Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

September 20, 2012

Today: Readings: (see class website)

» Logistic regression

* Generative/Discriminative Required:)
classifiers * Mitchell: “Naive Bayes and

Logistic Regression”

Optional
Ng & Jordan

Logistic Regression

ldea:
» Naive Bayes allows computing P(Y|X) by
learning P(Y) and P(X]Y)

« Why not learn P(Y|X) directly?

 Consider learning f: X 2 Y, where
+ X is a vector of real-valued features, < X, ... X, >
* Y is boolean
» assume all X; are conditionally independent given Y
* model P(X; | Y =vy,) as Gaussian N(u;,0;)
* model P(Y) as Bernoulli (i)

* What does that imply about the form of P(Y|X)?

1
P(Y =1|X =< X1, ..Xn >) =

1+ exp(wo + X wiX;)

Derive form for P(Y|X) for continuous X;

P(Y = 1)P(X|Y =1)

1
P(Y=0)P(X[Y=0)
L+ po=nrxiv=0)
1
P(Y=0)P(X|Y=0)
1+ exp(In P(y:]_)P(XIYzl))

1

1+ exp((Inl;ﬂ”)_kzl.m%

—(e—puyy)? /
1 202,

P(I\yk)=m e 7 z<“io_ui1X-+'ui21 _/"120)>
2

2 2
7 o3 201‘

1
1+ exp(wp + S0 w; X;)

P(Y =1|X) =

Very convenient!

1
1+ exp(wo + X wi X;)

P(Y =1|1X =< X1,..Xn>) =
implies
P(Y =0|X =< X1,..Xp >) =
implies

P(Y =0|X) _
P(Y =1|X)

implies _
PO =01X) _

P(Y =1|X)

Very convenient!

1
1+ exp(wg + X; w; X;)

P(Y =1|X =< Xq,..Xp>) =

implies
exp(wo + 205 w X;)
1+ exp(wo + X w; X;)

P(Y =0|X =< Xq,..Xp>) =

implies
P(Y =0|X) . .
m = eacp(wo + ;w’LX’L) iroar
/ classification
implies POY = 01%) rule!

P(Y = 0|X)

Inm = w0+§i:wiXi
Logistic function
4 0.6F 1
.l @= 1+ exp(—b) 1
~5 g 5
P(Y =1|X) = :

1+ exp(wo + Y7 w; X;)

Logistic regression more generally

 Logistic regression when Y not boolean (but
still discrete-valued).

* Now y E{y, ... yg} : learn R-1 sets of weights

exp(wgo + 271w X;)
1+ 7] exp(wjo 4+ Xy w)iX;)

for k<R PY =y,|X) =

1
1+ 0 exp(wjo 4+ Xy w)iX;)

for k=R P =yg|X)=

Training Logistic Regression: MCLE

- we have L training examples: {(x1, v1), .. (XL v}

* maximum likelihood estimate for parameters W
Whp = arg max P(< XLyls> < XEYE > W)

_ Iyl
—arng%XHP(< XY ' > |W)

 maximum conditional likelihood estimate

Training Logistic Regression: MCLE

« Choose parameters W=<w,, ... w,> to
maximize conditional likelihood of training data
1
1+ exp(wo + X; w; X;)

exp(wo + X; w; X;)
1 4 exp(wg + >; w; X;)

where P(Y =0|X,W) =

P(Y = 1|X,W) =

« Training data D = {(x',v1),.. .(x" v)}
« Data likelihood = [[P(X',Y!w)
l
« Data conditional likelihood = [P(¥!|x, W)
l

_ ! !
WucLe = &Tng%XHP(Y W, X7)

Expressing Conditional Log Likelihood

(W) =In[[PYYxt,w) =3 InP(Y! X, w)
l l

1

P =01X,W) = 1 4 exp(wo + 3w X;)

exp(wo + 3 w X;)
14 exp(wo + X; w; X;)

PY =1|X,W) =

(w) = Y viinpPyl=1x,w)+ Q@ -vH)InpP!=o0/x,w)
l

PYl=1|x!.w
— Zylln (| ’)
7 P(Yl=0|x!,, W)

+InPY!'=o0|x, W)

= Y Yiwo + Y w; X — In(1 + exp(wg + > w; XH)
[7 7

Maximizing Conditional Log Likelihood

1

P =01X,W) = 1+ exp(wo + 3 w; X;)

Py = 1x, W) = —<wp(wo + 3 wiXy)
' 1+ exp(wo + X; wiX;)

(W) = In[[PYxLw)
l

= S Yi(wo + Y w; X — In(1 + exp(wo + > w;X1))
l 7 7

Good news: (W) is concave function of W
Bad news: no closed-form solution to maximize (W)

Gradient Descent

!

ke
e
esSigesgeigeie’
SRR

X
9!
%
5
RS
(RS
““
X

XS
RS
0

RN
W
W

W\

X

poige’
N
S

S
SIS
R
X
&
N

Gradient
OF OF 8_E

owy dw,’ Ow,

Vﬂﬂs[

Training rule:
AW = —nVE[w]
ie.,
oE

Awi =g

Gradient Descent:

Batch gradient: use error Ep(w) over entire training set D
Do until satisfied:

E E
1. Compute the gradient VEp(w) = OFp(w) 9Fp(w)

owy ~ Ow,
2. Update the vector of parameters: w <— w —nVFE D(W)

Stochastic gradient. use error E;(w) over single examples d € D
Do until satisfied:

1. Choose (with replacement) a random training example d € D

2. Compute the gradient just for d: VEy(w) = OFu(w) 0Ey(w)

owy = Ow,
3. Update the vector of parameters: w <— w — nV Ey(w)

Stochastic approximates Batch arbitrarily closely as 77 — 0
Stochastic can be much faster when D is very large
Intermediate approach: use error over subsets of D

Maximize Conditional Log Likelihood:
Gradient Ascent

(W) = In[[PExL,w)
l
= S Vi(wo+ Y wiXh) — In(1 + exp(uo + 3 wiXD)
l 7 7
oLW) _ Y xivt - Pyt = 11X w))
ow; ;

Maximize Conditional Log Likelihood:
Gradient Ascent

(W) = In[[PYxLw)
l

= Y Yi(wo + Y w;X}) — In(1 + eap(wo + > w; X}))
l 5 i

ol(W)

awi

=Y xivt— Pyt =11x1, w))
l

Gradient ascent algorithm: iterate until change < ¢
For all i, repeat

w; —w; + 1Y XI(Y - Py =1x,w))
l

That's all for M(C)LE. How about MAP?

One common approach is to define priors on W
— Normal distribution, zero mean, identity covariance

Helps avoid very large weights and overfitting
MAP estimate

W «— arg max In P(W) HP(YZ\XZ, W)
l

let's assume Gaussian prior: W ~ N(0, 0)

MLE vs MAP

 Maximum conditional likelihood estimate
W «— arg max In HP(YZ|Xl, W)
l

w; —w;+nY XUy - P(Y! = 1]x", W)
l

« Maximum a posteriori estimate with prior W~N(0,oT)

W« arg max In[P(W) J[PYYxtw)]
l

w; — w; —niw;+nY XL - P(Y!=1|x", W)
l

MAP estimates and Regularization
» Maximum a posteriori estimate with prior W~N(0,ol)

W « arg max In[P(W) HP(YZ]XZ,W)]
l

wi — wi—nAw;+n Y X[V = P(Y! = 11X, W)
1 l

called a “regularization” term

* helps reduce overfitting, especially when training
data is sparse

* keep weights nearer to zero (if P(W) is zero mean
Gaussian prior), or whatever the prior suggests

« used very frequently in Logistic Regression

10

The Bottom Line

 Consider learning f: X =Y, where
« X is a vector of real-valued features, < X, ... X, >
Y is boolean
 assume all X, are conditionally independent given Y
» model P(X; | Y =vy,) as Gaussian N(w;,o;)
» model P(Y) as Bernoulli (r)

» Then P(Y|X) is of this form, and we can directly estimate W

1
P(Y = 1|X =< Xq,..Xp >) =
| " 1+ exp(wg + X; wi X;)

* Furthermore, same holds if the X; are boolean
» trying proving that to yourself

Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X = Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes)

* Assume some functional form for P(X|Y), P(X)

» Estimate parameters of P(X|Y), P(X) directly from training data
+ Use Bayes rule to calculate P(Y|X= x;)

Discriminative classifiers (e.g., Logistic regression)

* Assume some functional form for P(Y|X)
» Estimate parameters of P(Y|X) directly from training data

11

Use Naive Bayes or Logisitic Regression?

Consider
» Restrictiveness of modeling assumptions

» Rate of convergence (in amount of
training data) toward asymptotic
hypothesis

Naive Bayes vs Logistic Regression
Consider Y boolean, X; continuous, X=<X, ... X,>
Number of parameters to estimate:

 NB:

1
P(Y =0|X, W) =

1+ exp(wo + X wiXy)

 LR:

Py = 1)x, W) = <220+ X wiXy)

1 4 exp(wo + X; w; X;)

12

Naive Bayes vs Logistic Regression

Consider Y boolean, X, continuous, X=<X, ... X,>

Number of parameters:
* NB: 4n +1
* LR: n+1

Estimation method:
* NB parameter estimates are uncoupled
* LR parameter estimates are coupled

G.Naive Bayes vs. Logistic Regression

Recall two assumptions deriving form of LR from GNBayes:

1. X conditionally independent of X, given Y
2. PX 1Y =y = N(wy,0), < not N(w,0y)

Consider three learning methods:
* GNB (assumption 1 only)

* GNB2 (assumption 1 and 2)
LR

Which method works better if we have infinite training data, and...

* Both (1) and (2) are satisfied
* Neither (1) nor (2) is satisfied
* (1) is satisfied, but not (2)

13

G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X, conditionally independent of X, given'Y
2. POX 1Y =y = N(uy,0), < not N(w,05)

Consider three learning methods:
*GNB (assumption 1 only)
*GNB2 (assumption 1 and 2)
LR

Which method works better if we have infinite training data, and...

*Both (1) and (2) are satisfied
*Neither (1) nor (2) is satisfied

(1) is satisfied, but not (2)

G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X, conditionally independent of X, given Y
2. PXi 1Y =yq) = N(uwy,0), < not N(w,0j)

Consider three learning methods:

*GNB (assumption 1 only) -- decision surface can be non-linear
*GNB2 (assumption 1 and 2) — decision surface linear
LR -- decision surface linear, trained differently

Which method works better if we have infinite training data, and...

*Both (1) and (2) are satisfied: LR = GNB2 = GNB
*Neither (1) nor (2) is satisfied: LR > GNB2, GNB>GNB2

«(1) is satisfied, butnot (2) : GNB > LR, LR > GNB2

14

€LRn < ELR,

log d
€GNBn < €GNB,oo + O (&)

G.Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

What if we have only finite training data?
They converge at different rates to their asymptotic (< data) error

Let €4,n refer to expected error of learning algorithm A after n training
examples

Let d be the number of features: <X, ... X;>

+0(y/2
n

n

So, GNB requires n = O(log d) to converge, but LR requires n = O(d)

pima (continuous)

2duit (continuous)

boston (predict #f > median price, continucus)

sonar (continuouz) acult (Gcrete)

4 % 10 10

EJ 00 150 20

Some experiments
from UCI data sets
[Ng & Jordan, 2002]

Figure 1: Results of 15 experiments on datasets from the UCT Machine Learnin]
repository. Plots are of generalization ervor vs. m (averaged over 1000 randon

train/test splits). Dashed line is logistic regression; solid line is naive Bayes,

15

Naive Bayes vs. Logistic Regression

The bottom line:

GNB?2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR is better or equal to GNB2 because
training procedure does not make assumptions 1 or 2 (though our
derivation of the form of P(Y|X) did).

But GNB2 converges more quickly to its perhaps-less-accurate
asymptotic error

And GNB is both more biased (assumptionl) and less (no
assumption 2) than LR, so either might beat the other

What you should know:

* Logistic regression
— Functional form follows from Naive Bayes assumptions
* For Gaussian Naive Bayes assuming variance o;, = o;
* For discrete-valued Naive Bayes too

— But training procedure picks parameters without making
conditional independence assumption

— MLE training: pick W to maximize P(Y | X, W)
— MAP training: pick W to maximize P(W | X,Y)
* ‘regularization’
* helps reduce overfitting

» Gradient ascent/descent
— General approach when closed-form solutions unavailable

* Generative vs. Discriminative classifiers
— Bias vs. variance tradeoff

16

