Bayes.

Naïve Bayes vs. Logistic Regression

The bottom line:

GNB2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR is better or equal to GNB2 because *training procedure* does not make assumptions 1 or 2 (though our derivation of the form of $P(Y|X)$ did).

But GNB2 converges more quickly to its perhaps-less-accurate asymptotic error

And GNB is both more biased (assumption1) and less (no assumption 2) than LR, so either might beat the other

What you should know:

- Logistic regression
 - Functional form follows from Naïve Bayes assumptions
 - For Gaussian Naïve Bayes assuming variance $\sigma_{i,k} = \sigma_i$
 - For discrete-valued Naïve Bayes too
 - But training procedure picks parameters without making conditional independence assumption
 - MLE training: pick W to maximize $P(Y | X, W)$
 - MAP training: pick W to maximize $P(W | X, Y)$
 - ‘regularization’
 - helps reduce overfitting
- Gradient ascent/descent
 - General approach when closed-form solutions unavailable
- Generative vs. Discriminative classifiers
 - Bias vs. variance tradeoff