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Abstract—We prove the parameterized correctness of one of
the largest cache coherence protocols being used in moderruiti
core processors today. Our approach is a generalization of a
method we described last year that uses data type reduction
and compositional reasoning to iteratively abstract and réine
the protocol and uses invariants derived from protocol “flows” to
make the abstraction-refinement loop converge. Our prior wok
demonstrated the value of sequencing information that appered Rmemsﬂ s
within the linear flows describing a protocol in design docunents. N
This paper extends the notion of flows to capture intricate 2
scenarios seen in real industrial protocols and demonstras that
there is also valuable information in the interaction amongflows.
We further show that judicious use of flows is required to make
the method converge and identify which flows are most suitalel
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|I. INTRODUCTION Fig. 1. Message flows as a linear sequence or acyclic grapheote

We validated an extremely complex cache coherence proto-

col that will soon appear in multi-core processors fromllnte.thIS method is coming up theon-interference lemmasr

We used a generalization of the method we reported last yé'?:l\f.a”ams to gl_ude the proof. A§_|n theorem proving, this is
[26] based on the CMP method [20], [4], [14] augmente%t'me consuming process requiring athorqugh_knowledge of
with message flows. This protocol, which we caltp, is the protocol. Moreover, adding one wrong invariant can lead
an intricate high-performance protocol that is designeti¢o the proof astr_ay and render subsequent work useless.
scalable to large number of cores. Such intricate diseiut N OUr earlier paper [26], we showed that the burden of
protocols are especially susceptible to functional bugs tHfenerating the noninterference lemmas requirecchy can
standard techniques like testing and simulation are uglike P°€ Significantly reduced by using the messdigevs typi-

find and consequently formal verification is indispensable Fally found in industrial design documents. Flows are Imea
their validation. We think.cP may be one of the largest, mosS€duences of system events such as sending and receiving

complicated cache coherence protocol ever validated wiffSSages in case of distributed message passing systems, as

formal methods. As one measure, the Flash cache coherefftgtrated on the left of Figure 1. We demonstrated the afjc

protocol, to which only a handful of formal methods have bed!! method by applying it to several academic protocols,

successfully applied, has about 10 Boolean state varigigles namely_, German's protocql and Flash proto_col.

process and 16 different message types in all. In contrtst, w !N this paper, we describe a generalization of the method

over 70 Boolean state variables and around 50 message typggSented in [26] and its application to thep cache coher-

the state space farcp is several orders of magnitude largefNce protocol. The primary contributions of this paper are:

than Flash (see Section II). 1) Generalizing flows from linear traces to directed acyclic
While many techniques [22], [15], [11], [3], [18] have been graphs, like the flow on the right of Figure 1, and a

proposed for parametric protocol verification, none of them  simple language for describing flows.

scale well to large protocols, and those that do scale [9],2) Demonstrating that we can derive powerful noninter-

[21] require an inordinate amount of manual effort to sudcee
The cmpP method [20], [4], [14], [26] is the only method for

parametric verification we are aware of that scales to large

protocols and is easy to use. It is an interactive proof nttho

based on compositional reasoning that uses a model checker
as a proof assistant. Though it combines the best of theorem

proving and model checking, the main difficulty in applying

ference lemmas from constraints on events occurring
in different flows, and not just constraints on events
occurring within a single flow. Simply stating that two
flows cannot be in progress at the same time, for
example, can dramatically speed the convergence of the
CMP method.

3) Demonstrating that not all flows are equally useful, and
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Fig. 2. Schematic of the Larrabee many-core architecture Fig. 3. Larrabee CPU core and associated system blocks

that a more judicious use of the information in flows ...
also speed the convergence of thiep method.

4) Parametrically verifying the correctness of the Int
cache coherence protocotp for any number of pro-

Separate subsets, one for each CPU core. Each CPU has direct
ccess to its own subset of the L2 cache. Data read by a CPU
ore is stored in its L2 cache subset and can be accessed

quickly, in parallel with other CPUs accessing their ownaloc

ces_sc_>rs. _ L2 cache subsets. Data written by a CPU core is stored in
In verifying LCP we used a total of 15 flows, all easilyjis gwn L2 cache subset and is flushed from other subsets,

obtained from the design documents, to derive around §6yecessary. Larrabee uses a bi-directional ring network t

lemmas. To make themp method converge another 5 lemmas,j o\ agents such as CPU cores, L2 caches and other logic

had to be supplied by hand. A similar effort earlier [25] werp|ocks to communicate with each other within the chip. The
we verified a cache protocol of comparable size usinghe | -p (Larrabee coherence protocol) runs on the ring network
method required us to supply nearly 25 lemmas manuallysq maintains coherency of shared data.

Clearly, flows I_ead fo a dramatic redu<_:t|on In the_number Our model of the Larrabee coherence protocol is organized

manually supplied lemmas and makes it much easier to W€a parameterized number of identical caching agents which

the cmp method. . talk to a central directory that controls access to the data

The rest of thg paper Islstructured as follows. In the Ne¥Ems as shown in Figure 4. For the purpose of verifying the
section we descnl:_)e the Sal'ent features othbe-_ protocol. In_ coherence protocol our model abstracts away the ring sireict
the following section Il we discuss _the possible altermm_ and assumes point to point communication links between the
to thecmp method and why they are m_adgquat_e. An O_Verv'eﬁ’gents (including links between the caches and from the off-
of the cmp plus flows method of [26] is given in Section IVChip memory to individual caches).

folllowed .by a d'SCUSS'Or.' of the ex_tensmns required to dealUnI|ke the Flash protocol where the directory distingusshe
with LcP in the next section. In section VI, we present a ne
i .Detween local requests and external requests| ¢tiremakes
language to capture richer flows and also show how derive o . iy )
. ) X .~ N0 such distinction. This means when verifying two index
stronger constraints than just simple precedence contstr& S .
. L . . . properties it is enough to retain two cache agents congretel
detailed description of our experience in using these eddn :
: o S . in the abstract model whereas for Flash we had to keep three
flows in verifying the LcP protocol is given in Sec VII.
. agents, one local agent and two non-local agents [26]. In
Section VIII concludes the paper. . .
addition to these agents, there is also a memory controller
[I. LARRABEE AND LCP that talks to the directory and supplies memory lines thaeha

not yet been imported onto the chip.

Larrabee is the code name for a many-core visual computingrhe high level model we verified preserved much of the
architecture under development at Intel Corporation [Z8f internal structure of each cache agent. Thus, apart from the
Larrabee architecture is based on a set of CPU cores thdtcache we also had the L1 cache and actions of the agent
run the x86 instruction set, extended with support for viectéepended on the states of both the caches. Further, theugario
processing operations and some specialized scalar itistmac in- and out- message buffers and related book keeping data
Figure 2 shows a schematic of the architecture. Each coresigictures were also modeled. Other than assuming point to
associated with its own subset of a coherent L2 cache titint links between the various agent, we modeled almost
affords fast, high-bandwidth data access to each core &@wery significant detail of the protocol which increased the
simplifies data sharing and synchronization. The number @mplexity of flows/transactions considerably.

CPU cores and the number and type of co-processors and I/0he complexity of a protocol can judged by the number
blocks are implementation dependent, as are the positibn0b different types of messages that are exchanged by the
CPU and non-CPU blocks on the chip. To validate tli® agents. German’s protocol for example has only 7 different
protocol in full generality we need parametric reasoning. messages, Flash protocol, considered to be hard to vesa$y, h

Figure 3 shows the major functional blocks in a singlé6 different types andcp has around 50 different message

core. Larrabee’s global second-level (L2) cache is dividéa types (comparable to the protocol we verified in [25]). Imier



. 3) Counter and Environment Abstraction€ounter Ab-
\ straction [22] and its generalization Environment Abstrac
. tion [6] are based on the idea of partitioning a collection of
' “ identical agents into equivalent classes based on thegategi
V\\ / they satisfy and for each partition tracking only one repnes
e tative. The abstract model produced by these methods tend
> b to be very detailed and consequently too large as we look at

A/' lI \\ bigger protocols. Environment abstraction for exampleust |

able to handle a simplified version of the Flash protocol [24]

B. Theorem Proving style methods

Apart from classical theorem proving there are methods like
aggregated transactions [21] that are user-guided tegbsiq
These suffer from the well known problem of having to
provide guidance in minute detail to get the proof through.

of Boolean variables, each processLine has approximately It is unlikely that theorem proving style methods can be used

. ctically to verify large protocols given that just to Mer
0 varlal_oles. In contrast the Flas_h protpcpl has around Eﬁ;‘sh protocol the aggregated transactions method togieou
state variables per process. Murphi description of thegoxit avs of effort
actions was about 3000 lines whereas Flash has around 1868 Y ’

lines. C. cMP method

lIl. PROTOCOL VERIFICATION TECHNIQUES The cmpP method straddles both the above categori_es of
model checking and theorem proving based methods: it uses
model checker as a proof assistant to carry out user guided

Broadly, there are two classes of techniques to veriproof. The crucial advantage of thevP method is that the
distributed prOtOCOIS: model CheCking based methods inat EUSer Supp”ed lemmas don’t have to add up to an inductive
for maximum automation and theorem proving style methoggariant [26]. This means the amount of guidance proviged i
that aim for scalability. a lot less than in theorem proving methods. Usimgp method

. we have earlier verified Flash protocol [26] and anotherdarg
A. Model Checking based Methods cache coherence protocol within Intel [25]. The latter poot

Several techniques like Indexed Predicates [15], [16k comparable in size to thecp protocol. Clearlycmp method
Counter Abstraction [22] and related methods [10], Regularthe only viable method currently for handling large pumtis
Model Checking [1], [2], Split Invariants based method [8]and our effort was to make it more usable by reducing the
Environment Abstraction [6], [7] have been proposed to del@mma burden as much as possible.
with verification of distributed protocols. While these imeds
have a higher degree of automation than the one we present,
their scalability remains to be proven.

1) Indexed Predicates Methodndexed predicate abstrac- For the rest of the paper we will use the same system model
tion generalizes predicate abstraction to predicatestthe¢ as in [26]. In particular, we consider a symmetric proto£ol
free index variables. Given a protocél(N) and collection with N processor$l..N| whose transition relation is given as
7 of indexed predicates this method automatically producascollection of rules. Each rule isquarded commandritten
the strongest universally quantified invariant/ofN) overZ. as
Intricate systems like Bakery protocol and Tomasulo’s dut o
order processor has been verified by using this method [15].
But scalability remains an issue. Even for as small a prdtoasherer! is therule name p is an expression called thyiard,
as the German’s protocol this method takes couple of hourss a list of assignments called the thetionandsi, ; are the
to produce an invariant. process index variables.

2) Cutoffs based approachAnother approach to verifying ThecMp method is a compositional reasoning based method
a parameterized systerf?(N) is to find a cutoff k& such and it consists of two basic steps abstractionandstrength-
that verifying P(k) is enough to guarantee the correctness ehing— that are applied iteratively to a protocol as shown in
P(N) for any value ofN. There has been some work on thissigure 5.
topic [11], [12] and related topics [13], [5] but the cutoffee Given a propertyl = Vi,j € [1..N].I(i,j) that we want
large making them impractical to use. For example, in [12p prove is an invariant of?, the cMpP method creates an
a cutoff of 7 was found for a directory based protocol. Butbstract modelP that retains two agents, saly 2 without
real protocols are so large that even verifying a system wilibss of generality, and replaces the rest of the processbs wi
3 agents is often not possible. a highly non-deterministic procesSther. Intuitively, in a

Fig. 4. Basic Organization of thecepmodel

IV. DESCRIPTION OF THE CMP METHOD

MiVigp—a o ri(i,g): p(i.) — ai.j)



of the protocol or asub-flowmwhere a sub-flow is itself a flow

True or

o N . composed of simple events. The notion of sub-flow serves to
chop up a complicated flow into smaller units such that each
. spurious cex unit shows interaction between two agents.
The constraints derived from flows are the implicit prece-
Strengthen fouci] dence constraints between events occurring in the flows. For

example, according to the first flow in Figure Re¢qS has to
happen befor&kecvReqS can happen. This can be converted
Fig. 5. Thecmp method into a precise lemma by having a stz (i) of auxiliary
variables for each processhat track all the flows is involved
in and for each flow the last rule that was fireddbyn case of
symmetric system if a property(1, 2) holds for processes 2 RecvReqS action the precedence constraint is simply that if,
then¢(i, j) holds for any other pair of processeg as well. for process, the RecvReqS action is enabled then there must
Thus, it is enough to consider an abstract model with detailge an auxiliary variable recording the fact thawas involved
information onl, 2 and check iff(1, 2) holds. The abstraction in ReqS action earlier. These simple precedence constraints
process incMP method is inexpensive as it is almost syntactigurn out to be surprisingly powerful as invariants.
and bulk of the state space fcomes froml, and2. Onthe  The advantage of the flows is that they are intuitive to
flip side P tends to be very coarse as the behavioDoker is  understand and readily available in the design documents.
completely unconstrained. To get rid of the resulting spusi Flows in fact allow us to state the core ideas that go into the
counter examples, themp method requires the user to providejesign of a protocol in terms of higher level concepts while
non-interference lemmasr invariants that are used to refineavoiding the specific implementation details. This meansslo
the abstract model. This process is continued iteratividlly tare quite robust and resistant to changes in the protocijries
we find a real counter example or prove that,2) holds. which makes them very attractive as user supplied annogatio
Pseudo-code for the method is given below.
V. EXTENSIONS TOFLOWS
CMP(P,I) =
P#=p; I# =]
while abstract(P#) [~ abstract(17(1,2)) do
examine counterexamptax
exit if cexis a real counterexample
find L = Vi, j.L(i, j) ruling outcex
P# = strengthen(P#, L)
I#(ZJ) = I#(ivj) A L(i, j)
end

Apart from the local caching agents and the directory,
real cache protocols have other types of agents, like the off
die memory controller, which add to the complexity of the
interaction between the agents. Flows designed to capture
two agent interactions are no longer sufficient to capture
complicated scenarios scene.

Consider Flow 2 of Figure 1 which calls for an extension
to our notion of flows. Here a procegsrequests access to

If the loop terminates normally, the method and protoc@n item that has not yet been fetched onto the chip. The on-
symmetry allow us to conclude thdt* and consequently ~chip directory forwards the request to the off-chip memory
are invariants ofP. If the loop terminates via the exit, thencontroller along with id of the requesting agent. The divegt
either I or one of the proposed lemmdsis not an invariant also sends an acknowledge message to the caching agent.
of the protocol, and the user must back up and try again. The memory controller for its part sends the required item
In McMillan’s work [20] the abstraction operation used waé0 the caching agent and also sends a message completion
data type reduction [19] which essentially throws awaytzél t t0 the directory. On receiving the message completion the
state variables of processfs.N]. Our analysis of theemp directory sends a grant message to the agent. On receiving
method in [26] allows us to use richer abstractions than ddgth the grant message from directory and the data message
type reduction. In particular this allows meaningful ahstion from memory controller agenttransitions to shared state and
of auxiliary variables used to track flows. sends a completion message to the directory. The traneactio
ends when the directory receives the completion message.
This scenario is similar to, and typical of, the complex
Not surprisingly the main difficulty in applying themp interactions present incp and it differs from the flow shown
method is coming up with the non-interference lemmas. As the left of Figure 1 in crucial ways. The interaction beéme
demonstrated in [26], message flows or simply flows yielithe three agents is tightly coupled and it is not possible
powerful invariants that can used as non-interference lashnnmo identify meaningful sub-flows that have only two agents
in the cMP method and thus reduce the number of lemmas virvolved. Earlier, in [26] even though we had more than two
need to supply by hand. agents involved, it was to easy see that the flow was made up
The flows used in [26] are linear ordering of events usualbyf logical sub-units consisting of only two agents.
involving two agents, see reffig:flow. Each entry in the flow Further, an event might have multiple preceding actions.
is either a simple event, corresponding to a single ruledirirFor instance, everSendAckcan happen only after the agent

A. Makingcmp better using Flows



has received both the data and grant messages. Receiving ol] 1] o] 1] [or] [7] o] [1]
one of these is not sufficient to enable thendAckmessage. 2 P = =
Linear flows cannot capture multiple dependency. . e, e e

Similarly, an event in the flow might have more than one

succeeding event. For instance, tRecvReqS event leads to X NA X %&
two further eventsSendData and Wait. With linear flows | 2 2~ rd Z
then the number of events depending on a given event is (¥ [les [les [Jes

most one.

Finally, unlike in the Flow 1 of Figure 1 which total ordersrig 6. Fiows can share a common event (left) and a commonxrght).
on events, Flow 2 is a partial order. For instance, there is
no ordering between the eveni3ata and GntS, they can
be received byi in any order. One way to deal with this is The meaning of a conflict set is that a flofvand a flow
to flatten the partial order into a collection of total ordersf’ in the conflict set off cannot be alive at the same time. A
But this runs into two issues: firstly, the number of resgtinflow is said to bealive if some rule in the flow has occurred
flows might be large and unnecessarily obscure the simplichnd one of its successors has not occurred. The conflict set
present in the dag representation. Secondly, having maws floof f might containf itself. In this case the meaning is that
also means we will have to introduce more auxiliary variablehere can be only one instantiation gfalive in the system.
or extend their ranges and thus, we will also end up makifdhe constraints resulting from these conflict sets turn out t
the augmented model bigger. be very powerful in constraining th@ther process.

Thus, it is clear that the new flows or rather flow language Finally, we associate an id with each event since a particula
has to be expressive enough to capture directed acyclibigramstantiation of a rule may occur in multiple flows. The
(dags). Moreover, note that in Flow 2 of Figure 1 there ateft side of Figure 6 illustrates that we must distinguiske th
three primary agents in the flow but that each event involvescurrences ofv in the flowsf; andfs, so that the occurrence
at most two agents. So apart from specifying events we alsbev in f; will enable the events in f; and note; in f.
have to specify which agents are involved in the events. Fhe right side of Figure 6 illustrates that we cannot use the
new flow language that takes into account these extensionflagsv name as the event id, since different flows can share a
described in the next section. common prefix. As long as the system is in the prefix, we
don’t know whether the system is in floy or f>. In fact,
because we don’t know which flow the system is in, an event
in the prefix must have the same event id in both flows.

We now extend our prior work to incorporate the geneg
alized flows and flow-based invariants described in previous - ) _ )
sections. We omit treatment of subflows in this section since'We use auxiliary variables to track active flows as in [26].

VI. GENERALIZED FLOWS

Tracking Flows

they are not required force. We will assume that a paifrl,id) appears only once in a
flow.
A. Language for Flows Define last(rl,id,p) in a flow f to be the set of pairs
In our language for flows, a flow is denoted by (rl’,4d") for which there exist agent listag and ag’ both
’ containingp such that(rl’,id’, ag’) precedes(rl,id,ag) in
(flow, conflicts) : {precy,...,prec,} f. We require thatlast(rl,id,p) be the same for all flows

containing(rl, id). Intuitively, this means the prefix fqri, id)
must be the same in all flows in which it appears.

Define next(rl,id,p) in a flow f to be the set of pairs
(rule,id, agents) : (rl’,id’) for which there exist agent listag and ag’ both
containingp such that(rl, id, ag) precedegrl’,id’,ag’) in f.

Define theout degreeof (rl,id) for p in f to be the size of

The meaning of a precedence is that each milk; in- next(rl,id,p) in f. We require that the out degree @7, id)
stantiated with the list of agentsgents, must occur in an for p be the same in all flows containing!, id).
execution before the ruleule instantiated with the list of  Define flows(rl,id) to be the set of flowg containing an
agentsagents can occur. We say eachrule;, id;, agents;) event(rl,id,ag) for some agent liszg. This is the set of
precedes(rule, id, agents) in the flow. For example, in the all flows containing(rl,id) and by definition one of them is
flow on the right side of Figure 1, the first precedence is active when an agent executgs, id).

) o For each process we have a sefluz(p) of tuples of the
(ReqS, idy, (Dir,i)) - {} form (rl,id, out_deg, fl_set) whererl is the rule namejd
and the third precedence is is the associated idyui_deg is an out degreefi_set is a set
of flows. Intuitively, fI_set represents the set of flows that
(SendData,ids, (Mem, Dir)) : {(RecvReqS, ids, (Dir))}  might be active whemp executeqrl, id) given what we have

whereflow is the name of the flowgonflicts is a set of flows,
and eaclprec; is a precedencef the form

{(ruley, idy, agentsy), ..., (rulem, idm, agents,, )}



update(p, ri(i, j), id) = , Define the preconditiopre(ri) for firing I to be the disjunc-
for each(rl’,id") € last(rl,id, p) tion
aux = choose(rl’,id’, od, fl_set) € Auz(p) .
) ) ) —_ l d .
such thatflows(rl, id) N fl_set # {} \/pre((r /id))
new_aux = if od > 1 . .
then{(rl’,id’,od — 1, fl_set N flows(rl,id))} _ If the guard fOI’_ the ruleri(i,j) is p(i,j) the non-
else{}; interference lemma is

id

Auz(p) = Auz(p) \ {auz} U new_aux
if (rl,id) precedes no other rule then
return Auz(p) else 2) Conflict Constraints:Given two flows f; and f> that

return Auz(p) U (rl,id, outdegree(rl,id), flows(rl,id))  are conflicting, we derive constraints as follows. Let thp to
Fig. 7. Tracking flows with auxiliary variables. This proced describes level eyem-s' that is those that have no precedlng events,
how p‘updatesAux(p) when an even(rl, id, ag) .involving p is executed. appearing inf, be (rl%, id%’ ag%), “(Tl?z’ id%,_ag%): Let R =,
The choose operator throws an error if there is nothing tosho {(rl},id}), .., (rl},,id:,)} be the set of rule, id pairs appearing
in flow f;. Conflict betweery; and fo means whilef; is alive
f2 cannot start and vice-versa. Considering the first caseyif an
seen thus far; andut_deg is the number of rule¢rl’,id")  of the eventgri},idy) from f; has occurred (and floy; has
preceded by(rl,id) that p has not yet executed. The sehot ended) then guards of?,..,ri2 cannot be enabled for
fl_set is initialized to flows(rl,id). The out degreeut_deg any process. Mathematically,
is initialized to the out degree @f1, id) for p. (ltis sufficient
for us to maintain a count likeut_deg, even though we could
track flows more precisely by maintaining the actual set of (3p-(lj,idy,_,_) € Auz(p) for somérly,id;) € R)
rules innext(rl, id) yet to fire.)
Whenever an instantiatiori(p1, p2) of a rule(ri(i, j) fires,
we update the auxiliary variables pf andp, as follows!. wherep?2, (i, j) is the guard of the rulel2,.
To associate this rule firing with afrl,id) pair mentioned This lemma prevents the start ¢f if f; is still alive. We
in the flows, we identify the sef of all the idsid such that can derive similar invariant for the case other way around.
(rl,id) appears in the flows. For which eviet € I the update = We can derive another class of invariants that are quite
procedure shown in Figure 7 goes through without raisingseful in constraining the abstract model though at firstgga
an error that is thed we associate with the rule firing andthese invariants don’t seem useful. Suppdskelongs to its
we let the effects of the update procedure stay (after umdoiown conflict set. Consider a rule, id pdirly,id) appearing
the effects of the previous tries). Facp, corresponding to in f and a process that has just fired that rule. It is clear
each ruler! there was only onéd that appeared in the flows,that : cannot fire the same rule again until the current flow
so updating auxiliary variables was simpler than the gdnetes ended becaugeis in conflict with itself. Formally,
procedure given here.

p(i,5) = pre(rl).

C. Lemmas from Flows (rlk,id, _, ) € Auz(i) = Aj.pr(i, j)

We derive two classes of lemmas from flows. The first class This is similar in spirit to the conflict constraints pressht
is extension of the “precedence” lemmas derived in [26] & ttfabove except that instead of preventing rules at the beginni
richer flows. The second class uses the conflict sets. of other flows from firing this constraint prevents same rule
1) Precedence Constraint$zor a ruleri(i, j), we find all from firing twice in a flow. This turns out to be surprisingly
pairs (rl, id) associated with it. For index(and similarly for useful in removing spurious behaviors from of thi&her
4) and for all pairs(rl,id) we compute the sdust(rl,id,i). Process in the abstract model.
This set essentially is the set of &', id’) pairs that must fire
before(rl,id) can fire. For eackrl’,id") we have a constraint

A 1 .
Jod, fl_set. (rl',id', od, fl_set) € Aux(i) In this section we describe our experience applyingdiie
ANod >0 method in conjunction with flow based lemmas to verify the
A fl_set N flows((rl,id)) # {} LCP protocol.

Define the preconditiomre,(rl,id) for i firing (rl,id) to A. Obtaining the Flows
be the conjunction of the above constraints for(all, id’) €
last(rl,id,i). Definepre,;(rl,id) in the same way. Define the
preconditionpre(rl, id) for firing (rl, id)

VIl. V ERIFYING THE LCPPROTOCOL

The flows we considered during verification were all readily
_ Favailable in the design documents written by the architénts
to be the conjunction ¢40¢ the scenarios listed in the design documents had more
pre;(rl,id) A pre;(rl,id). information thgn we needgd. Intuitiyely, only those parts o
the flows that involve the directory (in other words the place
1The case wherel has more/less than 2 agents is handled similarly. ~ where all the coordination happens) yield useful invasant



Apart from identifying the useful parts of the flows, we hadhvolved in aRequest Sharelansaction. Since th@ther pro-
to annotate the events with agents involved and also identdess is not fully constrained, it might start sending cotifigc
the incompatibility set for each flow. Both these steps wersessages corresponding Request Exclusiveransaction to
straight-forward. the directory. One way to prevent this it to write lemmas by
B. Protocol Model hand and refi_ne th@thef process. The simpler option is_ to
use the conflict constraints that prevenRaquest Exclusive
The Murphi model that we verified was quite hierarchicatansaction from starting while Request Sharettansaction
with each rule having an extremely large body covering ig alive. Together with precedence constraints this eissina
variety of cases (as it was semi-automatically generat@t fr ng rule in a conflicting flow can fire.
tables describing the protocol). For instance, there i/ onl apgther cause of spurious counter examples wagiier
one rule specifying the behavior of a cache agent in cas&fhcess repeatedly firing the same rule from a flow. Suppose

receives an invalidate message. The guard of the rule o N’,z‘d’) precedegrl, id) and some other event. That is, the
checks the type of the incoming message and the body of degree of(l’,id') is 2. Since we are only tracking the

rule considers the various sub-cases depending on theo$tatg,,mper of successors 6f!’,id') and not the precise names,
the L1/L2 caches and the data structures. The behavior of £id) can get fired twice byOther process. This does
cache in each of the sub-cases might be quite different Wilgt happen for the concrete agents because they have state
differing messages being sent out. . variables controlling their execution which is not the cesid

In other words, the events associated with each of thg ... process. Adding conflict constraints fixes this problem
sub-cases are quite different though they all belong to thg \yell.
same Murphi rule syntactically. This is not conducive to our To complete the proof it was necessary to add 5 lemmas
flow based methodology which depends on being able {9 5 Since we had in- and out- message buffers, charac-
track events precisely. To allow precise tracking of flow§ fizing when a cache had access to a given item was hard.
we broke up large rules into smaller ones so that each “ﬁegrant shared message might be sitting in the in-message

corresponded to a specific event mentioned in the ﬂov‘ffﬁ]ffer, for instance, though the L2 state may not reflect . W

This was accomplished by simply lifting some of the brancfise thecmp method (without the flow invariants) earlier to

conditions in the body of a rule to the guardfter this step verify a protocol of similar size though less intricate besa
each event mentioned in the flows mapped to a Murphi rul§¢ qimhjer internal structure of each cache [25]. There we
C. Proof details had to_ add 25_ Iemma_s by han(_j. Compa_red to that effort the
The properties that we proved were the standard safdgduction obtained using flows is dramatu_: and clgarly makes
e cMP method much more usable. This experience once

property requiring that if there is an cache with exclusive ™ . ) ) : :
access to a data item then no other cache has acces@9ain confirms that flows do yield powerful invariants that

that item and properties specifying consistency between et t_o the heart of protocol correctness. The running timme fo
directory’s list of caches with access to a data item and tmee final abstract model was around 5.5 hours.
real access each local cache has.

To carry out the abstraction and refinement with lemmd% Flows and State Explosion
we used a tool calledbsterwritten in Ocaml. Abster takes
in a parameterized protocol written in Murphi and creates
intermediate AST for the protocol. All the abstraction an irectory, using all the flows is not the right thing to do as

refinement operations take place on the AST. We specify t eads to state explosion in the abstract model. Apart from

tnhumbl;e rtof ?gentds,lu;ually d2' or3, t;be reiameldt C%ncret?][}'\) rious flows for requesting shared and exclusive accesses
€ absiract model depending on the protocol to be Verl&g, naq 5 collection of flows for write backs and invalidates.

The flows are specified in a separate file. Abster automaic nlike the former flows the latter flows were not incompatible

constructs flow lemmas and adds them to the guards of fih themselves, that is, there could well be many of these

appropriate rules .("?‘ rule Who?e gL_Jard appears in the ﬂ?l\efws alive at the same time. Thus, in the abstract model, the
invariant gets modified by that invariant).

T t th f d 15 fl f desi Other process can fire rules from these flows multiple times
0 carry out the proot we use ows Trom desi9lny satyrate the auxiliary variables leading to an expfosio
documents. These led to 36 flow lemmas, with 25 of the

ing f q . dth ¢ ﬂme number of states. It took us some time to understand this
coming from precedence constraints and the rest from con enomenon, especially since augmenting the concretelmode

constraints. At first we used only the preced_ence conssrai(fh auxiliary variables increased the state space by at mos
and proceeded to refine the abstract model with hand supplie¢, «or of 2. That is. the auxiliary variables don't increas
lemmas. But we soon realized that several counter exam 8 number of states’in the concrete model by much — they
were causgd by two conflicting flows starting at the same tim(?nl widen the state. But this is not so for the abstract model
More precisely, suppose one of the concrete agents, say Ted ecially if we have flows that don’t have too many conflict

2This had to be done only for some of the rules. Similarly, ibbganch ConStraints' Th?s eXperiehce indicates that flows that atp;me
conditions had to be lifted. their own conflict sets might be best ones to use.

A surprising discovery during this proof process was that,
en after we have chosen important flows involving the



E. Flows as Validation Collateral

(3]

Apart from helping us prove the safety properties of interesy,
by yielding invariants, the flows themselves are valuable

validation collateral. Theemp method not only uses lemmas
but also validates them in the process. Thus, we are not on

%

using flows but also proving them correct. To see the crucidé]

flows of the protocol exercised and to have an assurance t
important actions of the protocol, like the directory semni

3

grant exclusive/shared access messages, happen prexssely o '
specified by flows, constitutes a much stronger validation dpl A. Cohen and K. Namjoshi. Local Proofs for Global Safetperties.

the protocol than just verifying a final global property. bcf,

9]

the architects who saw our proofs were impressed more with

the fact that we validated the flows than they were with tH&0l
[11]

global safety properties verified!

VIIl. CONCLUSION

Finding invariants is one of the central problems of formads)

[12]

verification and extensive research is being carried out to

find invariants automatically or via user provided annotagi

J. Bingham. Automatic invariant generation for paraeneed verifica-
tion. In Submitted to FMCAD2008.

C.-T. Chou, P. K. Mannava, and S. Park. A simple method for
parameterized verification of cache coherence protocols. Proc.
FMCAD), 2004.

E. Clarke, M. Talupur, T. Touilli, and H. Veith. Verifican by Network
Decomposition. InProc. CONCUR 2004.

E. Clarke, M. Talupur, and H. Veith. Environment Abstiao for
Parmeterized Verification. IRroc. VMCA| 2006.

E. Clarke, M. Talupur, and H. Veith. Proving Ptolemy RigtEnvi-
ronment Abstraction Principle for Parameterized Verifaat In Proc.
TACAS 2008.

In Proc. CAV, 2007.

S. Das, D. L. Dill, and S. Park. Experience with PredicAtestraction.
In CAV, 1999.

G. Delzanno. Automated Verification of Cache Coherenzocols. In
Proc. CAV 2000.

A. E. Emerson and V. Kahlon. Reducing Model Checkinglaf Many
to the Few. InProc. CADE pages 236—254, 2000.

A. E. Emerson and V. Kahlon. Model Checking Large-scated
Parameterized Resource Allocation Systems.Pioc. TACAS pages
251-265, 2002.

E. A. Emerson and K. S. Namjoshi. Reasoning about RingsProc.
POPL, 1995.

] S. Krstic. Parameterized system verification with guatrengthening

While the flow based technique falls into the latter category

it has the advantage that flows arise naturally and are geadil5]
Ideal annotations (or user supplied infornmtio,

available.

should be 1) easy to find, 2) provide relevant information

precisely and in an easy to understand manner and 3) st
stable as the design details change. Flows have all three
[18]

properties which makes them so attractive to use.

Apart from message passing distributed system handled

here, flows or partial order on system events can also e
applied to other types of distributed system. Lamport [17}0]
has used partial orders analogous to flows in reasoning about

mutual exclusion algorithms. In [17] the partial order idided

over operationswhich consist of series of atomic events. In2q)

addition to the precedence relation over events used in this

paper, Lamport also defines @n influencerelation over
operations. While we used flows to derive invariants, Larhpqpz)

(manually) reasons directly in terms of the partial order to

prove the mutual exclusion property (which is also defindd’!

in terms of the precedence relation). A natural extension to
our work is to generalize the notion of flows along the lines

suggested by [17] and use it verify other types of distridutd?*!
[25]

systems.

In summary, flows succinctly capture the core ideas that

go into the design of a protocol and open up an promisi
avenue to pursue in our search for powerful system invegiant
In conjunction with thecmp method, they lead to a technique

that can handle the largest of protocols.
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