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Abstract—We prove the parameterized correctness of one of
the largest cache coherence protocols being used in modern multi
core processors today. Our approach is a generalization of a
method we described last year that uses data type reduction
and compositional reasoning to iteratively abstract and refine
the protocol and uses invariants derived from protocol “flows” to
make the abstraction-refinement loop converge. Our prior work
demonstrated the value of sequencing information that appeared
within the linear flows describing a protocol in design documents.
This paper extends the notion of flows to capture intricate
scenarios seen in real industrial protocols and demonstrates that
there is also valuable information in the interaction amongflows.
We further show that judicious use of flows is required to make
the method converge and identify which flows are most suitable.

I. I NTRODUCTION

We validated an extremely complex cache coherence proto-
col that will soon appear in multi-core processors from Intel.
We used a generalization of the method we reported last year
[26] based on the CMP method [20], [4], [14] augmented
with message flows. This protocol, which we callLCP, is
an intricate high-performance protocol that is designed tobe
scalable to large number of cores. Such intricate distributed
protocols are especially susceptible to functional bugs that
standard techniques like testing and simulation are unlikely to
find and consequently formal verification is indispensable in
their validation. We thinkLCP may be one of the largest, most
complicated cache coherence protocol ever validated with
formal methods. As one measure, the Flash cache coherence
protocol, to which only a handful of formal methods have been
successfully applied, has about 10 Boolean state variablesper
process and 16 different message types in all. In contrast, with
over 70 Boolean state variables and around 50 message types,
the state space forLCP is several orders of magnitude larger
than Flash (see Section II).

While many techniques [22], [15], [11], [3], [18] have been
proposed for parametric protocol verification, none of them
scale well to large protocols, and those that do scale [9],
[21] require an inordinate amount of manual effort to succeed.
The CMP method [20], [4], [14], [26] is the only method for
parametric verification we are aware of that scales to large
protocols and is easy to use. It is an interactive proof method
based on compositional reasoning that uses a model checker
as a proof assistant. Though it combines the best of theorem
proving and model checking, the main difficulty in applying
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Fig. 1. Message flows as a linear sequence or acyclic graph of events.

this method is coming up thenon-interference lemmasor
invariants to guide the proof. As in theorem proving, this is
a time consuming process requiring a thorough knowledge of
the protocol. Moreover, adding one wrong invariant can lead
the proof astray and render subsequent work useless.

In our earlier paper [26], we showed that the burden of
generating the noninterference lemmas required byCMP can
be significantly reduced by using the messageflows typi-
cally found in industrial design documents. Flows are linear
sequences of system events such as sending and receiving
messages in case of distributed message passing systems, as
illustrated on the left of Figure 1. We demonstrated the efficacy
our method by applying it to several academic protocols,
namely, German’s protocol and Flash protocol.

In this paper, we describe a generalization of the method
presented in [26] and its application to theLCP cache coher-
ence protocol. The primary contributions of this paper are:

1) Generalizing flows from linear traces to directed acyclic
graphs, like the flow on the right of Figure 1, and a
simple language for describing flows.

2) Demonstrating that we can derive powerful noninter-
ference lemmas from constraints on events occurring
in different flows, and not just constraints on events
occurring within a single flow. Simply stating that two
flows cannot be in progress at the same time, for
example, can dramatically speed the convergence of the
CMP method.

3) Demonstrating that not all flows are equally useful, and
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Fig. 2. Schematic of the Larrabee many-core architecture

that a more judicious use of the information in flows can
also speed the convergence of theCMP method.

4) Parametrically verifying the correctness of the Intel
cache coherence protocolLCP for any number of pro-
cessors.

In verifying LCP we used a total of 15 flows, all easily
obtained from the design documents, to derive around 36
lemmas. To make theCMP method converge another 5 lemmas
had to be supplied by hand. A similar effort earlier [25] where
we verified a cache protocol of comparable size using theCMP

method required us to supply nearly 25 lemmas manually.
Clearly, flows lead to a dramatic reduction in the number
manually supplied lemmas and makes it much easier to use
the CMP method.

The rest of the paper is structured as follows. In the next
section we describe the salient features of theLCP protocol. In
the following section III we discuss the possible alternatives
to theCMP method and why they are inadequate. An overview
of the CMP plus flows method of [26] is given in Section IV
followed by a discussion of the extensions required to deal
with LCP in the next section. In section VI, we present a new
language to capture richer flows and also show how derive
stronger constraints than just simple precedence constraints. A
detailed description of our experience in using these extended
flows in verifying the LCP protocol is given in Sec VII.
Section VIII concludes the paper.

II. L ARRABEE AND LCP

Larrabee is the code name for a many-core visual computing
architecture under development at Intel Corporation [23].The
Larrabee architecture is based on a set of CPU cores that
run the x86 instruction set, extended with support for vector
processing operations and some specialized scalar instructions.
Figure 2 shows a schematic of the architecture. Each core is
associated with its own subset of a coherent L2 cache that
affords fast, high-bandwidth data access to each core and
simplifies data sharing and synchronization. The number of
CPU cores and the number and type of co-processors and I/O
blocks are implementation dependent, as are the positions of
CPU and non-CPU blocks on the chip. To validate theLCP

protocol in full generality we need parametric reasoning.
Figure 3 shows the major functional blocks in a single

core. Larrabee’s global second-level (L2) cache is dividedinto
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Fig. 3. Larrabee CPU core and associated system blocks

separate subsets, one for each CPU core. Each CPU has direct
access to its own subset of the L2 cache. Data read by a CPU
core is stored in its L2 cache subset and can be accessed
quickly, in parallel with other CPUs accessing their own local
L2 cache subsets. Data written by a CPU core is stored in
its own L2 cache subset and is flushed from other subsets,
if necessary. Larrabee uses a bi-directional ring network to
allow agents such as CPU cores, L2 caches and other logic
blocks to communicate with each other within the chip. The
LCP (Larrabee coherence protocol) runs on the ring network
and maintains coherency of shared data.

Our model of the Larrabee coherence protocol is organized
as a parameterized number of identical caching agents which
talk to a central directory that controls access to the data
items as shown in Figure 4. For the purpose of verifying the
coherence protocol our model abstracts away the ring structure
and assumes point to point communication links between the
agents (including links between the caches and from the off-
chip memory to individual caches).

Unlike the Flash protocol where the directory distinguishes
between local requests and external requests, theLCP makes
no such distinction. This means when verifying two index
properties it is enough to retain two cache agents concretely
in the abstract model whereas for Flash we had to keep three
agents, one local agent and two non-local agents [26]. In
addition to these agents, there is also a memory controller
that talks to the directory and supplies memory lines that have
not yet been imported onto the chip.

The high level model we verified preserved much of the
internal structure of each cache agent. Thus, apart from the
L2 cache we also had the L1 cache and actions of the agent
depended on the states of both the caches. Further, the various
in- and out- message buffers and related book keeping data
structures were also modeled. Other than assuming point to
point links between the various agent, we modeled almost
every significant detail of the protocol which increased the
complexity of flows/transactions considerably.

The complexity of a protocol can judged by the number
of different types of messages that are exchanged by the
agents. German’s protocol for example has only 7 different
messages, Flash protocol, considered to be hard to verify, has
16 different types andLCP has around 50 different message
types (comparable to the protocol we verified in [25]). In terms
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of Boolean variables, each process inLCP has approximately
70 variables. In contrast the Flash protocol has around 10
state variables per process. Murphi description of the protocol
actions was about 3000 lines whereas Flash has around 1000
lines.

III. PROTOCOL VERIFICATION TECHNIQUES

Broadly, there are two classes of techniques to verify
distributed protocols: model checking based methods that aim
for maximum automation and theorem proving style methods
that aim for scalability.

A. Model Checking based Methods

Several techniques like Indexed Predicates [15], [16],
Counter Abstraction [22] and related methods [10], Regular
Model Checking [1], [2], Split Invariants based method [8],
Environment Abstraction [6], [7] have been proposed to deal
with verification of distributed protocols. While these methods
have a higher degree of automation than the one we present,
their scalability remains to be proven.

1) Indexed Predicates Method:Indexed predicate abstrac-
tion generalizes predicate abstraction to predicates thathave
free index variables. Given a protocolP (N) and collection
I of indexed predicates this method automatically produces
the strongest universally quantified invariant ofP (N) overI.
Intricate systems like Bakery protocol and Tomasulo’s out of
order processor has been verified by using this method [15].
But scalability remains an issue. Even for as small a protocol
as the German’s protocol this method takes couple of hours
to produce an invariant.

2) Cutoffs based approach:Another approach to verifying
a parameterized systemP (N) is to find a cutoff k such
that verifyingP (k) is enough to guarantee the correctness of
P (N) for any value ofN . There has been some work on this
topic [11], [12] and related topics [13], [5] but the cutoffsare
large making them impractical to use. For example, in [12]
a cutoff of 7 was found for a directory based protocol. But
real protocols are so large that even verifying a system with
3 agents is often not possible.

3) Counter and Environment Abstractions:Counter Ab-
straction [22] and its generalization Environment Abstrac-
tion [6] are based on the idea of partitioning a collection of
identical agents into equivalent classes based on the predicates
they satisfy and for each partition tracking only one represen-
tative. The abstract model produced by these methods tend
to be very detailed and consequently too large as we look at
bigger protocols. Environment abstraction for example is just
able to handle a simplified version of the Flash protocol [24].

B. Theorem Proving style methods

Apart from classical theorem proving there are methods like
aggregated transactions [21] that are user-guided techniques.
These suffer from the well known problem of having to
provide guidance in minute detail to get the proof through.
It is unlikely that theorem proving style methods can be used
practically to verify large protocols given that just to verify
Flash protocol the aggregated transactions method took couple
of days of effort.

C. CMP method

The CMP method straddles both the above categories of
model checking and theorem proving based methods: it uses
model checker as a proof assistant to carry out user guided
proof. The crucial advantage of theCMP method is that the
user supplied lemmas don’t have to add up to an inductive
invariant [26]. This means the amount of guidance provided is
a lot less than in theorem proving methods. UsingCMP method
we have earlier verified Flash protocol [26] and another large
cache coherence protocol within Intel [25]. The latter protocol
is comparable in size to theLCP protocol. Clearly,CMP method
is the only viable method currently for handling large protocols
and our effort was to make it more usable by reducing the
lemma burden as much as possible.

IV. D ESCRIPTION OF THE CMP METHOD

For the rest of the paper we will use the same system model
as in [26]. In particular, we consider a symmetric protocolP

with N processors[1..N ] whose transition relation is given as
a collection of rules. Each rule is aguarded commandwritten
as

rl : ∀i, j.ρ → a or rl(i, j) : ρ(i, j) → a(i, j)

whererl is therule name, ρ is an expression called theguard,
a is a list of assignments called the theactionandi, j are the
process index variables.

TheCMP method is a compositional reasoning based method
and it consists of two basic steps —abstractionandstrength-
ening— that are applied iteratively to a protocol as shown in
Figure 5.

Given a propertyI = ∀i, j ∈ [1..N ].I(i, j) that we want
to prove is an invariant ofP , the CMP method creates an
abstract modelP̂ that retains two agents, say1, 2 without
loss of generality, and replaces the rest of the processes with
a highly non-deterministic processOther. Intuitively, in a
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symmetric system if a propertyφ(1, 2) holds for processes1, 2
thenφ(i, j) holds for any other pair of processesi, j as well.
Thus, it is enough to consider an abstract model with detailed
information on1, 2 and check ifI(1, 2) holds. The abstraction
process inCMP method is inexpensive as it is almost syntactic
and bulk of the state space of̂P comes from1, and2. On the
flip side P̂ tends to be very coarse as the behavior ofOther is
completely unconstrained. To get rid of the resulting spurious
counter examples, theCMP method requires the user to provide
non-interference lemmasor invariants that are used to refine
the abstract model. This process is continued iteratively till
we find a real counter example or prove thatI(1, 2) holds.
Pseudo-code for the method is given below.

CMP(P ,I) =
P# = P ; I# = I

while abstract(P#) 6|= abstract(I#(1, 2)) do
examine counterexamplecex
exit if cex is a real counterexample
find L = ∀i, j.L(i, j) ruling out cex
P# = strengthen(P#, L)
I#(i, j) = I#(i, j) ∧ L(i, j)

end

If the loop terminates normally, the method and protocol
symmetry allow us to conclude thatI# and consequentlyI
are invariants ofP . If the loop terminates via the exit, then
eitherI or one of the proposed lemmasL is not an invariant
of the protocol, and the user must back up and try again.

In McMillan’s work [20] the abstraction operation used was
data type reduction [19] which essentially throws away all the
state variables of processes[3..N ]. Our analysis of theCMP

method in [26] allows us to use richer abstractions than data
type reduction. In particular this allows meaningful abstraction
of auxiliary variables used to track flows.

A. MakingCMP better using Flows

Not surprisingly the main difficulty in applying theCMP

method is coming up with the non-interference lemmas. As
demonstrated in [26], message flows or simply flows yield
powerful invariants that can used as non-interference lemmas
in the CMP method and thus reduce the number of lemmas we
need to supply by hand.

The flows used in [26] are linear ordering of events usually
involving two agents, see reffig:flow. Each entry in the flow
is either a simple event, corresponding to a single rule firing

of the protocol or asub-flowwhere a sub-flow is itself a flow
composed of simple events. The notion of sub-flow serves to
chop up a complicated flow into smaller units such that each
unit shows interaction between two agents.

The constraints derived from flows are the implicit prece-
dence constraints between events occurring in the flows. For
example, according to the first flow in Figure 1,ReqS has to
happen beforeRecvReqS can happen. This can be converted
into a precise lemma by having a setAux(i) of auxiliary
variables for each processi that track all the flowsi is involved
in and for each flow the last rule that was fired byi. In case of
RecvReqS action the precedence constraint is simply that if,
for processi, theRecvReqS action is enabled then there must
be an auxiliary variable recording the fact thati was involved
in ReqS action earlier. These simple precedence constraints
turn out to be surprisingly powerful as invariants.

The advantage of the flows is that they are intuitive to
understand and readily available in the design documents.
Flows in fact allow us to state the core ideas that go into the
design of a protocol in terms of higher level concepts while
avoiding the specific implementation details. This means flows
are quite robust and resistant to changes in the protocol design
which makes them very attractive as user supplied annotations

V. EXTENSIONS TOFLOWS

Apart from the local caching agents and the directory,
real cache protocols have other types of agents, like the off-
die memory controller, which add to the complexity of the
interaction between the agents. Flows designed to capture
two agent interactions are no longer sufficient to capture
complicated scenarios scene.

Consider Flow 2 of Figure 1 which calls for an extension
to our notion of flows. Here a processi requests access to
an item that has not yet been fetched onto the chip. The on-
chip directory forwards the request to the off-chip memory
controller along with id of the requesting agent. The directory
also sends an acknowledge message to the caching agent.
The memory controller for its part sends the required item
to the caching agent and also sends a message completion
to the directory. On receiving the message completion the
directory sends a grant message to the agent. On receiving
both the grant message from directory and the data message
from memory controller agenti transitions to shared state and
sends a completion message to the directory. The transaction
ends when the directory receives the completion message.

This scenario is similar to, and typical of, the complex
interactions present inLCP and it differs from the flow shown
in the left of Figure 1 in crucial ways. The interaction between
the three agents is tightly coupled and it is not possible
to identify meaningful sub-flows that have only two agents
involved. Earlier, in [26] even though we had more than two
agents involved, it was to easy see that the flow was made up
of logical sub-units consisting of only two agents.

Further, an event might have multiple preceding actions.
For instance, eventSendAckcan happen only after the agent



has received both the data and grant messages. Receiving only
one of these is not sufficient to enable theSendAckmessage.
Linear flows cannot capture multiple dependency.

Similarly, an event in the flow might have more than one
succeeding event. For instance, theRecvReqS event leads to
two further eventsSendData and Wait. With linear flows
then the number of events depending on a given event is at
most one.

Finally, unlike in the Flow 1 of Figure 1 which total orders
on events, Flow 2 is a partial order. For instance, there is
no ordering between the eventsData and GntS, they can
be received byi in any order. One way to deal with this is
to flatten the partial order into a collection of total orders.
But this runs into two issues: firstly, the number of resulting
flows might be large and unnecessarily obscure the simplicity
present in the dag representation. Secondly, having more flows
also means we will have to introduce more auxiliary variables
or extend their ranges and thus, we will also end up making
the augmented model bigger.

Thus, it is clear that the new flows or rather flow language
has to be expressive enough to capture directed acyclic graphs
(dags). Moreover, note that in Flow 2 of Figure 1 there are
three primary agents in the flow but that each event involves
at most two agents. So apart from specifying events we also
have to specify which agents are involved in the events. A
new flow language that takes into account these extensions is
described in the next section.

VI. GENERALIZED FLOWS

We now extend our prior work to incorporate the gener-
alized flows and flow-based invariants described in previous
sections. We omit treatment of subflows in this section since
they are not required forLCP.

A. Language for Flows

In our language for flows, a flow is denoted by

(flow , conflicts) : {prec1, . . . , precn}

whereflow is the name of the flow,conflicts is a set of flows,
and eachpreci is a precedenceof the form

(rule,id , agents) :

{(rule1, id1, agents1), . . . , (rulem, idm, agentsm)}

The meaning of a precedence is that each rulerulei in-
stantiated with the list of agentsagents i must occur in an
execution before the rulerule instantiated with the list of
agentsagents can occur. We say each(rulei, id i, agents i)
precedes(rule, id , agents) in the flow. For example, in the
flow on the right side of Figure 1, the first precedence is

(ReqS, id1, 〈Dir, i〉) : {}

and the third precedence is

(SendData, id2, 〈Mem, Dir〉) : {(RecvReqS, id3, 〈Dir〉)}
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Fig. 6. Flows can share a common event (left) and a common prefix (right).

The meaning of a conflict set is that a flowf and a flow
f ′ in the conflict set off cannot be alive at the same time. A
flow is said to bealive if some rule in the flow has occurred
and one of its successors has not occurred. The conflict set
of f might containf itself. In this case the meaning is that
there can be only one instantiation off alive in the system.
The constraints resulting from these conflict sets turn out to
be very powerful in constraining theOther process.

Finally, we associate an id with each event since a particular
instantiation of a rule may occur in multiple flows. The
left side of Figure 6 illustrates that we must distinguish the
occurrences ofev in the flowsf1 andf2, so that the occurrence
of ev in f1 will enable the evente3 in f1 and note7 in f2.
The right side of Figure 6 illustrates that we cannot use the
flow name as the event id, since different flows can share a
common prefix. As long as the system is in the prefix, we
don’t know whether the system is in flowf1 or f2. In fact,
because we don’t know which flow the system is in, an event
in the prefix must have the same event id in both flows.

B. Tracking Flows

We use auxiliary variables to track active flows as in [26].
We will assume that a pair(rl, id) appears only once in a
flow.

Define last(rl, id, p) in a flow f to be the set of pairs
(rl′, id′) for which there exist agent listsag and ag′ both
containingp such that(rl′, id′, ag′) precedes(rl, id, ag) in
f . We require thatlast(rl, id, p) be the same for all flows
containing(rl, id). Intuitively, this means the prefix for(rl, id)
must be the same in all flows in which it appears.

Define next(rl, id, p) in a flow f to be the set of pairs
(rl′, id′) for which there exist agent listsag and ag′ both
containingp such that(rl, id, ag) precedes(rl′, id′, ag′) in f .

Define theout degreeof (rl, id) for p in f to be the size of
next(rl, id, p) in f . We require that the out degree of(rl, id)
for p be the same in all flows containing(rl, id).

Defineflows(rl, id) to be the set of flowsf containing an
event (rl, id, ag) for some agent listag. This is the set of
all flows containing(rl, id) and by definition one of them is
active when an agent executes(rl, id).

For each processp we have a setAux(p) of tuples of the
form (rl, id, out deg, f l set) whererl is the rule name,id
is the associated id,out deg is an out degree,fl set is a set
of flows. Intuitively, fl set represents the set of flows that
might be active whenp executes(rl, id) given what we have



update(p, rl(i, j), id) =
for each(rl′, id′) ∈ last(rl, id, p)

aux = choose(rl′, id′, od, f l set) ∈ Aux(p)
such thatflows(rl, id) ∩ fl set 6= {}

new aux = if od > 1
then{(rl′, id′, od − 1, f l set ∩ flows(rl, id))}
else{};

Aux(p) := Aux(p) \ {aux} ∪ new aux

if (rl, id) precedes no other rule then
returnAux(p) else
returnAux(p) ∪ (rl, id, outdegree(rl, id),flows(rl, id))

Fig. 7. Tracking flows with auxiliary variables. This procedure describes
how p updatesAux(p) when an event(rl, id, ag) involving p is executed.
The choose operator throws an error if there is nothing to choose.

seen thus far; andout deg is the number of rules(rl′, id′)
preceded by(rl, id) that p has not yet executed. The set
fl set is initialized toflows(rl, id). The out degreeout deg

is initialized to the out degree of(rl, id) for p. (It is sufficient
for us to maintain a count likeout deg, even though we could
track flows more precisely by maintaining the actual set of
rules innext(rl, id) yet to fire.)

Whenever an instantiationrl(p1, p2) of a rule(rl(i, j) fires,
we update the auxiliary variables ofp1 and p2 as follows1.
To associate this rule firing with an(rl, id) pair mentioned
in the flows, we identify the setI of all the idsid such that
(rl, id) appears in the flows. For which everid ∈ I the update
procedure shown in Figure 7 goes through without raising
an error that is theid we associate with the rule firing and
we let the effects of the update procedure stay (after undoing
the effects of the previous tries). ForLCP, corresponding to
each rulerl there was only oneid that appeared in the flows,
so updating auxiliary variables was simpler than the general
procedure given here.

C. Lemmas from Flows

We derive two classes of lemmas from flows. The first class
is extension of the “precedence” lemmas derived in [26] to the
richer flows. The second class uses the conflict sets.

1) Precedence Constraints:For a rulerl(i, j), we find all
pairs(rl, id) associated with it. For indexi (and similarly for
j) and for all pairs(rl, id) we compute the setlast(rl, id, i).
This set essentially is the set of all(rl′, id′) pairs that must fire
before(rl, id) can fire. For each(rl′, id′) we have a constraint

∃od, f l set. (rl′, id′, od, f l set) ∈ Aux(i)

∧ od > 0

∧ fl set ∩ flows((rl, id)) 6= {}

Define the preconditionprei(rl, id) for i firing (rl, id) to
be the conjunction of the above constraints for all(rl′, id′) ∈
last(rl, id, i). Defineprej(rl, id) in the same way. Define the
preconditionpre(rl, id) for firing (rl, id) to be the conjunction

prei(rl, id) ∧ prej(rl, id).

1The case whererl has more/less than 2 agents is handled similarly.

Define the preconditionpre(rl) for firing rl to be the disjunc-
tion ∨

id

pre((rl, id)).

If the guard for the rulerl(i, j) is ρ(i, j) the non-
interference lemma is

ρ(i, j) ⇒ pre(rl).

2) Conflict Constraints:Given two flowsf1 and f2 that
are conflicting, we derive constraints as follows. Let the top
level events, that is those that have no preceding events,
appearing inf2 be (rl21 , id

2
1, ag2

1), ..(rl
2
n, id2

n, ag2
n). Let R =

{(rl11, id
1
1), .., (rl

1
m, id1

m)} be the set of rule, id pairs appearing
in flow f1. Conflict betweenf1 andf2 means whilef1 is alive
f2 cannot start and vice-versa. Considering the first case if any
of the events(rl1k, idk) from f1 has occurred (and flowf1 has
not ended) then guards ofrl21, .., rl

2
n cannot be enabled for

any process. Mathematically,

(∃p.(rl1k, id1
k, , ) ∈ Aux(p) for some(rl1k, id1

k) ∈ R)

⇒ ∀rl2m∀i, j.¬ρ2
m(i, j)

whereρ2
m(i, j) is the guard of the rulerl2m.

This lemma prevents the start off2 if f1 is still alive. We
can derive similar invariant for the case other way around.

We can derive another class of invariants that are quite
useful in constraining the abstract model though at first glance
these invariants don’t seem useful. Supposef belongs to its
own conflict set. Consider a rule, id pair(rlk, id) appearing
in f and a processi that has just fired that rule. It is clear
that i cannot fire the same rule again until the current flow
has ended becausef is in conflict with itself. Formally,

∃(rlk, id, , ) ∈ Aux(i) ⇒6 ∃j.ρk(i, j)

This is similar in spirit to the conflict constraints presented
above except that instead of preventing rules at the beginning
of other flows from firing this constraint prevents same rule
from firing twice in a flow. This turns out to be surprisingly
useful in removing spurious behaviors from of theOther

process in the abstract model.

VII. V ERIFYING THE LCPPROTOCOL

In this section we describe our experience applying theCMP

method in conjunction with flow based lemmas to verify the
LCP protocol.

A. Obtaining the Flows

The flows we considered during verification were all readily
available in the design documents written by the architects. In
fact, the scenarios listed in the design documents had more
information than we needed. Intuitively, only those parts of
the flows that involve the directory (in other words the place
where all the coordination happens) yield useful invariants.



Apart from identifying the useful parts of the flows, we had
to annotate the events with agents involved and also identify
the incompatibility set for each flow. Both these steps were
straight-forward.

B. Protocol Model

The Murphi model that we verified was quite hierarchical
with each rule having an extremely large body covering a
variety of cases (as it was semi-automatically generated from
tables describing the protocol). For instance, there is only
one rule specifying the behavior of a cache agent in case it
receives an invalidate message. The guard of the rule only
checks the type of the incoming message and the body of the
rule considers the various sub-cases depending on the stateof
the L1/L2 caches and the data structures. The behavior of the
cache in each of the sub-cases might be quite different with
differing messages being sent out.

In other words, the events associated with each of the
sub-cases are quite different though they all belong to the
same Murphi rule syntactically. This is not conducive to our
flow based methodology which depends on being able to
track events precisely. To allow precise tracking of flows,
we broke up large rules into smaller ones so that each rule
corresponded to a specific event mentioned in the flows.
This was accomplished by simply lifting some of the branch
conditions in the body of a rule to the guard2. After this step
each event mentioned in the flows mapped to a Murphi rule.

C. Proof details

The properties that we proved were the standard safety
property requiring that if there is an cache with exclusive
access to a data item then no other cache has access to
that item and properties specifying consistency between the
directory’s list of caches with access to a data item and the
real access each local cache has.

To carry out the abstraction and refinement with lemmas
we used a tool calledAbsterwritten in Ocaml. Abster takes
in a parameterized protocol written in Murphi and creates an
intermediate AST for the protocol. All the abstraction and
refinement operations take place on the AST. We specify the
number of agents, usually 2 or 3, to be retained concretely in
the abstract model depending on the protocol to be verified.
The flows are specified in a separate file. Abster automatically
constructs flow lemmas and adds them to the guards of the
appropriate rules (a rule whose guard appears in the flow
invariant gets modified by that invariant).

To carry out the proof we used 15 flows from design
documents. These led to 36 flow lemmas, with 25 of them
coming from precedence constraints and the rest from conflict
constraints. At first we used only the precedence constraints
and proceeded to refine the abstract model with hand supplied
lemmas. But we soon realized that several counter examples
were caused by two conflicting flows starting at the same time.
More precisely, suppose one of the concrete agents, say 1, is

2This had to be done only for some of the rules. Similarly, not all branch
conditions had to be lifted.

involved in aRequest Sharedtransaction. Since theOther pro-
cess is not fully constrained, it might start sending conflicting
messages corresponding toRequest Exclusivetransaction to
the directory. One way to prevent this it to write lemmas by
hand and refine theOther process. The simpler option is to
use the conflict constraints that prevent aRequest Exclusive
transaction from starting while aRequest Sharedtransaction
is alive. Together with precedence constraints this ensures that
no rule in a conflicting flow can fire.

Another cause of spurious counter examples was theOther

process repeatedly firing the same rule from a flow. Suppose
(rl′, id′) precedes(rl, id) and some other event. That is, the
out degree of(rl′, id′) is 2. Since we are only tracking the
number of successors of(rl′, id′) and not the precise names,
(rl, id) can get fired twice byOther process. This does
not happen for the concrete agents because they have state
variables controlling their execution which is not the casewith
Other process. Adding conflict constraints fixes this problem
as well.

To complete the proof it was necessary to add 5 lemmas
by hand. Since we had in- and out- message buffers, charac-
terizing when a cache had access to a given item was hard.
A grant shared message might be sitting in the in-message
buffer, for instance, though the L2 state may not reflect it. We
used theCMP method (without the flow invariants) earlier to
verify a protocol of similar size though less intricate because
of simpler internal structure of each cache [25]. There we
had to add 25 lemmas by hand. Compared to that effort the
reduction obtained using flows is dramatic and clearly makes
the CMP method much more usable. This experience once
again confirms that flows do yield powerful invariants that
get to the heart of protocol correctness. The running time for
the final abstract model was around 5.5 hours.

D. Flows and State Explosion

A surprising discovery during this proof process was that,
even after we have chosen important flows involving the
directory, using all the flows is not the right thing to do as
it leads to state explosion in the abstract model. Apart from
various flows for requesting shared and exclusive accesses
we had a collection of flows for write backs and invalidates.
Unlike the former flows the latter flows were not incompatible
with themselves, that is, there could well be many of these
flows alive at the same time. Thus, in the abstract model, the
Other process can fire rules from these flows multiple times
and saturate the auxiliary variables leading to an explosion in
the number of states. It took us some time to understand this
phenomenon, especially since augmenting the concrete model
with auxiliary variables increased the state space by at most
a factor of 2. That is, the auxiliary variables don’t increase
the number of states in the concrete model by much – they
only widen the state. But this is not so for the abstract model,
especially if we have flows that don’t have too many conflict
constraints. This experience indicates that flows that appear in
their own conflict sets might be best ones to use.



E. Flows as Validation Collateral

Apart from helping us prove the safety properties of interest
by yielding invariants, the flows themselves are valuable
validation collateral. TheCMP method not only uses lemmas
but also validates them in the process. Thus, we are not only
using flows but also proving them correct. To see the crucial
flows of the protocol exercised and to have an assurance that
important actions of the protocol, like the directory sending
grant exclusive/shared access messages, happen preciselyas
specified by flows, constitutes a much stronger validation of
the protocol than just verifying a final global property. In fact,
the architects who saw our proofs were impressed more with
the fact that we validated the flows than they were with the
global safety properties verified!

VIII. C ONCLUSION

Finding invariants is one of the central problems of formal
verification and extensive research is being carried out to
find invariants automatically or via user provided annotations.
While the flow based technique falls into the latter category,
it has the advantage that flows arise naturally and are readily
available. Ideal annotations (or user supplied information)
should be 1) easy to find, 2) provide relevant information
precisely and in an easy to understand manner and 3) stay
stable as the design details change. Flows have all three
properties which makes them so attractive to use.

Apart from message passing distributed system handled
here, flows or partial order on system events can also be
applied to other types of distributed system. Lamport [17]
has used partial orders analogous to flows in reasoning about
mutual exclusion algorithms. In [17] the partial order is defined
over operationswhich consist of series of atomic events. In
addition to the precedence relation over events used in this
paper, Lamport also defines acan influencerelation over
operations. While we used flows to derive invariants, Lamport
(manually) reasons directly in terms of the partial order to
prove the mutual exclusion property (which is also defined
in terms of the precedence relation). A natural extension to
our work is to generalize the notion of flows along the lines
suggested by [17] and use it verify other types of distributed
systems.

In summary, flows succinctly capture the core ideas that
go into the design of a protocol and open up an promising
avenue to pursue in our search for powerful system invariants.
In conjunction with theCMP method, they lead to a technique
that can handle the largest of protocols.
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