

Problem Set 4

10-601 Fall 2012

Due: Friday Nov. 9, at 4 pm

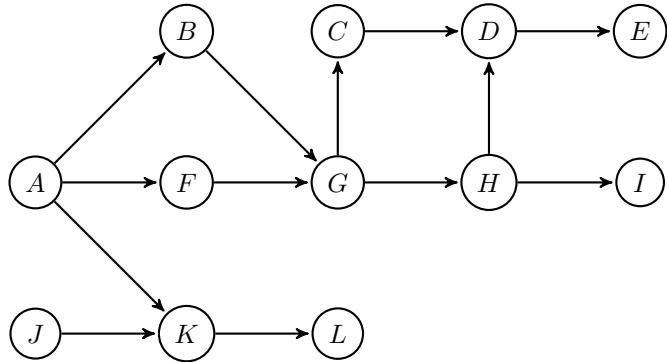
TA: Daegun Won (daegunw@cs.cmu.edu)

Due Date

This is due at **Friday Nov. 9, at 4 pm**. Hand in a hard copy to Sharon Cavlovich, GHC 8215.

1 Bayesian Network

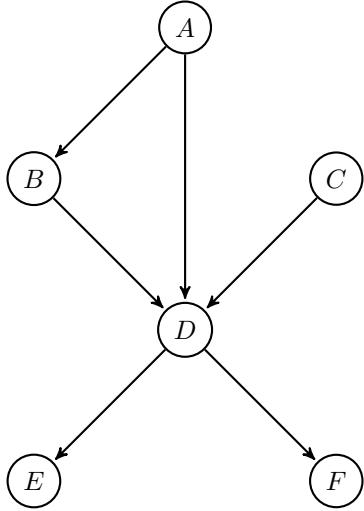
1.a d-separation



Which of the following statements are true given the Bayesian network below? For false statements, show one active trail.

1. $P(H, J) = P(H)P(J)$ [*Solution: true*]
2. $P(H, J|L) = P(H|L)P(J|L)$ [*Solution: false*. There's an active trail JKAFGH]
3. $P(C, I|F) = P(C|F)P(I|F)$ [*Solution: false*. CGHI is an active trail.]
4. $P(C, I|G, E) = P(C|G, E)P(I|G, E)$ [*Solution: false*. CDHI]
5. $P(A, D|B) = P(A|B)P(D|B)$ [*Solution: false*. AFGHD]
6. $P(B, F) = P(B)P(F)$ [*Solution: false* BAF]
7. $P(C, K|B, F) = P(C|B, F)P(K|B, F)$ [*Solution: true*]
8. $P(E, K|L) = P(E|L)P(K|L)$ [*Solution: false*. KAFGHDE]

1.b Variable Elimination



$$P(A = T | A = T) = 0.5, P(A = T | A = F) = 0.1$$

$$P(D = T | A = T, B = T, C = T) = 0.6, P(D = T | A = F, B = T, C = T) = 0.3$$

$$P(D = T | A = T, B = T, C = F) = 0.9, P(D = T | A = F, B = T, C = F) = 0.5$$

$$P(D = T | A = T, B = F, C = T) = 0.1, P(D = T | A = F, B = F, C = T) = 0.7$$

$$P(D = T | A = T, B = F, C = F) = 0.1, P(D = T | A = F, B = F, C = F) = 0.6$$

$$P(E = T | D = T) = 0.5, P(E = T | D = F) = 0.6$$

$$P(F = T | D = T) = 0.9, P(F = T | D = F) = 0.8$$

1. Using variable elimination, compute $P(A = T, B = T, C = T, E = T, F = T)$. Show your work. [\[Solution: 0.11088\]](#)
2. From your work above, compute $P(E = T, F = T)$ by removing B , A , and C in order. Show your work. [\[Solution: 0.465408\]](#)
3. Compute $P(E = T, F = T)$ again but using elimination order of A , B , C and then D . [\[Solution: 0.465408\]](#)
4. Would you say the order of variables matter in terms of final result? How about in terms of computational efficiency? [\[Solution: It shouldn't affect the final value, but it affects the computational efficiency.\]](#)

1.c Constructing a Network

Let X, Y, Z be binary variables. After observing many instances of X, Y, Z , you summarized the data with the following joint distribution.

X	Y	Z	$P(X, Y, Z)$
0	0	0	0.042
0	0	1	0.378
0	1	0	0.054
0	1	1	0.126
1	0	0	0.140
1	0	1	0.140
1	1	0	0.096
1	1	1	0.024

Draw a Bayes net that can represent the above distribution with as few edges as possible. How many such networks are there? Show your work.

[Solution: If you look for marginal dependencies, only X and Y are marginally dependent. Thus the graph has to be in a form such as $X-Z-Y$. There are 4 possible BNs with two edges, but only $X \rightarrow Z \leftarrow Y$ preserves the marginal dependence between X and Y .]

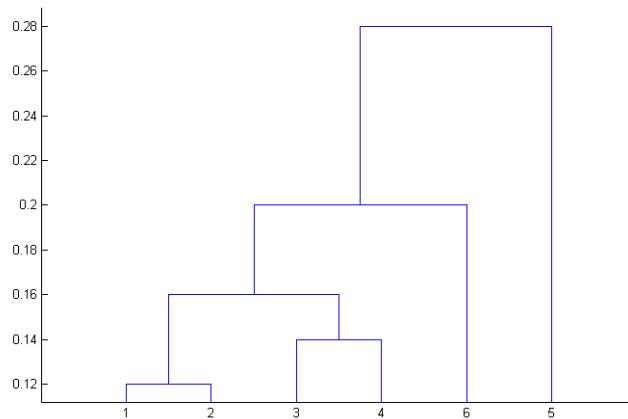
2 Clustering

The table below is a distance matrix for 6 objects.

	A	B	C	D	E	F
A	0					
B	0.12	0				
C	0.51	0.25	0			
D	0.84	0.16	0.14	0		
E	0.28	0.77	0.70	0.45	0	
F	0.34	0.61	0.93	0.20	0.67	0

2.a Hierarchical clustering

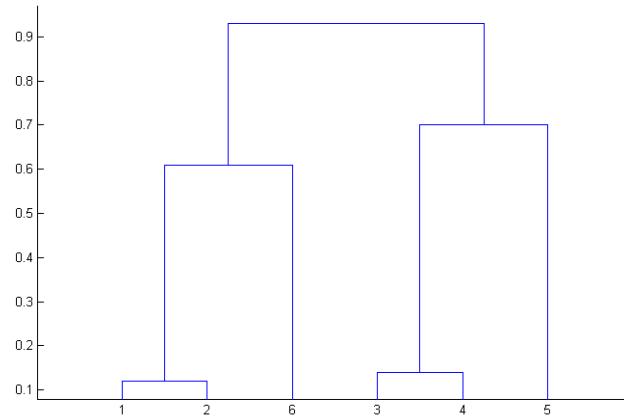
1. Show the final result of hierarchical clustering with single link by drawing a dendrogram.



[Solution:

]

2. Show the final result of hierarchical clustering with complete link by drawing a dendrogram.



[Solution:

]

3. Change **two** values from the matrix so that your answer to the last two question would be same.

[Solution: There is more than one way possible, but one way would be the following:

The first step that the complete link clustering differs from the single link clustering is where AB and F are grouped together by $\text{dist}(AB,F)=\text{dist}(B,F)=0.61$. We'd want $\text{dist}(AB, CD)=\text{dist}(A,D)$ to be smaller than this value, such as 0.53.

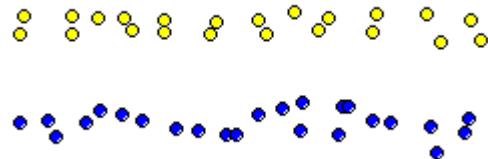
Then we want $\text{dist}(\text{ABCD}, \text{F}) = \text{dist}(\text{C}, \text{F}) = 0.93$ to be the smallest so that ABCD and F are grouped together. We set this value to 0.63. After these changes both dendograms become identical.]

2.b Which clustering method should we use?

Which clustering method(s) is most likely to produce the following results at $k = 2$? Choose the most likely method(s) and briefly explain why it/they will work better where others will not in **at most 3 sentences**. Here are the five clustering methods you can choose from:

- Hierarchical clustering with single link
- Hierarchical clustering with complete link
- Hierarchical clustering with average link
- K-means
- GMM (with no assumption on the covariance matrices)

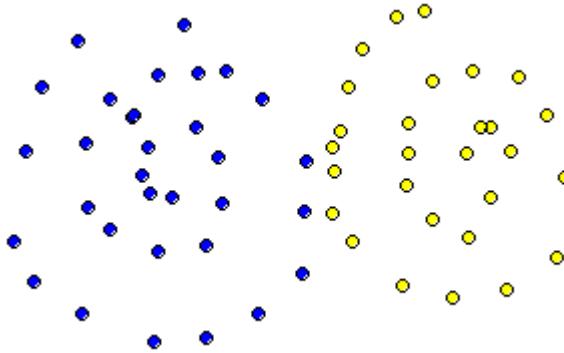
1.



[*Solution:* Hierarchical clustering with single link is most likely to work well. GMM can also produce a decision boundary that can produce such clustering result, but depending on initialization it might converge to a different set of clusters (left half vs. right half).]

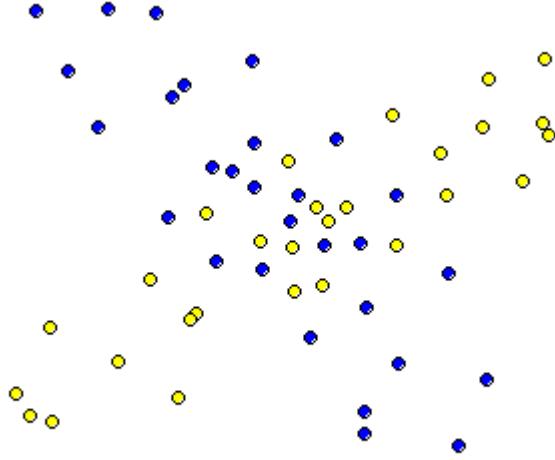
Other hierarchical clusterings won't really work well because at some point, two intermediate clusters from different true cluster will have shorter cluster distance than two from the same true cluster.]

2.



[*Solution:* K-means or GMM is most likely. Hierarchical clustering wouldn't work since the early few steps will group instances near the decision boundary (note some of them are very close).]

3.



[*Solution:* Among the five methods, only GMM has the capability of handling overlapping clusters. So GMM is the only method that would result in such clusters.]

3 Semi-supervised learning

Let H be the set of all polynomials. Consider the following function $d(h_1, h_2) : H \times H \rightarrow \mathbb{R}$:

$$d(h_1, h_2) = \int |h_1(x) - h_2(x)|p(x)dx$$

3.a

1. Show that $d(h_1, h_2)$ is a distance metric.

[*Solution:*

-Non-negativity: Both the absolute value and the pdf $p(x)$ is nonnegative, thus the integrated value has to be nonnegative

-Symmetry: $|h_1(x) - h_2(x)| = |h_2(x) - h_1(x)|$, thus the value being integrated will be the same for $d(h_1, h_2)$ and $d(h_2, h_1)$

-Triangle inequality: We know that $|a + b| \leq |a| + |b|$, so

$$\begin{aligned} d(h_1, h_2) &= \int |h_1(x) - h_2(x)|p(x)dx \\ &= \int |h_1(x) - h_3(x) + h_3(x) - h_2(x)|p(x)dx \\ &\leq \int (|h_1(x) - h_3(x)| + |h_3(x) - h_2(x)|)p(x)dx \\ &= \int |h_1(x) - h_3(x)|p(x)dx + \int |h_3(x) - h_2(x)|p(x)dx \\ &= d(h_1, h_3) + d(h_3, h_2) \end{aligned}$$

]

2. Let L be a set of labeled instances, U be a set of unlabeled instances, and f be the true classifier. How would you estimate $d(h_1, f)$ and $d(h_1, h_2)$?

[*Solution:*

$$d(h_1, h_2) = \frac{1}{|U|} \sum_{x \in U} |h_1(x) - h_2(x)|$$

$$d(h_1, f) = \frac{1}{|L|} \sum_{x \in L} |h_1(x) - f(x)|$$

]

3.b

Suppose you made the following observations from $[0, 1] \times \mathbb{R}$:

x	0.1	0.2	0.4	0.5	0.6	0.8	0.9	1.0
y	7.72	8.13	6.39	3.35	3.09	12.26	17.73	0.80

n	h_n	$\hat{d}(h_n, h_{n-1})$
1	$2.158x + 6.220$	
2	$6.498x^2 - 5.013x + 7.598$	0.451
3	$-175.6x^3 + 293.7x^2 - 133.9x + 20.98$	3.244
4	$-864.1x^4 + 1769x^3 - 1170x^2 + 278.5x - 11.14$	4.553
5	$-2297x^5 + 5417x^4 - 4477x^3 + 1570x^2 - 230.5x + 19.1$	3.315
6	$-2812x^6 + 6920x^5 - 6289x^4 + 2763x^3 - 671.8x^2 + 87.49x + 3.477$	1.171

- Let H be the set of all polynomials and h_n be your hypothesis of degree n minimizing the squared error (i.e. $\sum_{(x,y)} (h_n(x) - y)^2$). Which n would you choose? Show your work. You may want to write a short Matlab program to do this part (you do not need to submit the code)

[*Solution:*

Using the answer to 3.a.2,

n	$\hat{d}(h_n, h_{n-1})$	$\hat{d}(h_n, f) + \hat{d}(h_{n-1}, f)$
t2	0.451	8.0934
3	3.244	7.5618
4	4.553	5.5267
5	3.315	2.3702
6	1.171	

At $n = 5$, the triangle inequality does not hold, which indicates overfitting. So $n = 4$.]

4 Programming (K-means)

In this problem we will implement K-means clustering. The data provided is a Matlab file of image data of 5000 handwritten digits. Each digit is a greyscale image of 10×10 pixels and is represented as a row vector of length 100. The variable X contains all the images in a 5000×100 matrix, and the vector Y contains the true label of each image.

- Implement K-means algorithm. For initial cluster centers, use random points. Repeat the random start 10 times for each clustering run. After getting the K-means result with 10 different initializations, how can you determine the best starting point? For the following questions, use the best initialization for your final result.

[*Solution:* The best starting point is one whose final clustering result has the smallest objective value.]

2. We define the objective function of K-means as the sum of the squared distances of each point to its cluster centers, $\sum_{k=1}^K \sum_{i=1}^{n_k} (x_{ki} - \mu_k)^2$. Run your program with $K = 10$ and plot the values of objective function against iterations. Is it monotonically decreasing?

[*Solution: It should be monotonically decreasing*]

3. Try running it with $K = 16$ and plot the objective function again. How is the behavior of the objective function different from when $K = 10$?

[*Solution: The objective function converges at a lower value. Also takes more iterations to converge*]

4. Clustering performance is hard to evaluate. However, since we have the true labels, we can use the following heuristics. For each cluster C , we find the most frequent (true) label Y_C and label the instances in that cluster with the majority label Y_C . Report your precision (number of correctly labeled instances / number of all instances) and final value of the objective function for $K = 1, 5, 10, 16, 20$.

[*Solution:*]

K	Precision	Obj. Func
1	0.1140	1.2762e+09
5	0.4482	9.5501e+08
10	0.5912	8.1849e+08
16	0.6842	7.3375e+08
20	0.7170	6.9961e+08

[]

5. Among the five values you tried above, what would you choose to be the optimal number of clusters and why?

[*Solution: Using knee/elbow finding, it looks like 10 (or 5) should be the optimal number. Some said that there is no clear knee/elbow, that's also acceptable given the graph.*]