
COMMUNICATING DISTRIBUTED H SYSTEMS
WITH SIMPLE SPLICING RULES

KAMALA KRITHIVASAN, PRAHLADH HARSHA and MURALIDHAR TALUPUR
Department of Computer Science and Engineering,

Indian Institute of Technology, Madras,
Chennai - 600036, India,

E-mail : kamala@iitm.ernet.in

Abstract— In this paper we define communicating distributed
H systems with simple splicing rules of types (1,3), (1,4) and (2,3)
and study the generative capacity.

keyword: Splicing systems, contextfree languages, simple H
systems, test tube systems, communicating distributed H systems

I. INTRODUCTION

Splicing systems were defined to model the recombinant
behaviour of DNA strands [6], [7], [8]. Test tube systems
were defined in [1] as a symbol processing mechanism having
a parallel architecture with the components being test tubes
working as splicing schemes. The communication is performed
by redistributing the contents of the tubes according to a
specified protocol. It was shown that in [1] test tube systems
have power equal to that of Turing Machines. They are also
called communicating distributed H systems.

Simple H systems were defined in [2] by restricting the form
of the rules. Four types of simple H systems were defined in
[2] are (1,3), (2,4), (1,4) and (2,3). (1,3) and (2,4) essentially
define the same systems. It is known that simple H systems of
all the 3 types generate only regular languages and the family
of languages generated by them are not comparable.

In [3], a detailed study of simple H systems with target
alphabet and permitting context is made. The generative power
of these families are compared and presented in the form of a
table. Simple H systems with target alphabet are called simple
extended H systems. It is shown in [3] that SEH(2,3) is more
powerful than SEH(1,4) and SEH(1,3). It is also shown in
[3] that every context free language can be generated by a
SEH(2,3) system with permitting context.

In [4] it is shown that SEH(2,3) systems with permitting
context are as powerful as EH(FIN, p[1]) systems. In [14],
it is shown that SEH(2,3)(p) ⊆ CF . Thus we get a
characterisation of CFL in terms of SEH(2,3)(p). Controlled
and distributed H systems of a small diameter are considered
in [5] and some characterizations of recursively enumerable
sets are given.

In this paper we define simple test tube systems(STT) of
four types (1,3), (2,4), (1,4) and (2,3). The definition of
(1,3),(2,4) being equivalent, this essentially reduces to three
types. We consider (2,3) type in detail and show that this
generates nonregular languages. We also show that every
context free language can be generated by Simple Test Tube

Systems of (2,3) type. Then [14], it is shown that every
language generated by a STT (2,3) type is generated by a
CFG. This gives the characterisation of CFL in terms of STT
of type (2,3). We also give examples of regular languages
which cannot be generated by STTs of type (1,3) and (1,4).

In the next section we give some preliminary definitions
and define simple test tube systems. In section 3, we show
that every context free language can be generated by a simple
test tube system. The directions for further work are mentioned
in section 4.

II. SIMPLE TEST TUBE SYSTEMS

In this section a simple processing mechanism having a
parallel architecture with the components being test tubes
working as simple splicing schemes is presented. The increase
in generative capacity of simple test tube systems over simple
H systems is discussed. In the following subsection, the basic
definitions (H systems, EH systems, simple H systems and
test tube systems) and notations employed are outlined. In
section II-B, simple test-tube systems are introduced.

A. Splicing Systems

We present below the basic notations and definitions re-
quired for building the concept of simple test tube systems.
For more information on splicing systems the reader is directed
to some of the excellent material in this field [1], [6], [7], [8].

1) H systems and EH systems[8]:
Definition 1: A splicing rule (over an alphabet V) is a

string r = u1#u2$u3#u4, where ui ∈ V ∗, 1 ≤ i ≤ 4, and
#, $ are special symbols not in V . For such a rule r and
the strings x, y, z ∈ V ∗, the splicing operation is defined as
follows:

(x, y) `r z iff x = x1u1u2x2, y = y1u3u4y2

z = x1u1u4y2

for some x1, x2, y1, y2 ∈ V ∗

x, y are then said to be spliced at the sites u1u2, u3u4

respectively to obtain the string z. The strings x, y are called
the terms of splicing. When understood from context, the index
r is omitted from `r

A splicing scheme (or an H scheme) is a pair σ = (V, R)
where V is an alphabet and R is a set of splicing rules (over

V). For a language L ⊆ V ∗, the following are defined:

σ(L) = {w ∈ V ∗|(x, y) `r w for x, y ∈ L, r ∈ R}

The following are also defined for the language L

σ0(L) = L

σi+1(L) = σi(L) ∪ σ(σi(L))

σ∗(L) =
⋃

i≥0

σi(L)

Thus, σ∗(L) is the smallest language containing L and closed
under the splicing operation.

Definition 2: An extended splicing system is a quadruple

γ = (V, T, A, R)

where V is an alphabet, T ⊆ V (the terminal alphabet), A ⊆
V ∗ the set of axioms and R ⊆ V ∗#V ∗$V ∗#V ∗ the set of
rules. The pair σ = (V, R) is called the underlying H schema
of γ. The language generated by γ is defined as follows

L(γ) = σ∗(A) ∩ T ∗

An H system γ = (V, T, A, R) is said to be of type (F1, F2)
for two families of languages F1, F2 if A ∈ F1, R ∈ F2.
EH(F1, F2) is used to denote the family of languages gen-
erated by extended H systems of type (F1, F2). An H system
γ = (V, T, A, R) with V = T is said to be non-extended;,
here the H system is denoted by γ = (V, A, R). The family
of languages generated by non-extended H systems of type
(F1, F2) is denoted by H(F1, F2). Obviously, H(F1, F2) ⊆
EH(F1, F2).

The following are a few important results regarding H
systems and EH systems [9], [10], [11].

Theorem 1: (i) H(FIN, FIN) ⊆ REG.
(ii) EH(FIN, FIN) = REG

(iii) EH(FIN, REG) = RE

Thus these EH systems are as powerful as TMs. However it
is not realistic to deal with a infinite number of rules even
if they were a regular set of rules. To preserve the universal
computational power while maintaining the infiniteness of all
components involved, everal variants were proposed. One such
variant is the working of several of these H systems in unison
in a parallel manner. These parallel H systems are called test-
tube systems, which will be discussed in detail in Section 5

2) Simple H systems[2], [8]:
Definition 3: A simple H system is a triple

Γ = (V, A, M)

where V is an alphabet, A ⊆ V ∗ is a finite set of axioms and
M ⊆ V

The elements of M are called markers. One can consider four
ternary relations on the language V ∗, corresponding to the
splicing rules of the form

a#$a#, #a$#a, a#$#a, #a$a#

where a is an arbitrary element of M . These four
rules are respectively called splicing rules of type
(1, 3), (2, 4), (1, 4), (2, 3).

Clearly, rules of type (1, 3) and (2, 4) define the same
operation, for x, y, z ∈ V ∗ and a ∈ M we obtain

(x, y) `a
(1,3) z iff x = x1ax2, y = y1ay2, z = x1ay2,

for some x1, x2, y1, y2 ∈ V ∗.

For the other types, the splicing is performed as follows:

(x, y) `a
(1,4) z iff x = x1ax2, y = y1ay2, z = x1aay2,

for some x1, x2, y1, y2 ∈ V ∗.

(x, y) `a
(2,3) z iff x = x1ax2, y = y1ay2, z = x1y2,

for some x1, x2, y1, y2 ∈ V ∗.

Then for L ⊆ V ∗ and (i, j) ∈ {(1, 3), (1, 4), (2, 3)}, the
following are defined.

σ(i,j)(L) = {w ∈ V ∗|(x, y) `a
(i,j) w for some x, y ∈ L, a ∈ M}

σ0
(i,j)(L) = L

σk+1
(i,j)(L) = σk

(i,j)(L) ∪ σ(i,j)(σ
k
(i,j)(L)), k ≥ 0

σ∗
(i,j)(L) =

⋃

k≥0

σk
(i,j)(L)

Definition 4: The language generated by Γ = (V, A, M) in
case (i, j) is defined as follows

L(i,j)(Γ) = σ∗
(i,j)(A)

As in all the cases mentioned, both the axiom set and the rule
set are finite, it follows that for any simple H system Γ, the
languages L(i,j)(Γ) are regular.[9], [10] It has been shown that
each two of the three family of languages obtained in this way
are incomparable.[2]

3) Test tube systems[8]:
Definition 5: A test tube (TT) system, (it is also called

communicating distributed H systems) (of degree n, n ≥ 1)
is a construct

Γ = (V, (A1, R1, V1), . . . , (An, Rn, Vn))

where V is an alphabet, Ai ⊆ V ∗, Ri ⊆ V ∗#V ∗$V ∗#V ∗

and Vi ⊆ V for each 1 ≤ i ≤ n
Each triple (Ai, Ri, Vi) is called a component of the system or
a tube. Ai is the set of axioms of tube i, Ri the set of splicing
rules of the tube i and Vi the selector of the tube i.

Let

B = V ∗ −

n
⋃

i=1

V ∗
i

The pair σi = (V, Ri) is the underlying H schema associated
with the i-th component of the system.

An n−tuple (L1, . . . , Ln), Li ⊆ V ∗, 1 ≤ i ≤ n, is called a
configuration of the system; Li is also called the contents of
the i-th tube.

Definition 6: For any two configurations
(L1, . . . , Ln), (L′

1, . . . , L
′
n), the following is defined

(L1, . . . , Ln) ` (L′
1, . . . , L

′
n) iff for each i, 1 ≤ i ≤ n

L′
i =





n
⋃

j=1

(σ∗
j (Lj) ∩ V ∗

i)



 ∪ (σ∗
i (Li) ∩ B)

In other words, the contents of each tube is spliced according
to the associated set of rules and the result is redistributed
among the n tubes according to the selectors V1, . . . Vn. The
part which cannot be redistributed remains in the tube.

Definition 7: The language generated by the test tube sys-
tem
Γ = (V, (A1, R1, V1), . . . , (An, Rn, Vn)) is
L(Γ) = {w ∈ V ∗|w ∈ L

(t)
1 for some (A1, . . . , An) ⇒∗

(L
(t)
1 . . . L

(t)
n), t ≥ 0}

where ⇒∗ is the reflexive and transitive closure of ⇒.
Given two families of languages F1, F2, TTn(F1, F2) de-
notes the family of languages L(Γ), for some Γ =
(V, (A1, R1, V1), . . . , (Am, Rm, Vm)) with m ≤ n, Ai ∈
F1, Ri ∈ F2 for each i, 1 ≤ i ≤ m. Γ is then said to be
of type (F1, F2). When n is not specified, Γ is said to belong
to the family TT∞(F1, F2).

The generative power of the splicing systems is increased
when working in parallel as mentioned earlier. This is seen
from the following results.[1]

Theorem 2: (i) TT7(FIN, FIN) = TT∞(FIN, FIN) =
RE.

(ii) TT6(FIN, FIN) contains non-recursive languages.

B. Simple test tube systems

In this section, we consider a set of simple H systems
working in parallel. Each component of this system, referred
to as a simple test tube is a simple H system. As in simple
H systems, simple test tubes can also work in any of the four
modes(types) (1, 4), (1, 3), (2, 4), (2, 3). The formal definition
of simple test tube systems is given below.

Definition 8: A simple test tube (or distributed simple H
system) (STT) system (of degree n, n ≥ 1) is a construct

Γ = (V, (A1, M1, V1), . . . , (An, Mn, Vn))

where V is an alphabet, Ai ⊆ V ∗, Mi ⊆ V and Vi ⊆ V for
each 1 ≤ i ≤ n

Each triple (Ai, Ri, Vi) is called a component of the system
or a simple tube. Ai is the set of axioms of tube i, Mi the set
of markers of the tube i and Vi the selector of the tube i.

The pair σi = (V, Ai, Mi) is the underlying simple H
schema associated with the i-th component of the system.

Definition 9: For a STT system Γ ==
(V, (A1, M1, V1), . . . , (An, Mn, Vn)), depending on the
type (1, 4), (1, 3), (2, 3), (2, 4), we associate 4 different TT
systems.
(i) Type (1, 4) :

Γ(1,4) = (V, (A1, R
(1,4)
1 , V1), . . . , (An, R

(1,4)
n , Vn)) where

each R
(1,4)
i = {a#$#a|a ∈ Mi}, 1 ≤ i ≤ n.

(i) Type (1, 3) :

Γ(1,3) = (V, (A1, R
(1,3)
1 , V1), . . . , (An, R

(1,3)
n , Vn)) where

each R
(1,3)
i = {a#$a#|a ∈ Mi}, 1 ≤ i ≤ n.

(i) Type (2, 3) :

Γ(2,3) = (V, (A1, R
(2,3)
1 , V1), . . . , (An, R

(2,3)
n , Vn)) where

each R
(2,3)
i = {#a$a#|a ∈ Mi}, 1 ≤ i ≤ n.

(i) Type (2, 4) :

Γ(2,4) = (V, (A1, R
(2,4)
1 , V1), . . . , (An, R

(2,4)
n , Vn)) where

each R
(2,4)
i = {#a$#a|a ∈ Mi}, 1 ≤ i ≤ n.

Now that we have associated STT systems with TT systems,
we can proceed to define the actual working of the STT
system.

Definition 10: A STT system Γ =
(V, (A1, M1, V1), . . . , (An, Mn, Vn)) working in type
(i, j), (i, j) ∈ {(1, 4), (1, 3), (2, 3), (2, 4)} is defined to be the
TT system Γ(i,j).
Given a family of languages F , STT

(i,j)
n (F) denotes the

family of languages L(Γ), for some STT system Γ =
(V, (A1, M1, V1), . . . , (Am, Mm, Vm)) working according to
type (i, j) with m ≤ n, Ak ∈ F, for each k, 1 ≤ k ≤ m

and (i, j) ∈ {(1, 4), (1, 3), (2, 3), (2, 4)}. Γ is then said to be
of type (F). When n is not specified, Γ is said to belong to the
family STT

(i,j)
∞ (F). As noted earlier, (1,3) and (2,4) systems

are equivalent.

C. Nonreguar sets produced by STT

It is interesting to note that though simple H systems do
not generate languages beyond REG, distributed simple H
systems do produce languages not in REG.

We give an example of a language generated by STT of
type (2,3) which is not regular.
Example 1: Let Γ be the following STT system of type (2, 3).

Γ = (V, (A1, M1, V1), (A2, M2, V2))

where

V = {a, b, c, d, c′, d′}

A1 = {cabd, c′ac, dbd′}

M1 = {c, d}

V1 = {a, b, c, d}

A2 = {cc′, d′d}

M2 = {c′, d′}

V2 = {a, b, c′, d′}

Let us consider the sequence of operations performed
on the string of type caibid. We have such a string
to start with namely, cabd ∈ A1. In simple tube 1,
(c′ac, caibid) ⇒ c′ai+1bid, which then performs the follow-
ing: (c′ai+1bid, dbd′) ⇒ c′ai+1bi+1d′ which is then accepted
by tube 2. (cc′, c′ai+1bi+1d′) ⇒ cai+1bi+1d′ is then per-
formed by tube 2, the product of which performs the operation
(cai+1bi+1d′, d′d) ⇒ cai+1bi+1d which is accepted by simple
tube 1. This process repeats and we thus note that

L(Γ) ∩ ca+b+d = {canbnd|n ≥ 1}

Hence L(Γ) is not a regular language.

Thus we see that simple test tube system generate nonreg-
ular languages, indicating that simple test tube systems have
higher generative power than simple H systems.

D. Examples of regular languages not in STT of type (1,3)
and (1,4)

In this section we give examples of regular languages which
are not present in STT of (1,3) and (1,4) types.

1) Example of STT of (1,3) type: Claim: The regular
language L = { 0n | n ≥ 2 } is not generated by STT of
(1,3) type.
Proof: We prove this by contradiction. Assume there is a STT
of (1,3) type which generates L. Let k be the largest integer
such that 0k is in some axiom set of STT system. Hence 0k+1

must be generated in some test tube using (1,3) splicing. Say
it is generated in testtube t. Then it must have been generated
from two strings of the form 0α and β0, α, β ∈ V ∗

t using a
rule r = 0. But

(0α, β0) `r
(1,3) 0

(The sites are underlined.) Then 0 ∈ L, which is a contra-
diction. So there in no STT of (1,3) type which can generate
L.

2) Example of STT of (1,4) type: Claim: The regular
language L=(10)∗1 is not generated by any STT of (1,4) type.
Proof: We again prove by contradiction. Let there be a STT,
S, of (1,4) type which hgenerates this language. Let k be the
largest integer such that (10)k1 is present in some axiom set
of S. So (10)k+11 must be produced by (1,4) splicing. Also,
it can be seen that (10)k+11 can be generated only by splicing
strings of the form 1α and β1 using either 0 or 1 as the splicing
site. It is easy to note that in case 0 is used as splicing site
then the resulting string will have two consequtive 0s which
is not possible. The same holds if 1 is used as the splicing
site. Hence the proof.

III. REPRESENTATION OF CONTEXT FREE LANGUAGES

In this section we show that, every context free language
can be generated by a simple test tube system of type (2,3).

Theorem 3: For each L ∈ CF , there exists a STT system
of type (2,3) Γ such that L = L(Γ).
Proof Consider a CF grammar G = (N, T, P, S) such that
L = L(G) in the Chomsky normal form where rules are of
the form

(r) : A → BC, A, B, C ∈ N

(r′) : A → a, A ∈ N, a ∈ T

Let there be k rules of type (r) in the grammar G. Consider
the STT system (of type (2,3))

Γ = (V, (A1, M1, V1), · · · , (A4, M4, V4)

(Ar11, Mr11, Vr11), . . . , (Ar15, Mr15, Vr15),

...
(Ark1, Mrk1, Vrk1), . . . , (Ark5, Mrk5, Vrk5))

where

V = T ∪ {X1, X2|X ∈ N} ∪ {r|r : A → BC ∈ P}

A1 = φ

M1 = φ

V1 = T

A2 = {S1}

M2 = {S1}

V2 = {S1} ∪ T

A3 = {S1}

M3 = {S2}

V3 = {S1, S2} ∪ T

A4 = {A1aA2|A → a ∈ P}

M4 = Φ

V4 = T ∪ {S1, S2}

For each rule (ri) of the type (ri) : A → BC, 1 ≤ i ≤ k, we
have the following 5 simple tubes.

Ari1 = {B2ri}

Mri1 = {B2}

Vri1 = T ∪ {B1, B2}

Ari2 = {riC1}

Mri2 = {C1}

Vri2 = T ∪ {C1, C2}

Ari3 = {A1B1}

Mri3 = {B1}

Vri3 = T ∪ {B1, ri}

Ari4 = {C2A2}

Mri4 = {C2}

Vri4 = T ∪ {ri, C2}

Ari5 = Φ

Mri5 = {ri}

Vri5 = T ∪ {A1, A2, ri}

We shall show that if A ⇒∗ w(∈ T ∗) for some A ∈ N , then
A1wA2 is generated by one of the tubes. To start with we
have for all A → a ∈ P , A1aA2 as axioms in simple tube 1.

Suppose, we are able to generate strings B1w1B2 and
C1w2C2 and we have the rule (ri) : A → BC ∈ P, 1 ≤
i ≤ k, it is sufficient if we show that A1w1w2A2 is also
generated by one of the simple tubes. Simple tube (ri1)
accepts B1w1B2 and by splicing (B1w1B2, B2ri) ` B1w1ri.
B1w1ri is accepted by simple tube (ri3) and by splicing
(A1B1, B1w1ri) ` A1w1ri is generated. Similarly simple

tube (ri2) accepts C1w2C2 and generates riw2C2 which is
then further spliced in simple tube (ri4) along with C2A2 to
give riw2A2. Strings A1w1ri and riw2A2 are then spliced in
simple tube (ri5) to give A1w1w2A2.

Thus, all strings of the form S1wS2, w ∈ L(G) are
generated in due course and are filtered in simple tubes 3
and 4. In test tube 3 the following reaction takes place:

(S1wS2, S2) ` S1w

The product is transfered to test tube 2 and the following
reaction takes place:

(S1, S1w) ` w

This terminal string w is then filtered into test tube 1. Thus
all terminal strings derived from S in the CFG get collected
in test tube 1. Hence, we can see that

L(Γ) = L

It should be noted that only strings of the form S1wS2

generated in test tube 4 get transformed into strings w in the
test tube 1. Hence if w is generated in test tube 1, S1wS2 is
generated in 4 which menas S ⇒∗ w in the CFG. 2

Theorem 4: For each STT system of type (2,3) Γ there
exists a CFG G such that L(Γ) = L(G).
The proof is lengthy and is given in [14].

IV. CONCLUSIONS

In this paper we have defined simple test tube systems and
shown that every context free language can be generated by a
simple test tube system of (2,3) type. In [3] it is shown that
every CFL can be generated by a simple extended H system
of (2,3) type with permitting context. In [3] it is also shown
that simple extended H system of (2,3) type is more powerful
than (1,4) or (1,3) type.

It will be an interesting topic to find out the power of
simple test tube systems of types (1,4) and (1,3). We conjecture
that any language generated by STT of type (1,3) or (1,4) is
regular. Hence the families STT(1,4) and STT(1,3) will form
subclasses of regular sets. Hence it looks as though simple
test tube systems of (2,3) type are more powerful than simple
H systems of the other types. It would also be worthwhile
considering hybrid systems where some test tubes follow one
type of rules and some other test tubes follow other type of
rules.

REFERENCES

[1] E. Csuhaj-Varju, L. Kari and Gh. Păun, Test Tube distributed
systems based on splicing, Computers and AI, 15, 2-3(1996),
211-232.

[2] A. Mateescu, Gh. Păun, G. Rozenberg and A. Salomaa, Simple
Splicing Systems, Discrete Appl. Math., 84(1998), 145-163.

[3] V. T. Chakaravarthy and K. Krithivasan, Some Results on Simple
Extended H-systems, Romanian Journal of Information Science
and Technology, Vol. 1, Number 3(1998), 203-215.

[4] S. Lakshminarayanan, T.Muralidharan, K. Krithivasan and
C.Pandu Rangan, On the generative power of simple H systems,
JALC, 5(2000) 4, 457-473.

[5] A.Paun and M.Paun, Controlled and Distributed H systems of
a small diameter, Computing with Biomolecules, ed. G.Paun,
Springer (1998), 239-254.

[6] T. Head, Formal Language Theory and DNA: an analysis of
the generative capacity of specific recombinant behaviors, Bull.
Math. Biology, 49(1987), 737-759.

[7] Gh. Păun, G. Rozenberg and A. Salomaa, DNA Computing-
New Computing Paradigms, Springer(1998).

[8] T. Head, Gh. Păun and D. Pixton, Language Theory and
Molecular genetics, generative mechanisms suggested by DNA
recombination, chapter 7 in vol 2 of Handbook of Formal
Languages,ed., G.Rozenberg and A.Salomaa, Springer Verlog,
Berlin(1997), 295-360.

[9] D.Pixton, Regularity of Splicing Languages, Discrete Appl.
Math., 69(1996),101-124.

[10] K.Cullik II and T.Harju, Splicing Semigroups of Dominoes and
DNA, Discrete Appl. Math., 31(1991),261-277.

[11] Gh. Paun, Regular extended H systems are computationally
universal J. Automata, Languages, Combinatorics, 1(1996), 27-
36.

[12] Gheorge Paun, Computing by Splicing. How simple rules?.
Bulletin of the EATCS, 60(1996), 67-86.

[13] V. T. Chakaravarthy and K. Krithivasan, A note on Extended
H systems with permitting/ forbidden context of radius one,
Bulletin of EATCS, 62(1997), 208-213.

[14] T. Muralidhar, Generative Power splicing Systems, B.Tech Project
Report,Indian Institute of Technology, Madras(2000).

