
Revisiting Positive Equality?Shuvendu K. Lahiri, Randal E. Bryant, Amit Goel, and Muralidhar TalupurCarnegie Mellon University, Pittsburgh, PAfshuvendu,agoelg@ece.cmu.edu, frandy.bryant,tmuralig@cs.cmu.eduAbstract. This paper provides a stronger result for exploiting positiveequality in the logic of Equality with Uninterpreted Functions (EUF).Positive equality analysis is used to reduce the number of interpreta-tions required to check the validity of a formula. We remove the primaryrestriction of the previous approach proposed by Bryant, German andVelev [5], where positive equality could be exploited only when all thefunction applications for a function symbol appear in positive context.We show that the set of interpretations considered by our analysis ofpositive equality is a subset of the set of interpretations considered bythe previous approach. The paper investigates the obstacles in exploitingthe stronger notion of positive equality (called robust positive equality) ina decision procedure and provides a solution for it. We present empiricalresults on some veri�cation benchmarks.1 IntroductionDecision procedures for quanti�er-free First-Order Logic (FOL) with equalityhave become an integral part of many formal veri�cation tools. The importanceof decision procedures lies in automatically validating (or invalidating) formulasin the logic. The ability to automatically decide formulas has been the corner-stone of several scalable veri�cation approaches. For hardware, Burch and Dill [8]have used symbolic simulation with a decision procedure for the quanti�er-freefragment of FOL to automatically verify complex microprocessor control. Bryantet al. [5] have extended their method to successfully verify superscalar proces-sors. Recently, Lahiri, Seshia and Bryant [15] have demonstrated the use ofeÆcient decision procedures to improve the automation for out-of-order proces-sor veri�cation. For software, decision procedures have been used for translationvalidation of compilers [19]. Decision procedures are used extensively for pred-icate abstraction in several software veri�cation e�orts [2, 13]. They have alsobeen used for the analysis of other concurrent in�nite-state systems.Most decision procedures for quanti�er-free logic fall roughly into two categories:decision procedures based on (i) a Combination of Theories [22, 17, 3, 18] or (ii)a validity preserving translation to a Boolean formula [5, 19, 21, 7]. The former? This research was supported in part by the Semiconductor Research Corporation,Contract RID 1029.001.



methods combine the decision procedures for individual theories using Nelson-Oppen [17] style of combination. The latter methods translate the �rst-orderformula to a Boolean formula such that the Boolean formula is valid if and onlyif the �rst-order formula is valid. There has also been work in solving �rst-orderformulas by using abstraction-re�nement based on Boolean Satis�ability (SAT)solvers [4, 9].Among the decision procedures based on a validity preserving translation to aBoolean formula, Bryant et al. [5, 5] proposed a technique to exploit the structureof equations in a formula to eÆciently translate it into a Boolean formula. Theirmethod identi�es a subset of function symbols in the formula as \p-function"symbols, the function symbols which only occur in monotonically positive con-texts. The method then restricts the set of interpretations for the function appli-cations of p-function symbols for checking the validity of the formula. They havesuccessfully used this decision procedure to automatically verify complex micro-processors. The method was initially proposed for the Logic of Equality withUninterpreted Functions (EUF) and was later extended for the logic of CounterArithmetic with Lambda Expressions and Uninterpreted Functions (CLU) [7,12]. Pnueli et al. [19] use Ackermann's function elimination method [1] to re-move function applications from a formula and allocate ranges for each of thevariables in the resulting formula, such that the ranges are suÆcient for checkingvalidity. The technique also exploits the polarity of equations in the formula torestrict the range allocation. Rodeh et al. [21] have used the function eliminationmethod of Bryant et al. [5] to further restrict the domain size of the variablesusing the algorithm in [19]. The last two decision procedures have been success-fully used for validating compiler code automatically. In all the above decisionprocedures [5, 19, 21], the key idea has been to restrict the set of interpretations,by exploiting the polarity of the terms in the formula.One of the main limitations of the positive equality analysis of Bryant et al. isthat it is not robust. For a function symbol f to be a \p-function" symbol, all thefunction applications of f have to appear in monotonically positive equations.This makes it diÆcult to exploit positive equality, even when a small numberof applications of a function appears in a negative context. This places strongerrestrictions on the formulas to be decided eÆciently and the method has notproven e�ective for benchmarks which display these characteristics [20].In this paper, we present a generalization of positive equality analysis of Bryant,German and Velev [5] which allows the decision procedure to exploit positiveequality in situations where the previous approach could not exploit it. Thisstronger version of positive equality analysis, called robust positive equality, re-stricts the interpretations to consider in deciding formulas in EUF to a subset ofinterpretations considered by the previous approach. We show the complexity ofexploiting robust positive equality in a decision procedure which uses the func-tion elimination method proposed by Bryant et al. [5]. We describe a decisionprocedure to exploit this stronger form of positive equality. We present veri�ca-



tion benchmarks where this approach reduces the number of interpretations toconsider by orders of magnitude compared to the previous approach.The rest of the paper is organized as follows: In Section 2, we present Bryantet al.'s positive equality analysis. We illustrate the strengths and limitations oftheir approach. In Section 3, we present a generalization of the positive equalityanalysis called robust positive equality analysis. We present the robust maximaldiversity theorem that allows us to restrict the interpretations to consider to bea subset of the interpretations considered by the previous approach. Section 4discusses a decision procedure based on robust positive equality. We discuss themain complications in exploiting robust positive equality in a decision procedureand provide a heuristic which lets us exploit the robust positive equality. InSection 5, we compare the e�ectiveness of the new approach compared to theprevious work on a set of veri�cation benchmarks.2 Background: Positive Equality and its LimitationIn earlier work, Bryant et al. [5, 5] exploited positive equality in the logic of EUFto give a very eÆcient decision procedure for this fragment. The logic of EUFis built from terms and formulas. Terms are formed by function applications(e.g. f(x)) or by if-then-else (ITE) constructs. The expression ITE(G; T1; T2)selects T1 when G is true, and T2 otherwise. Formulas are built from predicateapplications, equations between terms or using the other Boolean connectives (^,_, :). Every function and predicate symbol has an associated arity to denotethe number of arguments for the function. Function symbols of arity zero arecalled symbolic constants. Similarly, predicate symbols of arity zero are calledpropositional symbolic constants.In positive equality analysis, the decision procedure partitions the function sym-bols in an EUF formula as p-function symbols and g-function symbols. A functionsymbol f is called a p-function symbol in an EUF formula F1, if none of the func-tion applications of f appear in (i) a negative equation (e.g. f(x1; : : : ; xk) 6= T1)or (ii) in the controlling formula of an if-then-else (ITE) term ( the controllingformula of an ITE is implicitly negated when choosing the else branch). Allfunction symbols which are not p-function symbols are g-function symbols.The semantics of an expression in EUF is de�ned relative to a non-empty domainD of values and an interpretation I , which assigns values to the function andpredicate symbols in the formula. An interpretation I assigns a function fromDk to D for each function of arity k and a function from Dk to ftrue,falsegfor each predicate symbol of arity k. Given an interpretation I , the meaning ofan expression E is de�ned as I [E] inductively on the syntactic structure of E.A formula F is valid (also called universally valid), if for every interpretation I ,I [E] = true.1 For simplicity, assume F is in negation normal form where all the negations arepushed down towards the leaves of the formula and ::G is collapsed to G.



An interpretation I is called a maximally-diverse interpretation, if for any p-function symbol f , I [f(U1; : : : ; Uk)] = I [g(S1; : : : ; Sm)] if and only if the follow-ing conditions hold: (i) f and g are the same function symbol and (ii) foralli 2 [1; : : : ; k], I [Ui] = I [Si]. The main theorem is called the maximal diversitytheorem2, which is given below.Theorem 1. Maximal Diversity Theorem. An EUF formula F is valid i�F is true in all maximally-diverse interpretations.Restricting the set of interpretations to only maximally-diverse interpretationsfor checking validity is very eÆcient for EUF formulas with large number ofp-function symbols. For instance, consider the formula::(x = y) _ f(g(x)) = f(g(y))The set of terms in the formula is fx; y; g(x); g(y); f(g(x)); f(g(y))g. Since thereare 6 terms in the formula, it is suÆcient to restrict the domain of each of theterms to contain at most 6 values, for checking the validity [1]. Hence, one candecide the formula by considering 66 interpretations. However, positive equalityanalysis allows us to restrict the number of combinations to search, to only 22values, since only two functions x and y (of arity 0) appear in a negative equation.However, the main bottleneck of the approach is that it is not robust. Positiveequality can not be exploited for a function symbol f even if only one applicationof f appears in a negative context. For example, consider the following EUFformula: F := :(f(x) = x) _ (f(f(f(f(x)))) = f(f(f(x)))) (1)After exploiting positive equality, the set of p-function symbols would be fgand the set of g-function symbols would be fx,fg. This is because both x andf appear in a negative equation, namely :(f(x) = x) in the formula. Thus thenumber of interpretations to search would be 55 = 3125.However, one can see that only one application of f , namely f(x), appearsin a negative equation while the other applications, f(f(x)), f(f(f(x))) andf(f(f(f(x)))), appear in positive equations only. In this paper, we present ageneralization of the positive equality analysis which allows us to exploit thepositive structure of such applications. Based on the new analysis, it is suÆcientto consider only 4 interpretations to decide the validity of the formula F, insteadof the 55 interpretations. Even for this small formula, this reduces the numberof interpretations to consider 3125=4 = 781 fold !2 The de�nition of maximally-diverse interpretation is slightly di�erent from the orig-inal work [5] for simplicity of presentation.



3 Logic of Robust Positive Equality with UninterpretedFunctions (RPEUF)3.1 SyntaxFigure 1 gives the syntax of RPEUF3. The logic is essentially same as EUF orPEUF [5], but partitions the formulas (respectively, terms) into \p-formulas" and\g-formulas" (respectively, \p-terms" and \g-terms"). Intuitively, a p-formulaappears in only monotonically positive expressions, i.e. does not appear underthe scope of negations (:), or in the controlling formulas of ITE expressions. Allother formulas are g-formulas. The top-level formula can always be classi�ed as ap-formula. The p-terms are those terms which never appear in a g-formula. Moredetails can be found in [6]. The only di�erence between PEUF and RPEUF isthat function symbols are not partitioned as p-function symbols and g-functionsymbols. Instead, each application of functions can either be a p-function appli-cation (p-func-appl) or a g-function application (g-func-appl). Let Tp(F) be theset of p-term function application terms in a formula F. Similarly, let Tg(F) bethe set of g-term function application terms in a formula F.g-term ::= ITE(g-formula; g-term; g-term)j g-func-appl(p-term; : : : ; p-term)p-term ::= g-term j ITE(g-formula; p-term; p-term)j p-func-appl(p-term; : : : ; p-term)g-formula ::= true j false j :g-formula j (g-term = g-term)j (g-formula _ g-formula) j (g-formula ^ g-formula)j predicate-symbol(p-term; : : : ; p-term)p-formula ::= g-formula j (p-term = p-term)j (p-formula _ p-formula) j (p-formula ^ p-formula)Fig. 1. Syntax for RPEUFFor any RPEUF formula F, we de�ne �(F) to be the set of function symbolsin F. For a function application term T , top-symbol(T ) returns the top-levelfunction symbol for the term T .3.2 Diverse InterpretationsThe semantics of an expression in RPEUF is de�ned in a similar manner asde�ned in Section 2. The domain D is kept implicit for most of our purposesand we assume it to be the underlying domain. An interpretation de�nes apartitioning of the terms in the formula, where two terms belong to the same3 We try to follow the terminology of the original paper by Bryant et al. for the restof the paper, whenever applicable



equivalence class if and only if they are assigned the same value. InterpretationI re�nes (properly re�nes) interpretation I 0, if I re�nes (properly re�nes) theequivalence classes induced by I 0.Given an interpretation I , function application terms T1 := f(U1; : : : ; :Uk) andT2 := f(S1; : : : ; Sk) are said to argumentMatch under I , if for all j 2 [1; : : : ; k],I [Uj ] = I [Sj ]. It is not de�ned when T1 and T2 have di�erent top-level functionsymbols.Robust Maximally Diverse Interpretation. An interpretation I is said tobe robust maximally diverse if I satis�es the following property:{ For every term T1 := f(U1; : : : ; Uk) 2 Tp(F ), which does not argumentMatchunder I with any term f(S1 : : : Sk) 2 Tg(F ), and for any other functionapplication term T2, I [T1] = I [T2], i� (i) T2 := f(V1; : : : ; Vk), and (ii) I [Um] =I [Vm], for all m 2 [1 : : : k].Example Consider the formula in Equation 1. The interpretation Considerthe formula in Equation 1. Let us assume (shown a little later in Section 4.1),the set Tp(F) := ff(f(x)); f(f(f(x))); f(f(f(f(x))))g, the set of positive ap-plications. The set Tg(F) becomes fx; f(x)g. The interpretation I := fx 7!1; f(1) 7! 2; f(2) 7! 3; f(3) 7! 4g is an example of a robust maximally di-verse interpretation. In this interpretation, I [f(x)] = 2; I [f(f(x))] = 3 andI [f(f(f(x)))] = 4. Similarly, the interpretation I := fx 7! 1; f(1) 7! 2; f(2) 7! 2gis a robust maximally diverse interpretations. However, the interpretation I :=fx 7! 1; f(1) 7! 2; f(2) 7! 1g is not a robust maximally diverse interpretationsince I [x] = I [f(f(x))] = 1. But f(f(x)) is a p-term, whose argument I [f(x)] = 2does not match the argument of the g-term f(x), since I [x] = 1.Theorem 2. Robust Maximal Diversity Theorem. A p-formula F is uni-versally valid i� F is true in all robust maximally diverse interpretations.The theorem allows us to restrict ourselves to only those interpretations whichare robust maximally diverse. We will show later that in many cases, this prunesaway a very large portion of the search space. The proof is very similar to theone presented for the maximal diversity theorem [6] and can be found in theextended version [14].The following lemma establishes the correspondence between the maximally di-verse interpretations and the robust maximally diverse interpretations.Proposition 1. If an interpretation I is a robust maximally diverse interpre-tation, then I is a maximally diverse interpretation.This follows from the fact, that for a \p-function" symbol f , a p-term T1 :=f(U1; : : : ; Uk) never argumentMatch with a g-term T2 := f(V1; : : : ; Vk), since



there are no g-terms for a \p-function" symbol f . Thus the set of robust max-imally diverse interpretations is a subset of the set of maximally diverse inter-pretation set.4 Decision Procedure for Robust Positive EqualityIn this section, we present a decision procedure for exploiting robust positiveequality. The essence of the decision procedure is similar to the decision proce-dure proposed by Bryant, German and Velev. But there are important di�erenceswhich makes the procedure more complicated.4.1 Extracting a RPEUF from EUFGiven a EUF formula F, one might try to label the terms and formulas as g-terms, p-terms, p-formulas, g-formulas by the syntax in Figure 1. But the choiceof \promoting" g-terms and g-formulas to p-terms and p-formulas makes thegrammar ambiguous. Thus the �rst step is to use a labeling scheme to mark thedi�erent expressions in the formula F.For a given EUF formula F, let LF be a labeling function. If T (F ) and G(F ) bethe set of terms and formulas in F, then LF satis�es the following conditions:{ If T 2 T (F ), then LF (T ) 2 fg-term; p-termg{ If G 2 G(F ), then LF (G) 2 fg-formula; p-formulag{ This labeling is permitted by the syntaxA natural labeling function L�F [6] is to label the formulas which never appearunder an odd number of negations and does not appear as a control for anyITE node, as p-formula. All other formulas are labeled as g-formula. Once theformulas are labeled, label a term as p-term if it never appears in an equationlabeled as g-formula. All other terms are marked g-term.4.2 Topological Ordering of termsOnce we have labeled all the terms in a formula F as either a p-term or a g-term, we will de�ne a topological order �, for visiting the terms. A topologicalorder preserves the property that if T1 is a subterm of T2 in the formula F , thenT1 � T2. There can be many topological orders for the same formula.Given a topological order �, consider the terms that have been \labeled" byL(F ). We will partition the terms into T +� (F ), T �� (F ) and T ��(F ) as follows:For any term T 2 T (F ):{ T 2 T �� (F ) i� L(T ) = g-term



{ T 2 T ��(F ) i� L(T ) = p-term and there exists T1 2 T �� (F ) such that T � T1and top-symbol(T ) = top-symbol(T1).{ T 2 T +� (F ) i� T =2 T �� (F ) and T =2 T ��(F ).Intuitively, the terms in T ��(F ) are those terms which precede a negative applica-tion with the same top-level function symbol. We label some terms as membersof T ��(F ) because the function elimination scheme (based on Bryant et al.'smethod) eliminates function applications in a topological order. Hence we needto process all the subterms before processing a term.For example, consider the formula in Equation 1. There are 5 terms in the for-mula: x, f(x), f(f(x)), f(f(f(x))), f(f(f(f(x)))). The labeling scheme labelsthe terms x; f(x) as g-term and the terms f(f(x)); f(f(f(x))); f(f(f(f(x))))as p-term. The only topological ordering on this set of terms is x � f(x) �f(f(x)) � f(f(f(x))) � f(f(f(f(x)))). Given this topological order, the parti-tioning results in the following sets{ T �� (F ) = fx; f(x)g, T ��(F ) = fg andT +� (F ) = ff(f(x)); f(f(f(x))); f(f(f(f(x))))g.However, consider the following formula:F := :(f(g(x)) = g(f(x))) (2)There are 5 terms in the formula: x, f(x), g(x), f(g(x)) and g(f(x)). The label-ing labels f(g(x)); g(f(x)) as g-term and x; f(x); g(x) as p-term. Three possibletopological orderings on this set of terms are:1. x � f(x) � g(x) � f(g(x)) � g(f(x)), or2. x � f(x) � g(f(x)) � g(x) � f(g(x)), or3. x � g(x) � f(g(x)) � f(x) � g(f(x))Given these topological order, the partitioning results in the following sets forthe three orders, respectively:1. T �� (F ) = ff(g(x)); g(f(x))g, T ��(F ) = ff(x); g(x)g and T +� (F ) = fxg.2. T �� (F ) = ff(g(x)); g(f(x))g, T ��(F ) = ff(x)g and T +� (F ) = fx; g(x)g.3. T �� (F ) = ff(g(x)); g(f(x))g, T ��(F ) = fg(x)g and T +� (F ) = fx; f(x)g.The example in Equation 2 illustrates several interesting points. First, eventhough f(x) and g(x) are both labeled as p-term, there is no ordering of termssuch all the g-term with the top-level symbol f and g precede these two terms.Note that this limits us from exploiting the full power of Theorem 2. Second, thetopological ordering can a�ect the size of the set T +� (F ). The bigger the size ofthis set, the better the encoding is. Hence, we would like to �nd the topologicalordering which maximizes the size of T +� (F ).



4.3 Maximizing T +� (F )The problem of obtaining the optimal �, which maximizes the size of T +� (F ),turns out to be NP-complete. In this section, we reduce the problem of maximumindependent set for an undirected graph to our problem.Let us �rst pose the problem as a decision problem | is there an ordering � forwhich the number of terms in T +� (F ) is at least k ? Given an ordering �, it iseasy to �nd out the number of terms in T +� (F ) in polynomial time, hence theproblem is in NP.To show that the problem is NP-complete, consider a undirected graph G :=hV;Ei, with V as the set of vertices and E as the set of edges. Construct alabeled and polar directed acyclic graph (DAG) D := hV 0; E0i, where each vertexv 2 V 0 is a tuple (nv; lv; pv), where nv is the vertex identi�er, lv is a labelof the vertex, and pv is the polarity of the vertex. The label of a vertex is afunction symbol, and the polarity of a vertex can either be (-) negative or (+)non-negative. It is easy to see that the vertices of D represent the terms in aformula, the label denotes the top-level function symbol associated with the termand a vertex with a negative polarity denotes a g-term.The DAG D is constructed from G as follows:{ For each vertex v in V , create two vertices v+ and v� in V 0, such that v+ :=(v1; v;+) and v� := (v2; v;�).{ For each edge (v1; v2) 2 E, add the following pair of directed edges in E0 |(v+1 ; v�2 ) and (v+2 ; v�1 ).Finally, given an ordering �, T +� (D) contains a subset of those v+ vertices whichdo not precede the v� vertex with the same label v in �. Now, we can show thefollowing proposition (proof in [14]):Proposition 2. The graph G has a maximum independent set of size k if andonly if the DAG D has an ordering � which maximizes the number of verticesin T +� (D) to k.4.4 Heuristic to maximize T +� (F )Since the complexity of �nding the optimum � is NP-complete, we outline agreedy strategy to maximize the number of p-terms in T +� (F ). We exploit thefollowing proposition (proof sketch in [14]):Proposition 3. Given an ordering �g over all the g-term of the formula, onecan obtain an ordering � over all the terms in the formula in time linear to thesize of the formula, such that the number of terms in T +� (F ) is maximum overall possible orderings consistent with the order �g.Hence, our problem has been reduced to �nding the optimum ordering�g amongthe g-terms of the formula. The algorithm has the following main steps:



1. A term T1 := f(S1; : : : ; Sk) is potentially positive i� T1 is a p-term and T1 isnot a subterm of any other g-term T2, which has the same top-level functionsymbol f . For each function symbol f , we compute the number of potentiallypositive function applications of f in the formula.2. Order the list of function symbols depending on the number of potentiallypositive terms for each function symbol. The essential idea is that if a func-tion f has nf potentially positive applications, and if we order all the termsof f independent of the applications of other function symbols, then thenumber of terms in T +� (F ) is at least nf .3. For each function symbol f , we order all the g-terms of f by simply traversingthe formula in a depth-�rst manner. This ordering of g-terms is consistentwith the topological order imposed by the subterm structure.4. Finally, we obtain �g, by repeatedly placing all the gterms for each of thefunctions in the sorted function order. While placing a g-term T1 for functionf , we place all the g-terms for the other function symbols which are subtermsof the g-term before T1 in the order.4.5 Function and predicate eliminationTo exploit the robust positive equality, we eliminate the function and predicateapplications from the RPEUF formula using Bryant et al.'s method. For a func-tion symbol f which appears in F, we introduce symbolic constants vfi; : : : ; vfk,where k is the number of distinct application of f in the formula. Then the ithapplication of f (in the topological ordering �) is replaced by the nested ITEformula, ITE(ai = a1; vf1; ITE(ai = a2; vf2; : : : ITE(ai = ai�1; vfi�1; vfi))).Here ai is the argument list to the ith function application. We say that thesymbolic constant vfi is introduced while eliminating the ith application of f .The following lemma [6] describes the relationship between the original and thefunction-free formula. Predicate applications are eliminated similarly.Lemma 1. For a RPEUF formula F, the function and predicate eliminationprocess produces a formula bF which contains only symbolic constants and propo-sitional symbolic constants, such that F is valid i� the function-free formula bFis valid.Let D be the domain of interpretations for F. Let V� be the set of symbolicconstants introduced while eliminating the function applications and V +� � V�be the set of symbolic constants introduced for the terms in T +� (F ). Let bFp bethe formula obtained by assigning each variable vi 2 V +� a value zi, from thedomain D0 := D[ fz1; : : : ; zmg, where m = jV +� j and all zi are distinct fromvalues in D. Then we can prove the following theorem:Theorem 3. The formula F is valid i� bFp is true for all interpretations overD.



Proof. We give a very informal proof sketch in this paper. A detailed proof canbe obtained very similar to the proof shown in the original paper [6].Let us consider a robust maximally diverse interpretation I for F. Consider asymbolic constant vf i 2 V +� , which results while eliminating the ith applicationof f (say Ti) in the order �. Note that Ti is a p-term application. First, considerthe case when Ti argumentMatch with some other term Tj , such that Tj � Ti. Inthis case, the value given to vf i does not matter, as it is never used in evaluatingbFp. On the other hand, consider the case when Ti does not argumentMatch withany term Tj , such that Tj � Ti. Since all the g-term for f precede Ti in � (bythe de�nition of T +� (F )), it means that I [Ti] is distinct from the values of otherterms, unless restricted by functional consistency, i.e. x = y =) f(x) = f(y)(by Theorem 2). But the value of vf i represents the value of I [Ti], under thisinterpretation. Hence, we can assign vfi a distinct value, not present in D .4.6 Extending Robust Positive Equality to CLUWe can extend our method to the Counter Arithmetic with Lambda Expressionsand Uninterpreted Functions (CLU), in the same way proposed in UCLID [12,7]. The only addition in the logic is the presence of inequalities (<) and additionby constant o�sets (+c). In the presence of <, we adopt a conservative approachand say that terms T1; T2 appear in negative context (g-term) if they appear inan inequality (T1 < T2). Similarly, a function application term T1 is classi�edas g-term if any term T1 + c (for any c) appears in negative context. Eventhese conservative extensions have proved bene�cial for veri�cation problems inUCLID.5 Results5.1 Simple ExampleLet us �rst illustrate the working of the decision procedure on a simple formula.Consider the following formula:	1 := (f(f(f(y))) = f(f(y))) _ (f(f(y)) = f(x)) _ :(x = f(y)) (3)The function symbols in the formula are �(	1) = ff ,x,yg. Our heuristic �ndsthe following order �, which also happens to be the optimal order:x � y � f(y) � f(x) � f(f(y)) � f(f(f(y)))The sets T �� (	1), T ��(	1) and T +� (	1) are:T �� (	1) = fx; f(y)g; T ��(	1) = fg; T +� (	1) = fy; f(x); f(f(y)); f(f(f(y)))gThe resultant formula after eliminating the function symbols using the aboveprocedure would be b	1 := (f4 = f3) _ (f3 = f2) _ :(x = f1) (4)



where f1 := vf1f2 := ITE(x = y; vf1; vf2)f3 := ITE(f1 = y; vf1; ITE(f1 = x; vf2; vf3))f4 := ITE(f3 = y; vf1; ITE(f3 = x; vf2; ITE(f3 = f1; vf3; vf4)))Thus b	1 has 6 symbolic constants fx; y; vf1; vf2; vf3; vf4g. Based on robust max-imal diversity theorem, we can assign distinct values to y; vf2; vf3; vf4, since theyare introduced while eliminating a function application in T +� (	1). The rest ofthe symbolic constants x; vf1 have to take on 2 values each. Thus, it is suÆcientto consider 22 = 4 interpretations to decide the validity of the formula. In fact,it is suÆcient to consider 1 value for x and 2 values for vf1 to decide the validity,since they can either be equal or unequal. Therefore, the number of interpreta-tions to consider is 2 for this case. Alternately, one could use a single Booleanvariable to encode the equality x = vf1 [10]. The �nal propositional formula inthis case contains a single Boolean variable4, and thus requires 2 interpretations.The above formula was also used as a running example in previous work [19, 21].The method proposed by Pnueli [19] considers 16 interpretations to decide thisformula and the method by Rodeh et al. [21] consider either 4 or 2 interpretationsdepending on the heuristic. In contrast, the previous positive equality work ofBryant et al. considers 55 = 3125 interpretations.5.2 Veri�cation BenchmarksIn this section, we compare our algorithm with the original positive equality algo-rithm, based on a set of software veri�cation benchmarks generated from Trans-lation Validation of Compilers [19] and device-driver veri�cation in BLAST [11].Discussion on other hardware veri�cation benchmarks can be found in an ex-tended version of this paper [14]. All the formulas discussed in this section arevalid formulas.We have integrated the new method in the tool UCLID [7]. All the experimentsare run on a 1.7GHz machine with 256MB of memory. For all these experiments,the integer variables in the formula (after function elimination) are encoded usinga small-domain encoding method [7]. This method assigns each integer variablea �nite but suÆciently large domain which preserves validity of the formula.The �nal propositional formula is checked using a Boolean Satis�ability (SAT)solver. For our case, we use mCha� [16].Figure 2 compares the number of terms which can be assigned distinct values (i.e.the number of terms whose range contains a single value) for positive equality (p-vars) and the robust positive equality (robust-p-vars) algorithms. The columnwith potential # of p-vars denotes an upper bound on the total number of4 Usually, more variables are added to express transitivity constraints, but this exam-ple does not require any, since there is a single Boolean variable



positive terms. This is obtained by simply adding the number of potentiallypositive terms for each function symbol without considering the ordering of termsacross di�erent function symbol. This is a very optimistic measure and theremay not be any order � for which this can be achieved. The time taken by eachapproach is also indicated in the table.For most of the code validation benchmarks, the number of p-terms is largercompared with the earlier work. Similar trend is also observed for the BLASTset of benchmarks. For many of the code validation benchmarks, the increase inthe number of positive variables translates into an improvement of the total timetaken to check the validity of the formula. This is expected as the new methodreduces the number of interpretations to search. However, for a few cases, the newmethod is almost 10% slower than the original method, even when the numberof positive variables are 10% larger. This happens because of the overhead of therobust positive equality analysis. Our current implementation requires multiplepasses over the formula, which can often increase the time required to translate aCLU formula into a Boolean formula. However, the time taken by the SAT solver(mCha�) is almost always smaller with the new method. This is particularlye�ective, when solving formulas for which the SAT solver time dominates thetime to translate to a Boolean formula (e.g. cv46).It is interesting to notice that for most benchmarks (except cv22) the totalnumber of robust-p-vars is the same as the maximum possible number of p-varspossible. On one hand this suggests that the heuristic we chose is optimal forall these benchmarks. On the other hand, it shows that there are no occurrenceof mutually nested function applications with alternate polarity evident in theexample :f(g(x)) = g(f(y)). For this example, the maximum number of po-tentially positive terms is 4 (fx; y; f(y); g(x)g), but one can obtain at most 3 inany ordering (fx; y; f(y)g or fx; y; g(x)g). This is because a potentially positiveapplication for g appears as a subterm of a g-term for f and vice versa.Finally, its worth pointing out some di�erences with the method of Rodeh etal. [21]. The paper claims that their method subsumes Bryant et al.'s positiveequality. But our current method is not subsumed by the approach since themethod in [21] does not exploit the topological ordering of function applicationsacross di�erent function symbols. However, the two approaches are complemen-tary. Robust positive equality analysis can be used as a preprocessing step beforeexploiting the range-allocation scheme by Pnueli et al. and Rodeh et al.'s meth-ods. Further, robust positive equality analysis can work with the more generallogic of CLU [7], but the methods in [19, 21] are restricted to EUF. It is notclear how to extend the range allocation easily in the presence of < and constanto�sets.6 Conclusion and future workIn this work, we have presented a generalization of the positive equality analysis.The extension allows us to handle benchmarks for which the positive structure



Benchmark example # vars Positive Equality Robust Positive Equality#p-vars Time taken # p-vars potential Time taken(sec) # p-vars (sec)Code Validation cv1 17 3 1.58 7 7 1.60cv2 4 1 0.34 1 1 0.48cv20 21 6 0.40 6 6 0.47cv22 101 1 70.84 16 18 45.65cv23 101 8 23.06 22 22 15.96cv25 101 8 45.93 22 22 21.80cv37 13 4 6.40 4 4 6.32cv44 38 8 19.75 17 17 7.13cv46 70 10 > 1800 28 28 100.50BLAST bl7 262 109 241.27 125 125 265.38bl8 315 125 454.40 142 142 456.80blt3 268 72 11.16 94 94 11.90Fig. 2. Comparison on Software Veri�cation Benchmarks.could not be exploited using the previous method. The added overhead for thisgeneralization is negligible as demonstrated on some reasonably large bench-marks. An interesting point to observe in this paper is that most of the proofsand mathematical machineries from the previous work have been successfullyreused for our extension.There are other optimizations that can be exploited beyond the current work. Wewant to exploit the positive equality for the terms in T �� , which are subterms ofg-terms with the same top-level function symbol. Instead of using distinct valuesfor the symbolic constants which arise from the elimination of these terms, weare investigating the addition of extra clauses in the �nal formula, to preventthe SAT-solver from considering these interpretations. We would also like touse other range allocation methods, after exploiting robust positive equality, tofurther improve the decision procedure.References1. W. Ackermann. Solvable Cases of the Decision Problem. North-Holland, Amster-dam, 1954.2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicateabstraction of C programs. In Programming Language Design and Implementation(PLDI '01), Snowbird, Utah, June, 2001. SIGPLAN Notices, 36(5), May 2001.3. C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theorieswith equality. In M. Srivas and A. Camilleri, editors, Formal Methods in Computer-Aided Design (FMCAD '96), LNCS 1166, pages 187{201, November 1996.4. C. W. Barrett, D. L. Dill, and A. Stump. Checking Satis�ability of First-OrderFormulas by Incremental Translation to SAT. In E. Brinksma and K. G. Larsen,editors, Proc. Computer-Aided Veri�cation (CAV'02), LNCS 2404, pages 236{249,July 2002.5. R. E. Bryant, S. German, and M. N. Velev. Exploiting positive equality in a logicof equality with uninterpreted functions. In N. Halbwachs and D. Peled, editors,Computer-Aided Veri�cation (CAV '99), LNCS 1633, pages 470{482, July 1999.6. R. E. Bryant, S. German, and M. N. Velev. Processor veri�cation using eÆcientreductions of the logic of uninterpreted functions to propositional logic. ACMTransactions on Computational Logic, 2(1):1{41, January 2001.
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