AN ABSTRACTION TECHNIQUE
FOR REAL-TIME VERIFICATION

Edmund M. Clarke, Flavio Lerda, Muralidhar Talupur

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15218

{flerda,tmurali,emc}@cs.cmu.edu

Abstract

In real-time systems, correctness depends on the time at which events
occur. Examples of real-time systems include timed protocols and many
embedded system controllers. Timed automata are an extension of
finite-state automata that include real-valued clock variables used to
measure time. Given a timed automaton, an equivalent finite-state
region automaton can be constructed, which guarantees decidability.
Timed model checking tools like UpPAL, KRONOS, and RED use spe-
cialized data structures to represent the real-valued clock variables. A
different approach, called integer-discretization, is to define clock vari-
ables that can assume only integer values, but, in general, this does not
preserve continuous-time semantics.

This paper describes an implicit representation of the region automa-
ton to which ordinary model checking tools can be applied directly. This
approach differs from integer discretization because it is able to handle
real-valued clock variables using a finite representation and preserves
the continuous-time semantics of timed automata. In this framework,
we introduce the GOABSTRACTION, a technique to reduce the size of the
state space. Based on a conservative approximation of the region au-
tomaton, GOABSTRACTION makes it possible to verify larger systems.
In order to make the abstraction precise enough to prove meaningful
properties, we introduce auxiliary variables, called Go variables, that
limit the drifting of clock variables in the abstract system. The paper
includes preliminary experimental results showing the effectiveness of
our technique using both symbolic and bounded model checking tools.

Keywords: Abstraction; model checking; real-time systems; timed automata.

Overview

Real-time systems are a class of systems whose correctness depends on
the time at which events occur. Examples include embedded controllers,

2

time triggered systems, and timed protocols. In fact, most safety critical
systems are real-time systems as they require guarantees on the timing
of events. For instance, in order for the braking system of a car to be
correct, it is not sufficient for the correct output to be produced, but it
has to be produced within a given time bound.

Model checking is widely used in the semiconductor industry and
it has been successful for software. For example, the model checker
SLAM [3] is the basis for the Driver Verifier, which is currently being
distributed by Microsoft as part of their Device Driver Software De-
velopment Kit. Moreover, all device drivers must be verified using the
Driver Verifier in order to be certified by Microsoft’s Windows Hardware
Quality Labs. However, finite-state model checking cannot be applied di-
rectly to real-time systems because time is modeled as a continuous, real-
valued quantity. The success of finite-state model checking has spurred
the development of model checking techniques for infinite-state systems,
including real-time systems.

Real-time systems are often modeled using timed automata [2]. Timed
automata are an extension of finite-state automata that include a set
of clock wvariables to keep track of time. The transitions of a timed
automaton are labeled with clock constraints that must hold when a
transition is taken, and sets of clock variables to be reset after a transition
occurs. To specify properties of timed automata, extensions of ordinary
temporal logics, e.g., Timed Computation Tree Logic (TCTL) [1], have
been proposed.

In recent years, there has been extensive work on verification of real-
time systems. Alur et al.[l, 2] developed the theoretical foundations
for much of the work in this area. They introduced timed automata,
an extension of finite-state automata that can be used to model real-
time systems. They proposed the region graph construction, which maps
questions about an (infinite-state) real-time system into questions about
a corresponding finite-state automaton. Many tools and techniques for
real-time verification are based on this work but employ specialized data
structures to represent clock variables: Difference Bounded Matrices [7],
Region Encoding Diagrams [17], Clock-Restriction Diagrams [20], and
Difference Decision Diagrams [13], just to name a few. Henzinger and
Kupferman [9] showed how to reduce the problem of checking a timed
temporal logic property of a timed automaton to checking an (untimed)
temporal logic property of a property of the region automaton. There-
fore, from now on, we will only consider untimed temporal logic proper-
ties. Other approaches have also been proposed. For instance, extensive
work has been done on integer discretization based techniques [5, 10, 4,
11], where real-valued clock variables are replaced by integer-valued vari-

An Abstraction Technique for Real-Time Verification 3

ables. While these techniques in general do not preserve the continuous-
time semantics of timed-automata, they are sound for a class of real-time
systems and properties [10].

In this paper, we explore techniques for the verification of timed au-
tomata that are based on the region graph construction but do not
use specialized data structures to represent clock variables. Preliminary
work in this area is due to Gollii et al. [8], however, no implementation
or experimental results were presented by the original authors. These
techniques are usually referred to as discretization techniques, but they
are radically different from the integer-discretization techniques men-
tioned above. The main difference is that the former provide a finite
(discrete) representation for sets of real-valued clock variables while the
latter is able to handle only integer-valued clock variables. In this pa-
per, we describe a new implicit representation of the region automaton.
The representation is implicit in that we do not enumerate regions or
transitions explicitly. The resulting system can be verified using exist-
ing model checking tools. Our representation of clock regions is similar
to the one of Wang et al. [18], however, their approach is based on a
specialized data structure for symbolic model checking and it cannot be
used with other model checking tools.

The region graph construction [1] is a well known technique for model
checking timed automata. A state of a timed automaton is defined as a
pair made of a location and a valuation of the clock variables. A clock
region is a (possibly infinite) set of clock valuations. The region graph
construction defines a bisimulation between the states of a timed au-
tomaton and a finite set of clock regions. The result of the construction
is a region automaton, a finite-state automaton that is bisimilar to the
original timed automaton. The bisimulation defined in [1] preserves tem-
poral logic properties. Verification of a property of a timed automaton
is reduced to the verification of the same property on the correspond-
ing region automaton. The region automaton is, by construction, finite,
therefore, ordinary model checking techniques can be applied to it. How-
ever, since the region automaton can be exponential in the size of the
original timed automaton, existing tools like UPPAAL [12], KRONOS [21]
and RED [19] treat clock variables differently from discrete state vari-
ables and use specialized data structures to represent clock regions.

Since the region automaton is, in the worst case, exponential in the
number of clock variables [2], we introduce a new abstraction technique
called GOABSTRACTION that addresses this blow up. Approaches that
use a representation similar to ours, e.g. [8, 18], do not have a similar
abstraction technique.

Abstractions have been widely used in hardware and software model
checking to improve the performance of verification. Predicate abstrac-
tion has been applied to timed automata by Moller et al. [14] and
Sorea [15]. This approach is based on identifying a set of predicates
that is sufficient to discriminate between any two clock regions and uses
abstraction/refinement to find a minimal subset of these predicates that
is sufficient to perform the verification. Tripakis and Yovine [16] define
an abstraction that removes the actual value of the delays to obtain a
timeless system, which is finite-state. Our approach, instead, is based
on merging clock regions that differ only in the ordering of fractional
parts.

In the region graph construction, a clock region corresponds to a set
of clock valuations that are equivalent according to the bisimulation
relation presented in [1]. One of the conditions necessary for two clock
valuations v and v’ to be equivalent is that the ordering of the fractional
parts of each pair of clock variables is the same in both valuations. For
instance, if the fractional part of clock ¢; is less than the fractional part
of clock ¢ in v, the same must hold for v/, even if the actual values
may differ. This is necessary to precisely compute the successors of
a given clock region. However, given n clock variables, there are n!
possible orders of their fractional parts, and, in principle, n! different
clock regions. This can cause an exponential blow up in the number of
states in the region automaton, which can lead to intractability.

Our approach abstracts the relative ordering between the fractional
parts. By doing so, we obtain an over-approximation of the behavior of
the system, where precise information is lost. Regions that differ only
because of the ordering of the fractional parts of some clock variables
are merged into a single abstract clock region. By reducing the number
of clock regions, we decrease the number of states in the region automa-
ton and, therefore, we obtain a smaller state space. However, while
the abstraction is safe and it is guaranteed to preserve the validity of
properties, it may introduce spurious counterexamples.

The abstraction scheme as presented so far is too coarse. The problem
is that, as we discard the relative ordering between clock variables, we
allow them to drift apart unboundedly. In order to make the abstraction
more precise, we introduce auxiliary variables, called Go variables, that
keep track of the way clock variables evolve and limit the drifting to at
most one time unit.

In our preliminary experiments, we show how GOABSTRACTION is
sufficient to prove properties for a real-time protocol, namely Fischer’s
mutual exclusion protocol, that could not be established with a naive
abstraction scheme that did not make use of the Go variables.

An Abstraction Technique for Real-Time Verification)

The reminder of the paper is organized as follows. Section 1 recalls
some useful definitions. Our discretization is presented in Section 2, and
GOABSTRACTION is introduced in Section 3. Section 4 contains some
preliminary experimental results and Section 5 gives conclusions and
directions for future work.

1. Preliminaries
1.1 Timed Automata

Timed automata are a formalism used to model real-time systems.
They are an extension of finite-state automata that include a set of real-
valued clock variables used to measure time. Transitions of a timed
automaton are labeled with a clock constraint and a set of clock vari-
ables known as the reset set. A transition can be taken only if the clock
constraint associated with it is true in the current state. After a transi-
tion is taken, the values of the clock variables in the reset set are set to
Z€ro.

DEFINITION 1 (CLOCK CONSTRAINTS) A clock constraint is a Boolean
combination of equalities and inequalities involving a single clock variable
x and an integer constant ¢ (i.e., x < c,x <c,x=c, x> ¢, andx > c).

The set of all possible clock constraints over a set of clock variables
X is denoted by C(X).

DEFINITION 2 (CLOCK VALUATIONS) A clock valuation over a set of
clock variables X is a function v : X — R that assigns to every clock
variable in X a non-negative real value.

The set of all possible clock valuations over a set of clock variables X
is denoted by V(X). Let vy, called the zero clock valuation, be the clock
valuation that assigns the value zero to all clock variables. Given a clock
valuation v € V(X) and a non-negative real value § € R, we denote by
v+ 9 € V(X) the clock valuation that maps every clock variable z € X
to the value v(x) + . Given a clock valuation v € V(X) and a reset set
A C X, we denote by v[\A = 0] € V(X) the clock valuation that maps
every clock variable x in A to zero and every clock variable x not in A
to the same value v does. Given a clock constraint g € C(X) and a
valuation v € V(X), v satisfies ¢ if and only if the expression obtained
by replacing in g every occurrence of a clock variable x with the value
v(z) evaluates to true.

DEFINITION 3 (TIMED AUTOMATON) A timed automaton is a 5-tuple
A=(Q,X,q0,1,T) where Q is a finite set of locations; X is a finite set of

6

real-valued clock variables; qo € Q is an initial location; I : Q — 2V(X)
is a location invariant, a function that assigns to every location a set
of walid valuations; and T C Q x C(X) x 2% x Q is a set of discrete
transitions, such that (q,9,\,q') € T if and only if there is a discrete
transition from location q to location q' labeled with the clock constraint
g and the reset set .

The state of a timed automaton A is a pair (¢,v) such that ¢ € @ is
a location and v € V(X) is a clock valuation. Timed automata allow
two types of transitions: (i) time transitions, which correspond to the
passing of time; and (7i) discrete transitions, which correspond to the
discrete transitions of the automaton. A time transition is labeled by
a positive real value § and maps state (¢,v) into state (g,v + J) if for
all non-negative real values ¢’ < §, v + ¢’ belongs to the invariant I(q).
A discrete transition is labeled by (g, g, A, q') € T and maps state (q,v)
into state (¢’,v[\ = 0]) if v satisfies the clock constraint g and v[A = 0]
belongs to the invariant 1(q’).

1.2 Region Graph Construction

A state of a timed automaton is a pair made of a location and a clock
valuation. Therefore, the set of possible states is infinite, as the clock
variables are assigned values from R™. Model checking was developed as
a technique for automatically verifying properties of finite-state systems.
As such, it is not directly applicable to timed automata, since they may
have an infinite number of states.

Alur et al. [1] proposed the region graph construction as a way to make
verification of real-time systems feasible. Given a timed automaton, the
region graph construction produces a region automaton, a finite-state
automaton that is bisimilar to the original timed automaton. Model
checking can then be performed on the region automaton, which satisfies
the same set of properties as the original timed automaton.

Given a timed automaton A, for each clock variable x € X, let M, be
the largest constant against which x is compared in the clock constraints
associated with the discrete transitions of A. We call M, the mazimum
constant value of clock variable x in the timed automaton A. Let |z] be
the integer part of clock variable x, and (z) = = — |x| be its fractional
part.

DEFINITION 4 (EQUIVALENT CLOCK VALUATIONS) Given a set of clock
variables X and their mazimum constant values M, two clock valuations
v1,v9 € V(X)) are equivalent, v1 = vy, if and only if:

An Abstraction Technique for Real-Time Verification 7

m For all x € X, either |vi(z)] = [va(x)]| or both vi(z) and va(x)
are greater than M, ;

m For all x € X such that vi(x) < M, (vi(z)) = 0 if and only if
(va()) = 0; and

m For all z,y € X such that vi(z) < M, and v1(y) < My, (vi(x)) <
(vi(y)) if and only if (v2(x)) < (va2(y)), for < € {<,=,>}.

As an example, consider Figure 1. Each point on one of the two
diagrams corresponds to a clock valuation, each shaded area to a set of
equivalent clock valuations. The shaded area on the left shows the clock
valuations such that |z| and |y]| are equal to 1 and (y) is smaller than
(x). The shaded area on the right represents the clock valuations such
that LxJ =2, LyJ =1, <y> < <l‘>, and <$> = 0.

Figure 1. The shaded area in each diagram represents a set of equivalent clock
valuations.
yA yA
2 2
1 1
> >
1 2 3y 1 2 3y

The first two conditions of Def. 4 guarantee that given two equivalent
clock valuations, they satisfy the same set of clock constraints. Given
a clock constraint z < ¢, the validity of the constraint can be decided
by knowing the integer part of x and whether the fractional part of x is
equal to zero.

The third condition is needed to guarantee that, given two equivalent
clock valuations, as time passes, they will reach clock valuations that
are equivalent. Consider again Figure 1. For all clock valuations repre-
sented by the shaded area in the diagram on the left (y) < (z). As a
consequence, as time passes, since both variables are incremented at the
same rate, clock variable x will reach the value 2 before clock variable
y does. Therefore, the set of clock valuations such that |z] =2 A |y]| =
1A (z) < {y) A{x) = 0 is reachable. The shaded area in the diagram on
the right represents this set of clock valuations. If we did not know the
ordering of the fractional parts of x and y, two other sets of equivalent
clock valuations would also be reachable, |z| = |y] =2 A (x) = (y) =0
and [z] =1A |yl =2A0=(y) < (x).

8

DEFINITION 5 (CLOCK REGION) A clock region p is an equivalence
class of the relation =~ defined above.

Let the set of clock regions of the automaton A be denoted by I'(A).
I'(A) is finite by construction. Since all valuations in a clock region
satisfy the same set of clock constraints, a region p satisfies a clock
constraint ¢ if and only if every clock valuation v € u satisfies ¢. Given
a clock region p, we define i/ = p[\ = 0] to be the clock region such
that, for all clock valuations v € p, v[A = 0] belongs to p'.

DEFINITION 6 (TIME SUCCESSOR) Given a clock region pi, a clock re-
gion i’ # p is a time successor of u if and only if there exists a clock
valuation v € u and a positive real value &, such that v+ 6 € ' and for
all non-negative real values 6’ < &, v+ &' belongs either to u or p'.

Notice that each clock region u has at most one time successor because
of the way we defined the equivalence relation = on clock valuations.

DEFINITION 7 (REGION AUTOMATON) Given a timed automaton A, the
corresponding region automaton is a finite-state automaton R(A) =
(S, s0, R) where S = Q x I'(A) is a finite set of states; so = (qo, t0)
is an initial state, where pg s the clock region containing the zero clock
valuation vy; and R C S x S is a finite transition relation such that
((q1, 1), (g2, p2)) belongs to R if and only if either:

m g = g2, p2 1S the time successor of w1, and uy satisfies 1(q1); or

m there exists a discrete transition (qi1, g, A, q2) such that py satisfies
g, 2 = p[A = 0], and po satisfies 1(g2).

The region automaton captures the behaviors of the original timed
automaton exactly, i.e., they satisfy the same sets of properties.

2. Discretization

In this section, we give a representation of the region automaton. The
representation is implicit as, in the model we construct, time transitions
are not enumerated explicitly but are represented by two transitions
called the from-integer and the to-integer time transitions.

Given a timed automaton A, let M, be the mazimum constant values
in A. For each clock variable x € X, let us introduce two variables: an
integer part variable I, and a fractional order variable F.

The integer part variable represents the integer part of a clock vari-
able. For a clock variable z, I, is equal to |z] if x < M, and M,
otherwise. Therefore I, is an integer ranging between 0 and M,

An Abstraction Technique for Real-Time Verification 9

For a given clock valuation, order the clock variables that are smaller
or equal to the corresponding maximum constant value according to the
values of their fractional parts. The fractional order variable represents
the position of a clock variable in this order. The fractional order variable
of a clock variable z < M, is equal to zero if and only if the fractional
part of x is equal to zero. For the variables with the smallest, non-
zero fractional part (there may be more than one), the corresponding
fractional order variable is set to 1. For the variables with the second
smallest, non-zero fractional part, the corresponding fractional order
variable is set to 2, and so on. If x > M, then the corresponding
fractional order variable F) is set to 1, as the order between fractional
parts is not relevant for clock variables larger than the their maximum
constant value. If two clock variables x and y such that z < M, and
y < M, have the same fractional part, their fractional order variables
are equal. The fractional order variables are integers ranging between
0 and n, where n is the number of clock variables. The order between
fractional parts is maintained by the fractional order variables, i.e., given
two clock variables x and y such that + < M, and y < M,, F, < F, if
and only if (x) < (y), for < € {<,=,>}. While clock variable x € X is
a real-valued variable, I, and F, are discrete (cf. Fig. 2).

Figure 2. The possible values of integer part and fractional order variables. The
example shows the case of 3 clock variables with the maximum constant value for
the variable shown equal to 4. The fractional order values represent only the relative
ordering between fractional parts.

Integer part value

0 1 2 3 4 time
S N N Y A
rr el >
0 0 0 0 0

Fractional order value

DEFINITION 8 (DISCRETE CLOCK VALUATIONS) Given a set of clock
variables X, a discrete clock valuation is a function v® that, for each
clock variable x € X, assigns to I, a value from {0,..., M.} and to F,
a value from {0,...,n}.

Let V¢(X) be the set of discrete clock valuations defined for a set of
clock variables X. Given a clock valuation v € V(X), the corresponding
discrete clock valuation v? assigns values to each integer part and frac-
tional order variables as described above. Given a clock variable z € X,

10

we will denote by v?(z) the pair (v¥(I,),v?(F)), called the discrete value
of z.

THEOREM 9 (EQUIVALENCE TO REGIONS) Each discrete clock valua-
tion corresponds to a unique clock region and vice-versa, i.e., given two
clock valuation vi and ve, v1 is equivalent to vo (Def. /) if and only if
the corresponding discrete clock valuations vil and vg are equal.

The states of the region automaton can be represented by a pair made
of a location and a discrete clock valuation. Now that we have defined
discrete clock valuations, a representation for clock regions, and discrete
states, we define how transitions between states in the region automaton
map to transitions between discrete states in the discrete timed system.
The region automaton defines two types of transitions: time transitions
and discrete transitions.

Time transitions are represented by two transitions: (i) the from-
integer time transition, which is taken when one of the clock variables
has an integer value; and (4i) the to-integer time transition, which leads
to a state where one of the clock variables has an integer value. Each
time transition represents a set of actual transitions. We use two types of
time transitions to capture two possible scenarios: (i) the case where at
least one clock variable has an integer value (cf. Figure 3); and (ii) the
case where none of the clock variables has an integer value (cf. Figure 4).
In the figures, the diagrams at the top, represent the clock regions as
shaded area as before. The bottom shows a discrete clock valuation by
assigning an integer part and a fraction order to each clock variable.

The from-integer time transition can be taken only if there exists at
least one fractional order variable equal to zero. When this transition
is taken, all fractional order variables are incremented by one, while all
integer part variables remain unchanged. The example in Fig. 3 contains
two clock variables x and y. The maximum constant value of x is 3 and
the one of y is 2. A point in one of the diagrams at the top of the figure
represents a clock valuation, which assigns the corresponding values to
x and y. The thin lines split the clock valuations into regions. A shaded
area is used to represent a specific clock region. Initially the discrete
value of z is (1,1) and the one of y is (1,0). The shaded area in the
diagram at the top-left of the figure shows the region corresponding to
this discrete state. As time progresses, clock variable y will become
greater than 1 before clock variable x reaches 2, and it will have the
smallest, non-zero fractional part. Therefore, its discrete value will be
(1,1). At the same time, variable = will still have integer part equal to 1,
but its fractional part will become the second smallest one and, therefore,

An Abstraction Technique for Real-Time Verification 11

its discrete value will be (1,2). The shaded area in the diagram at the
top-right of the figure shows the region corresponding to the new state.

Figure 3. Evolution of a region and the corresponding discrete valuation due to
the from-integer time transition. Each shaded area represents the clock valuations
belonging to a region.

yA yA
2 2
from-integer
1 time transition 1
- -
1 2 3 X 1 2 3 X

Vi) L) ——— (1,2)

from-integer

va(y) (1,0) time transition 1)

The to-integer time transition can be taken only if none of the frac-
tional order variables is equal to zero. The fractional order variables
with the largest value (there might be more than one) are set to zero
and the corresponding integer part variables are incremented by one. All
other integer part and fractional order variables remain unchanged. The
example in Fig. 4 contains clock variables x and y as before. Initially the
discrete value of z is (1,2) and the one of y is (1,1). The shaded area in
the diagram at the top-left of the figure shows the region corresponding
to this discrete state. As time progresses, variable x will be the first one
to reach an integer value, because it has the largest fractional part. Its
new value will be (2,0) and the next value of y will remain (1, 1), since
y still has the smallest, non-zero fractional part. The shaded area in the
diagram at the top-right of the figure shows the region corresponding to
the new state.

The clock variables x € X such that the integer part variable I, is
equal to M, and the fractional order variable F) is greater than zero are
treated differently: their integer part and fractional order variables are
not updated by the from-integer or the to-integer time transitions. This
is because, in the region graph construction, the order between fractional
parts is relevant only for those clock variables that are smaller than the
corresponding maximum constant value.

Each discrete transition of the region automaton is mapped into a
corresponding discrete transition between discrete clock valuations. A
discrete clock valuation satisfies a clock constraint ¢ if the correspond-
ing clock region does. Since clock variables are only compared against

12

Figure 4. Evolution of a region and the corresponding discrete valuation due to the
to-integer time transition. Each shaded area represents the clock valuations belonging
to a region.

yA yA
2 2
to-integer
1 time transition 1
- -
1 2 3 X 1 2 3 X

Vi) (L) ——» (2,0

to-integer

vi(y) (1,1) time transiton 1.1)

integer constants, it is possible to determine if a discrete clock valuation
satisfies a clock constraint by looking only at the integer part and frac-
tional order variables. After a transition is taken, the clock variables in
the reset set A must be set to zero. If clock variable x belongs to A, both
the corresponding integer part and fractional order variables are set to
ZEro.

Given a timed automaton A, the result of our discretization is the
discrete timed system A%, a system made of two asynchronous processes
and containing, for each clock variable x, two discrete variables I, and
F,.. The first process, called the discrete-transition process has the same
locations and transitions as the original timed automaton, where clock
constraints are mapped into expressions over I, and F, and reset sets
are mapped into resets of these variables, as described above. The sec-
ond process, called the time-transition process, defines the from-integer
and to-integer time transitions. The system is modeled using two asyn-
chronous processes: one process defines the time transitions, the other
defines the discrete ones. The time transitions can occur at any location
of the timed automaton. Having two asynchronous processes allows us
to use a smaller representation: time transitions are defined only once
but, by virtue of the asynchronous composition, they can be taken at any
location of the timed automaton. The idea of separating discrete transi-
tions and time transition into two asynchronous processes has been used
by Lamport [11] in his integer discretization based approach for real-
time systems. However, as with other integer discretization techniques,
this approach handles only integer-valued clock variables and, therefore,
does not capture the continuous time semantics of timed automata.

An Abstraction Technique for Real-Time Verification 13

THEOREM 10 (DISCRETE EQUIVALENCE) Given a timed automaton A,
the discrete timed system A% and the region automaton R(A) are equiv-
alent.

The main advantages of this construction are: (i) the construction is
implicit, it does not enumerate the clock regions or the time transitions
between them; (i) the resulting system can be checked using any of
the existing model checking tools and therefore exploit the recent ad-
vances in this domain; (74i) this approach can easily be extended to the
composition of a set of timed automata: since they need to synchro-
nize over the time transitions, we can represent the composition using a
discrete-transition process for each automaton and a single instance of
the time-transition process.

3. GOABSTRACTION

The discretization given in the previous section makes it possible to
verity properties of timed automata using standard model checking tools.
However, in the worst case, the region automaton can be exponential in
the number of clock variables and the largest constant. Therefore, even if
our construction does not explicitly enumerate the clock regions, model
checking might not terminate because of the size of the state space.

In this section, we introduce a new abstraction technique, called GOAB-
STRACTION, which aims at reducing the size of the state space. This is
a conservative approximation of the behaviors of the system, i.e., each
behavior of the original system is maintained in the abstraction, but it
may introduce spurious counterexamples.

In the construction given in Section 3, for each clock variable z, the
fractional order variable F, is used to represent the ordering relation
between the fractional parts of the different clock variables. Keeping
track of this ordering, however, may lead to a number of different per-
mutations that is exponential in number of clock variables. For some
applications, this can cause the verification to be intractable.

We propose an abstraction that discards part of the ordering relation
between clock variables. In the previous construction, the fractional
order variables ranged between 0 and n, where n is the number of clock
variables. In the abstraction, we replace the fractional order variables
F, with abstract fractional order variables F. These variables assume
values in the abstract domain F* = {0,a}, where 0 represents clock
variables whose fractional part is equal to zero, and « represents all
other possible fractional order values (cf. Fig. 5).

DEFINITION 11 (ABSTRACT CLOCK VALUATIONS) Given a set of clock
variables X, an abstract clock valuation is a function v® that, for each

14

Figure 5. The mapping between concrete and abstract clock valuations.

Concrete Clock Valuation Abstract Clock Valuation

vi(x,)
VH(x,)
VE(x,)
vi(x,)

vix,) Vi(x.)

clock variable in x € X, assigns to I, a value from {0,..., M.} and to
FY a value from F©.

Let V*(X) be the set of abstract clock valuations defined for a set
of clock variables X. Given a clock variable z € X, we will denote by
v¥(z) the pair (v¢(I,),v(F2)), called the abstract value of z.

DEFINITION 12 (ABSTRACTION FUNCTION) The abstraction function
h:VYX) — VX) maps discrete clock valuations into abstract clock
valuations and is defined as:

vi(I,) if V=1,
h(wh)(Vy) =< 0 if V, = F, and v3(F,) =0
o if V, = F, and v*(F,) # 0

Given the abstraction function h, it is possible to construct an abstract
timed system A% using a technique called ezistential abstraction [6].
Existential abstraction produces an over-approximation of the concrete
system that is guaranteed to preserve universal CTL (VCTL) proper-
ties. The abstract timed system A% is analogous to the discrete timed
system A% but uses the abstract fractional order variables instead of the
(concrete) fractional order ones. Each transition of A¢ is mapped into
an abstract transition of A® as described below.

The from-integer abstract time transition can be taken only if there
exists at least one abstract fractional order variable equal to 0. When
this transition is taken, all fractional order variables equal to 0 are set
to a.

The to-integer abstract time transition can be taken only if all abstract
fractional order variables are equal to . When this transition is taken,

An Abstraction Technique for Real-Time Verification 15

any non-empty subset of the fractional order variables can be set to 0
and the corresponding integer part variables are incremented by one.
Notice that the transitions represented by the to-integer abstract time
transition can be non-deterministic.

Each discrete transitions is mapped into an abstract discrete transi-
tion. The validity of a constraint can be determined by knowing the
value of the integer part variables and whether the abstract fractional
order variables are equal to zero. The reset of a clock variable can be
done by setting both the integer part and the abstract fractional order
variables to zero.

Given a timed automaton A, the result of our abstraction is the ab-
stract timed system A%, a system made of two asynchronous processes
and containing, for each clock variable x, two discrete variables I, and
F¢. The first process, called the abstract discrete-transition process has
the same locations and transitions as the original timed automaton,
where clock constraints are mapped into expressions over I, and F¢
and reset sets are mapped into resets of these variables, as described
above. The second process, called the abstract time-transition process,
defines the from-integer and to-integer abstract time transitions.

THEOREM 13 (ABSTRACTION PRESERVATION) Given a timed automa-
ton A, the abstract timed system A% is an over-approximation of the
discrete timed system A%, i.e., every trace of A% corresponds to an equiv-
alent trace of A®.

The abstraction above, however, is too coarse. Given two clocks that
are assigned the same value, it is possible for them to drift apart arbi-
trarily, i.e., there exists a sequence of abstract time transitions such that
the difference between the two clocks grows unboundedly (cf. Fig. 6).

Figure 6. Given two clock variables initially equal, they can drift apart by means
of an appropriate sequence of from-integer and to-integer abstract time transitions.

vix) (0,00 — (0,00 —» (1,0) —» (1,0) —»(2,0) —» 2,00 —» (3,0)
vix,) (0,00 (0,0) (0,0 0,0 (0,0 0,0 (0,0

from to from to from to
integer integer integer integer integer integer

This is because, in the abstraction, we discarded the order between
the fractional parts and introduced non-determinism in the to-integer
abstract time transition. It is possible to increment one of the clock
variables multiple times before incrementing the others.

In order to prevent this and obtain a more precise abstraction, for
each of the clock variables © € X, we introduce in our model the Boolean

16

variable Go,. The purpose of this variable is to keep track whether a
clock variable has been already incremented.

Initially, all Go, variables are set to true. This means that all variables
can be incremented. Once a clock variable x has been incremented, the
variable Go, is set to false. This prevents the same clock variable from
being incremented again. When all Go, variables are false, i.e., every
variable has been incremented once, they are set to true simultaneously.
Fig. 7 illustrates the behavior of the Go, variables. They guarantee
that two clock variables cannot drift apart by more than one time unit,
making the abstraction more precise.

Figure 7. The Go, variables prevent clock variables from drifting apart.

vi(x) (0,0)—(0,0) (0,0) —» (1,0) —»(1,0) 2,0
go, true —» false—»true true —»false Is
vi(x,)) (0,00 —(0,0) (0,00 (0,00 (0,00 f
go, true —» false—»true true true true
lfrom go to Afrom o
integer reset integer integer integer

We can now construct the GOABSTRACTION timed system A¢,,, which
is obtained by introducing the Go, variables and updating the abstract
transitions.

The from-integer GOABSTRACTION time transition is analogous to
the from-integer abstract time transition, but it also updates the Go,
variables. If for all clock variables x such that I, < M, and F, = «
the corresponding variable Go, is false, then the Go, variables of all
clocks are set to true; otherwise the Go, variables of the clocks whose
abstract fractional order variable is equal to 0 are set to false and all
other Go, variables are left unchanged. The to-integer GOABSTRAC-
TION time transition is analogous to the to-integer abstract time transi-
tion, but only clock variables whose Go, variable is true can be updated
by this transition.

Given a timed automaton A, the result of GOABSTRACTION is the
GOABSTRACTION timed system A%, a system made of two asynchronous
processes and containing, for each clock variable x, three discrete vari-
ables I, F&, and Go,. The first process, called the GOABSTRAC-
TION discrete-transition process has the same locations and transitions
as the original timed automaton, where clock constraints are mapped
into expressions over I, and FY and reset sets are mapped into setting
I, and FY to zero and Go, to true. The second process, called the
GOABSTRACTION time-transition process, defines the from-integer and

An Abstraction Technique for Real-Time Verification 17

to-integer GOABSTRACTION time transitions, and the GOABSTRACTION
reset transition.

THEOREM 14 (GOABSTRACTION PRESERVATION) Given a timed auto-
maton A, the GOABSTRACTION timed system A% is an over-approz-
imation of the discrete timed system A%, i.e., every trace of A% corre-
sponds to an equivalent trace of A%, .

Moreover, the GOABSTRACTION timed system is more precise than
the abstract time system defined above, that is:

THEOREM 15 (REFINED ABSTRACTION) Given a timed automaton A,
the abstract timed system A% is an over-approzimation of the GOAB-
STRACTION timed system A¢,,, i.e., every trace of A%, corresponds to
an equivalent trace of A*.

4. Experimental Results

In this section, we give some preliminary experimental results that we
obtained by applying GOABSTRACTION to Fischer’s mutual exclusion
protocol.

This protocol guarantees mutual exclusion by imposing minimum and
maximum delays for the execution of some statements. We modeled such
delays by means of clock constraints in the timed automaton.

Table 1. Fischer’s protocol with symbolic model checking for 4 nodes.

k discrete go
2 28.1s 4.8s
3 82.5s 22.5s
4 175.3s 24.3s
5 355.6s 43.6s
6 728.1s 48.8s

We model checked the protocol using Cadence SMV both as a sym-
bolic model checker and a bounded model checker. The results for sym-
bolic model checking are presented in Table 1. The first column shows
the value of the timing parameter k, a parameter of the protocol. The
second and third columns report the time required by SMV to perform
the verification. The model used for the second column corresponds to
the discrete timed system A? (cf. Section 2) and the one used for the
third column corresponds to the GOABSTRACTION timed system A%,
(cf. Section 3). In both cases, SMV was able to verify mutual exclusion,

18
which demonstrates that GOABSTRACTION is precise enough to verify

the property. Moreover, by using GOABSTRACTION, we were able to
reduce the running time of the model checker by an order of magnitude.

Table 2. Bounded Model Checking applied to Fischer’s protocol with 6 nodes.

k discrete go

2 100s 1=25 [3269] 19s 1=13 [169]
3 450s 1=32 [617s] 50s 1=16 [57s]
4 969s 1=38 [2500s] 61s 1=19 [71s]
5 1200s 1=46 [1605s] 137s 1=22 [118s]
6 1800s 1=54 [3115s] 316s 1=28 [347s]

Table 2 shows the results obtained by performing bounded model
checking on the same models. Since bounded model checking is mostly
aimed at detecting property violations, instead of checking for mutual
exclusion, we checked if one of the processes is unable to reach the crit-
ical section. Since the protocol is correct, every process is guaranteed
to eventually reach the critical section and the model checker reports
a counterexample. The first column in the table contains the value of
the timing parameter k. The next two columns contain three values:
the running time and the depth [at which a valid counterexample was
found, and the running time of the verification for depth [— 1, at which
no error can be found. As it can be seen from the results, GOABSTRAC-
TION has the side effect of reducing the depth at which an error can be
detected: this is because all the intermediate steps needed to increment
the fractional order variables of the different clocks are removed by the
abstraction. Moreover, the running times are reduced again by one order
of magnitude.

While these are only preliminary results, they show how, in this case,
GOABSTRACTION is precise enough to prove interesting properties, and
it is effective in reducing verification time.

5. Conclusions and Future Work

We described an implicit representation of the region automaton that
can be used to perform verification of real-time systems using existing
state-of-the-art model checking tools. Since the size of the region au-
tomaton can be exponential in the number of clock variables, we intro-
duced GOABSTRACTION, a new abstraction technique that, by making
use of auxiliary variables, is precise enough to preserve interesting prop-

An Abstraction Technique for Real-Time Verification 19

erties of real-time systems. We demonstrated this technique on a typical
real-time example.

In our experiments, we manually checked whether a counterexample
was spurious. However, this process can be automated, and we would
like to do so in future work. While GOABSTRACTION was sufficient for
the example we considered, we would like to develop a counterexample-
guided abstraction/refinement framework for timed automata based on
GOABSTRACTION.

Moreover, we would like to develop additional techniques for the ver-
ification of real-time systems based on the representation we presented.
Specifically, we would like to develop additional abstractions that can be
used to address the verification of real-time properties of large systems.

Acknowledgments

This research was sponsored by the National Science Foundation un-
der grant nos. CNS-0411152, CCF-0429120, CCR-~0121547, and CCR-
0098072, the US Army Research Office under grant no. DAAD19-01-1-
0485, the Office of Naval Research under grant no. N00014-01-1-0796,
the Defense Advanced Research Projects Agency under subcontract no.
SA423679952, the General Motors Corporation, and the Semiconduc-
tor Research Corporation. The views and conclusions contained in this
document are those of the author and should not be interpreted as repre-
senting the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government, or any other entity.

References

[1] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-Checking for Real-
Time Systems. In Proc. of the 5th Annual IEEE Symposium on Logic in Com-
puter Science, 1990.

[2] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical
Computer Science, 126(2):183-235, April 1994.

[3] Thomas Ball and Sriram K. Rajamani. Automatically Validating Temporal
Safety Properties of Interfaces. In Proc. of the 8th International SPIN Workshop,
2001.

[4] Dirk Beyer, Claus Lewerentz, and Andreas Noack. Rabbit: A Tool for BDD-
Based Verification of Real-Time Systems. In Proc. of the 15th International
Conference on Computer Aided Verification (CAV), 2003.

[5] Marius Bozga, Oded Maler, and Stavros Tripakis. Efficient Verification of Timed
Automata Using Dense and Discrete Time Semantics. In Proc. of 10th Confer-
ence on Correct Hardware Design and Verification Methods (CHARME), 1999.

[6] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Checking
and Abstraction. ACM Transactions on Programming Languages and Systems,
16(5):1512-1542, 1994.

20

(10]

(11]

(12]

David Dill. Timing Assumptions and Verification of Finite-Sate Concurrent
Systems. In Proc. of the Workshop on Automatic Verification Methods for Finite
State Systems, 1989.

Aleks Gollii, Anuj Puri, and Pravin Varaiya. Discretization of Timed Automata.
In Proc. of the 83rd IEEE Conference on Decision and Control, 1994.

Thomas A. Henzinger and Orna Kupferman. From Quantity to Quality. In
Proc. of International Workshop on Hybrid and Real-Time Systems (HART),
1997.

Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What Good Are Digital
Clocks? In Proc. of the 19th International Colloquium on Automata, Languages
and Programming, 1992.

Leslie Lamport. Real-Time Model Checking is Really Simple. In Proc. of 13th
Conference on Correct Hardware Design and Verification Methods (CHARME),
2005.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Symbolic
Model-Checking of Real-Time Systems. In Prof. of the 16th IEEE Real-Time
Systems Symposium, 1995.

Jesper Mgller, Henrik Hulgaard, and Henrik Reif Andersen. Symbolic model
checking of timed guarded commands using difference decision diagrams. Jour-
nal of Login and Algebraic Programming, 52-53:52-57, July-August 2002.

M. Oliver Moller, Harald Ruef}, and Maria Sorea. Predicate Abstraction for
Dense Real-Time Systems. In Proc. of the Workshop on Theory and Practice of
Timed Systems, 2002.

Maria Sorea. Verification of Real-Time Systems through Lazy Approzimations.
PhD thesis, University of Ulm, Germany, 2004.

Stavros Tripakis and Sergio Yovine. Analysis of Timed Systems Using Time-
Abstracting Bisimulations. Formal Methods in System Design, 18(1):25-68, Jan-
uary 2001.

Farn Wang. Efficient Data Structure for Fully Symbolic Verification of Real-
Time Software Systems. In Proc. of the 6th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), 2000.

Farn Wang. Region Encoding Diagram for Fully Symbolic Verification of Real-
Time Systems. In Proc. of the 20th Annual International Computer Software
and Applications Conference, 2000.

Farn Wang. RED: Model-Checker for Timed Automata with Clock-Restriction
Diagram. In Proc. of Workshop on Real-Time Tools, 2001.

Farn Wang. Symbolic Verification of Complex Real-Time Systems with Clock-
Restriction Diagram. In Proc. of the 21st International Conference on Formal
Techniques for Networked and Distributed Systems, 2001.

Sergio Yovine. KRONOS: a verification tool for real-time systems. International
Journal on Software Tools for Technology Transfer, 1(1-2):123-133, December
1997.

