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1 Model Checking Systems with Replicated Processes

With the rapid onset of the multi-core era, the verification of multi-threaded systems and
concurrent algorithms has become a pressing problem in the hardware and software in-
dustries. While traditional techniques like testing and simulation are often adequate for
sequential software and hardware, they are not suited for validating concurrent systems;
due to their their massive parallelism, concurrent systems have way too many possible
interleavings for these informal techniques. Therefore, concurrent systems should be
verified formally using techniques like model checking or theorem proving.

In this talk, we discuss environment abstraction [13,4,5], a novel model check-
ing based approach for the verification of concurrent software. Environment abstraction
is designed for systems with replicated processes, i.e., systems where the same pro-
cess/algorithm is executed by multiple agents concurrently. Such systems often form
the basic building blocks of larger systems, and tend to be combinatorially intricate;
many of them, for instance cache coherence protocols, are also very large. At design
time, the number of concurrent processes is unknown, and thus we speak of parame-
terized verification. We have applied environment abstraction successfully to a broad
class of systems including cache coherence protocols and mutual exclusion protocols,
and are currently working on environment abstraction for time triggered protocols.

2 Two Pillars of Environment Abstraction

Environment abstraction is based on two insights that allow to us build a uniform frame-
work for a wide class of concurrent algorithms, namely, Ptolemaic abstraction and the
use of domain-specific patterns which occur in real life protocols.

1. Ptolemaic Abstraction. When humans reason about complex systems, they tend
to view themselves in the center of the system. While this Ptolemaic viewpoint is
usually not adequate for systems that arise in nature, such as the Solar system, it
is often implicit in systems engineered by humans. In particular, experience shows
that distributed systems are often designed in such a way that the correctness of
the algorithm can be assessed from the viewpoint of an individual process and its
interference with the rest of the system. This insight naturally leads us to abstract
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Fig. 1. The Environment Abstraction Tool Chain

domains which capture detailed information on one reference process and retain
abstract information on the environment. Our case studies demonstrate that abstract
domains for important classes of protocols (e.g. cache coherence protocols) can be
constructed with little human effort.

2. Domain Patterns. To deal with the hard task of constructing the abstract model
we make another crucial observation: Although the class of distributed protocols
is rich and varied, we can confine our attention to a single class, like say the class
of cache coherence protocols, and find that all natural protocols in that class can
be expressed in terms of a few basic domain patterns. For each class of protocols,
we can create a small number of compound statements that embody these basic
domain patterns. Given that we know what the abstract states are, we manually
supply an abstract template transition invariant for each compound statement. This
transition invariant expresses the action of the compound statement in terms of the
abstract domain. Given any protocol in the class, constructing the abstract model
then reduces to instantiating the abstract template invariants appropriately with the
actual parametrization corresponding to the statements in the protocol. Thus, for
each class of protocols, we have a library containing compound statements and the
corresponding abstract invariants.

Figure 1 illustrates the conceptual framework of environment abstraction. In order
to adapt environment abstraction to a new class of protocols, we first need to analyze
the domain and to define compound statements along with the appropriate abstract tem-



plate invariants. From this point on, we can automatically verify protocols in the given
class. We have used this method to verify protocols from cache coherence protocols to
mutual exclusion protocols to semaphore based protocols. Some of the protocols we
have verified, such as the simplified version of Flash protocol, are much larger than the
protocols handled by other automatic verification methods. We are currently working
on a fully configurable environment abstraction tool which supports easy adaption to
new application domains, cf. Section 4.

3 Related Work

Several techniques have been proposed for protocol verification [11, 6,7, 1, 10] and ver-
ification of concurrent software [8, 14]. Although these communities are addressing
very similar issues, they have tended to work separately. While concurrent software
tends to handle examples that are less combinatorially intricate, they have to deal with
additional complications such as pointers. The protocol verification community deals
with combinatorially intricate algorithms that don’t use higher level language features
such as pointers. One of the purposes of our work and this talk is to help bridge the gap
between the two communities.

Within protocol verification, several approaches have been proposed to handle pro-
tocols with an unbounded number of agents (the so called parameterized verification
problem). While these techniques have been successful for small protocols, like Bakery
and Szymanski, they do not scale well to large protocols like the Flash cache protocol.

On the concurrent software verification side, TVLA [12, 14] has been used to verify
different types of concurrent software from the Java Standard library. Recently, there
have been attempts to extend this approach to handle linearizability properties of sys-
tems with unbounded number of threads [2], but the scalability of this method to large
systems remains to be proven.

4 Status and Future Challenges

While the successful use of environment abstraction for a wide range of protocols
is a witness to the applicability and scalability of the method, there are still sev-
eral challenges which we are addressing in current and future work, in particular
counterexample-guided abstraction refinement (CEGAR) [3] in combination with lazy
abstraction [9] to further improve scalability, as well as specific support for liveness
properties.

To fully realize the framework of Figure 1, we are currently developing a fully con-
figurable environment abstraction tool where compound statements and their associated
abstractions can be easily defined and adjusted for different application areas, and inte-
grated with suitable decision procedures for the extraction of abstract models. Among
other features, we are introducing convenient support for the data structures used in pro-
tocols such as message queues and pointer sets. This core framework will be oblivious
to the exact class of protocols under consideration, and serve as a basis for future work.
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