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Abstract.  Existing Separation Logic (a.k.a Difference Logic, DL) solvers can 
be broadly classified as eager or lazy; each with its own merits and de-merits. 
We propose a novel Separation Logic Solver SDSAT that combines the 
strengths of both these approaches and provides a robust performance over a 
wide set of benchmarks. The solver SDSAT works in two phases: allocation and 
solve. In the allocation phase, it allocates non-uniform adequate ranges for 
variables appearing in separation predicates. This phase is similar to previous 
small domain encoding approaches, but uses a novel algorithm Nu-SMOD with 
1-2 orders of magnitude improvement in performance and smaller ranges for 
variables. Furthermore, the Separation Logic formula is not transformed into an 
equi-satisfiable Boolean formula in one step, but rather done lazily in the fol-
lowing phase. In the solve phase, SDSAT uses a lazy refinement approach to 
search for a satisfying model within the allocated ranges. Thus, any partially 
DL-theory consistent model can be discarded if it can not be satisfied within 
the allocated ranges. Note the crucial difference: in eager approaches, such a 
partially consistent model is not allowed in the first place, while in lazy ap-
proaches such a model is never discarded. Moreover, we dynamically refine 
the allocated ranges and search for a feasible solution within the updated 
ranges. This combined approach benefits from both the smaller search space (as 
in eager approaches) and also from the theory-specific graph-based algorithms 
(characteristic of lazy approaches). Experimental results show that our method 
is robust and always better than or comparable to state-of-the art solvers. 

1   Introduction 

Separation Logic, (a.k.a Difference Logic, DL) extends propositional logic with 
predicates of the form x+c > y where > ∈ {>,≥}, c is a constant, and x, y are vari-
ables of some ordered infinite type integer or real. All other equalities and inequalities 
can be expressed in this logic. Uninterpreted functions can be handled by reducing to 
Boolean equalities [1]. Separation predicates play a pivotal role in verification of 
timed systems [2] and hardware models with ordered data structures like queues and 
stacks, and modeling job scheduling problem [3].  Deciding a Separation Logic prob-
lem is NP-Complete. Decision procedures based on graph algorithms use a weighted 
directed graph to represent Separation predicates; with nodes representing variables 
appearing in the predicates and edges representing the predicates. A predicate of the 
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form x+c ≥ y is represented as directed edge from node x to node y with weight c. A 
conjunction of separation predicates is consistent if and only if the corresponding 
graph does not have a cycle with negative accumulated weight. The task for decision 
procedures is reduced to finding solutions without negative cycles. Note, Some deci-
sion procedures can decide the more general problem of linear arithmetic where the 
predicates are of the form Σi aixi ≥ c where ai, c are constants and xi are variables. 
Most of them ICS [4], HDPLL [5], PVS [6], ASAP [7] are based on a variable elimi-
nation technique like Fourier-Motzkin [8].  Here, we restrict ourselves to a discussion 
of dedicated decision procedures for Separation Logic.  

Satisfiability of a Separation formula can be checked by translating the for-
mula into an equi-satisfiable Boolean formula and checking for a satisfying model 
using a Boolean satisfiability solver (SAT). In the past, several dedicated decision 
procedures have taken this approach to leverage off recent advances in SAT engines 
[9]. These procedures can be classified as either eager or lazy, based on whether the 
Boolean model is refined (i.e., transformed) eagerly or lazily, respectively. In eager 
approaches [10-14] , the Separation formula is reduced to an equi-satisfiable Boolean 
formula in one step and SAT is used to check the satisfiability. Reduction to Proposi-
tional Logic is done either by deriving adequate ranges for formula variables (a.k.a 
small domain encoding) [12] or by deriving all possible transitivity constraints (a.k.a 
per-constraint encoding) [11]. A hybrid method [13] combines the strengths of the 
two encoding schemes and was shown to give robust performance over the two. In 
lazy approaches [15-19], SAT is used to obtain a possibly feasible model correspond-
ing to a conjunction of separation predicates and feasibility of the conjunct is checked 
separately using graph-based algorithms. If the conjunct is infeasible, the Boolean 
formula is refined and thus, an equi-satisfiable Boolean formula is built lazily by 
adding the transitivity constraints on a need-to basis.   

Both the eager and lazy approaches have relative strengths and weaknesses. 
Though the small model encoding approaches [12, 20] reduce the range space allo-
cated to a finite domain,  Boolean encoding  of the formula often leads to large pro-
positional logic formula, eclipsing the advantage gained from the reduced search 
space. Researchers [14] have also experimented with the pseudo-Boolean Solver PBS 
[21] to obtain a polynomial size formula, but without any significant performance 
gain. In a per-constraint encoding, the formula is abstracted by replacing each predi-
cate with a Boolean variable, and then pre-emptively adding all transitivity con-
straints over the predicates. Often the transitivity constraints are redundant and add-
ing them eagerly can lead to an exponentially large formula. The Boolean SAT 
solvers are often unable to decide “smartly” in the presence of such overwhelmingly 
large number of constraints. As a result the advantage gained from reduced search 
often takes a backseat due to lack of proper search guidance. Lazy approaches over-
come this problem by adding the constraints as required. Moreover, they use ad-
vanced graph algorithms based on Bellman-Ford shortest path algorithm  [22] to 
detect infeasible combination of predicates in polynomial time in the size of the 
graph. These approaches exploit incremental propagation and efficient backtracking 
schemes to obtain improved performance. Moreover, several techniques have been 
proposed [17, 18] to add pre-emptively some subset of infeasible combination of 
predicates. This approach has been shown to reduce the number of backtracks signifi-
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cantly in some cases. Note, the feasibility check is based on detection of a negative 
cycle (negative accumulation of edge weights) in the graph. Potentially, there could 
be an exponential number of such cycles and eliminating them lazily can be quite 
costly. Due to this reason, lazy approaches do not perform as well as eager ap-
proaches on benchmarks like diamonds which have an exponential number of cycles 
(~2n cycles where n is the number of variables). Thus, we are naturally motivated to 
combine the strength of the two approaches as tightly as possible.  

We propose a robust Separation Logic Solver SDSAT (short for Small Do-
main SATisfiability solver) that combines the strengths of both eager (small domain 
encoding) and lazy approaches and gives a robust performance over a wide set of 
benchmarks. Without overwhelming the SAT solver with a large number of con-
straint clauses and thereby adversely affecting its performance, we take advantage of 
both the (finite) reduced search space and the need-to basis transitivity constraints 
which are able to guide the SAT solver more efficiently.  
Outline: We give a short background on Separation Logic and the state-of-the-art 
solvers in Section 2. We describe our solver SDSAT in detail, highlighting the techni-
calities and novelties in Section 3.  This is followed by experiments and conclusions 
in Sections 4 and 5, respectively.  

2   Background: Separation Logic  

Separation predicates are of the form x+c > y where > ∈ {>,≥}, c is a constant and x, 
y are variables of some ordered infinite type integer or real, D. Separation Logic is a 
decidable theory combining Propositional Logic with these predicates. If all variables 
are integers then a strict inequality x + c > y can be translated into a weak inequality 
x + (c-1) ≥ y without changing the decidability of the problem. Similar transforma-
tions exist for mixed types, by decreasing c by small enough amounts that are decided 
by remaining constants in the predicates. Note, an inequality of the form x > c, can be 
also be translated into a weak inequality of two variables, by introducing a reference 
node z.  Henceforth, we will consider separation predicates of the form x+c≥ y. 

2.1   State-of-the-art Lazy approach: Negative-cycle detection 

We discuss briefly the essential components in the state-of-the-art Separation Logic 
solvers based on lazy approaches as shown in Figure 1. 
 
Problem Formulation: In this class of decision procedures, a Separation formula ϕ 
is abstracted into Boolean formula ϕB by mapping predicates x+c≥ y and y+(-1-c)≥ x 
to a Boolean variable and its negation respectively (or vice versa, depending on some 
ordering of  x and y.) An assignment (or interpretation) is a function mapping each 
variable to value in D and each Boolean variable to {T, F}. An assignment α is ex-
tended to map a Separation formula ψ  to {T, F} by defining the following mapping 
over the Separation predicates, i.e., α(x+c≥y)=T iff  α(x)+c≥ α(y). A Boolean SAT 
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solver is used to obtain a consistent assignment for Boolean variables in ϕB. If such 
an assignment does not exist, it declares the problem unsatisfiable. On the other hand, 
for any satisfying assignment to ϕB, an additional consistency check is required for 
the underlying separation predicates. Note, incremental solvers [17, 23] perform this 
check on a partial assignment to detect conflict early. The problem is declared SAT 
only when the satisfying assignment is consistent under the check.  
 
Constraint Feasibility:  Any partial assignment (also referred to as a partial Boolean 
model) to variables in ϕB represents a conjunction of separation predicates. The Boo-
lean model is represented as a weighted directed graph (a.k.a constraint graph) [24], 
where an edge x→y with weight c (denoted as (x,y,c)) corresponds to the predicate e 
≡ (x+c ≥ y) where α(e)=T. The constraint graph is said to be consistent if and only if 
it does not have an accumulated negative weighted cycle (or simply, negative cycle.)  
Intuitively, a negative cycle violates the transitivity property of the inequality predi-
cates. The building of the constraint graph and detection of negative cycles, as shown 
in Figure 1, are done incrementally to amortize the cost of constraint propagation. It 
has been shown [25] that addition of a predicate and update of a feasible assignment 
α can be done in O(m+n log n) where m is the number of predicates and n is the 
number of variables. After the constraint graph is detected consistent i.e. feasible 
(shown by the feasible arc in Figure 1), more assignments are made to the unassigned 
variables in ϕB. leading to a more constraint graph. Problem is declared satisfiable by 
Boolean SAT, if there are no more assignments to make. 

 
 
 
 
 
 
 
 

 

Fig. 1. Overview of state-of-the-art Separation Logic Solver based on lazy approach 

Refinement: Whenever a negative cycle is encountered during constraint feasibility 
(a.k.a. constraint propagation), a transitivity constraint not yet implied by ϕB is learnt 
and added to ϕB as a conflicting clause.  For example, if the subgraph corresponding 
to a conjunction of predicates, i.e., e1∧e2∧e3∧¬e4 has a negative cycle, then a clause 
(¬e1∨¬e2∨¬e3∨ e4 ) is added to ϕB to avoid re-discovering it. As shown in [16],  
instead of stopping at the first negative cycle, one can detect all negative cycles and 
then choose a clause with minimum size representing a stronger constraint. Note, due 
to large overhead, addition of all detected negative cycle clauses, though possible, is 
not done. Moreover, like in Boolean SAT solvers, incremental solvers [17, 23] restore 
the assignments to the variables to a state just before the inconsistency was detected, 
instead of starting from scratch.  
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Pre-emptive Learning (Theory Deduction): Some solvers [17, 18] have capabilities 
to add transitivity constraints preemptively to ϕB so as to avoid finding them later. 
However, as the overhead of adding all transitivity constraints can be prohibitive as 
observed in per-constraint eager approach, solvers often use heuristics to add them 
selectively and optionally (shown as dotted arrow in Figure 1). 

2.2   Eager approach: Finite instantiation 

 Range allocation (a.k.a. small domain encoding) approaches find the adequate set of 
values (a.k.a. ranges) for each variable in the finite model. We briefly describe the 
range allocation problem for Separation Logic which has been discussed at greater 
depth in [20, 26]. Let Vars(ϕ) denote the set of variables used in a Separation formula 
ϕ over the set of integers Ζ. We assume ϕ  is in NNF, i.e., every predicate occurring 
negatively in the formula is converted into its dual positive predicate a priori (e.g., 
¬(x+c<y) ⇒ x+c≥y) A domain (or range) R(ϕ) of a formula ϕ is a function from 
Vars(ϕ) to 2Z. Let Vars(ϕ) = {v1,…,vn} and |R(vi)| denote the number of elements in 
the set R(vi), domain of vi. The size of domain R(ϕ), denoted by |R(ϕ)| is given by 
|R(ϕ)| = |R(v1)|⋅|R(v2)|⋅⋅⋅|R(vn)|. Let SATR(ϕ) denote that ϕ is satisfiable in a domain 
R. The goal is to find a small domain R such that  
    SATR(ϕ) ⇔ SATZ(ϕ)   (1) 
We say that a domain R is adequate for ϕ if it satisfies formula (1). As finding the 
smallest domain for a given formula is at least as hard as checking the satisfiability of 
ϕ, the goal (1) is relaxed  to  finding the adequate domain for the set of all separation 
formulas with the same set of predicates as ϕ, denoted by Φ(ϕ) as adequacy for Φ(ϕ) 
implies adequacy for ϕ.  As discussed in the previous section, separation predicates 
can be represented by a constraint directed graph G(V,E). Thus, the set of all the sub-
graphs of G represents the set Φ(ϕ). Given G, the range allocation problem is setup to 
finding a domain R such that every consistent sub graph of G can be satisfied from 
the values in R.  

It has been shown [12] that for a Separation formula with n variables, a 
range [1..n+maxC] is adequate for each variable, with maxC being equal to the sum 
of absolute constants in the formula. This leads to a state space of (n+maxC)n where 
all variables are given uniform ranges regardless of the formula structure. This small 
model encoding approach in UCLID [12], would require ⎡log2|R(x)|⎤ Boolean vari-
ables to encode the range R(x), allocated for variable x. There has been further work 
[20] to reduce the overall ranges and hence, the size of the Boolean formula. In [20], 
a method SMOD was proposed to allocate non-uniform ranges to variables, exploiting 
the problem structure. The method builds cut-point SCC graph recursively in top-
down manner and allocates ranges to the nodes in a bottom-up style, propagating the 
range values. The approach is based on enumeration of all cycles and therefore, the 
worst-case complexity of such an approach is exponential. In this paper, we propose 
an efficient and robust technique Nu-SMOD that computes non-uniform ranges in 
polynomial-time; polynomial in the number of predicate variables and size of the 
constants. Moreover, the ranges are comparable to or better than the non-uniform 
ranges obtained using SMOD, and consistently better than the uniform ranges ob-
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tained using UCLID [12]. In experimental evaluation, Nu-SMOD completes alloca-
tion for all the benchmarks unlike SMOD, with 1-2 orders of magnitude performance 
improvement over SMOD. Unlike SMOD, we do not compute cutpoint-graph or enu-
merate cycles in our new procedure Nu-SMOD; rather we propagate only distinct 
values along a path from a cut-point.  As the ranges will be used subsequently by the 
lazy search-engine, we emphasize improvement in performance instead of ranges. 
Thus, our objective differs slightly from SMOD procedure. 

3  SDSAT: Integrating Small Domain and Lazy Approaches 

We propose a Separation Logic Solver SDSAT as shown in Figure 2, that combines 
the strengths of both eager (small domain encoding) and lazy approaches and gives a 
robust performance over a wide set of benchmarks. This combined approach benefits 
both from the reduced search space (as in eager approaches) and also from the need-
to basis refinement of the Boolean formula with the transitivity constraints (as in lazy 
approaches). The solver SDSAT proceeds in two phases: allocation and solve.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Overview of our Separation Logic solver SDSAT 

In the allocation phase (shown as Phase I in Figure 2), it computes non-uniform ade-
quate ranges using an efficient technique Nu-SMOD that runs in polynomial time; 
polynomial in the number of predicate variables and size of the constants. This phase 
is similar to previous small domain encoding approaches; however, the Separation 
Logic formula is not transformed into an equi-satisfiable Boolean formula in one step, 
but rather done lazily in the following phase.  

In the solve phase (shown as Phase II in Figure 2), SDSAT searches for a sat-
isfying model within the allocated ranges using a lazy refinement approach. Thus, 
any partially DL-theory consistent model is discarded if it can not be satisfied within 
the allocated ranges (The check is done in the blocks “Check feasibility” and “Con-
straint feasibility” in Figure 2). Note the key difference: in eager approaches, such a 
partially consistent model is not allowed in the first place, while in lazy approaches 
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such a model is never discarded. By focusing on adequate ranges and not just con-
sistency of the separation predicates we are able to learn more constraints leading to 
larger reductions in search space. Furthermore, we dynamically refine the ranges 
allocated to variables in the allocation phase using range constraint propagation (de-
scribed in Section 3.2.2) and search for a feasible solution within the updated ranges 
(shown in the block “Updated Ranges (RCP)” in Figure 2). Another novelty is in the 
use of cutpoints to determine whether an added edge (to a consistent model) leads to 
an infeasible condition, based on the observation that any cycle will have at least one 
cutpoint. (Given a directed graph G(V,E), a cutpoint set C⊆V is a set of nodes whose 
removal breaks all the cycles in G.). If an added edge x→y (corresponding to the 
predicate x+c ≥ y) is not reachable from some cutpoint and x is not a cutpoint, then a 
previously consistent subgraph modified with this new edge is guaranteed not to have 
a negative cycle. Moreover like in most lazy approaches, SDSAT has incremental 
propagation and cycle detection, and preemptive learning of infeasible condition 
(theory deduction shown as dotted arrow in Figure 2). 

3.1 Allocation Phase: Non-Uniform Range Allocation 

We discuss the algorithm Nu-SMOD to allocate non-uniform ranges to the variables 
in the predicates.  The algorithm assumes that the constraint directed graph G(V,E) is 
a Strongly Connected Component (SCC). Extension to non-SCCs is straightforward: 
compute the ranges for SCCs individually and then offset the ranges appropriately to 
account for the edges between the SCCs starting from some root SCC. As far as va-
lidity of the Difference Logic problem is concerned, it is easy to see that these edges 
can be removed from the problem as they will never contribute to a cycle.   
 
Algorithm Nu-SMOD: We first derive a cutpoint set C using polynomial approxima-
tion [27], as finding a minimal cutpoint set is an NP-Hard problem. Using the set C, 
we invoke the procedure (line 1 of the procedure NU-SMOD, Figure 3) Nu-SMOD-1 
which is described as follows (lines 11-19, Figure 3): Range of each node x, denoted 
by R(x) is divided into several sets; each identified with unique id or simply level. Let 
the level k set of the node x be denoted by Lk(x). Note, R(x)=∪k Lk(x). Initially, all the 
level sets are empty. The nodes in Level 1 set, denoted by I, are allocated 0 value, i.e., 
L1(x)={0}, ∀x∈I. To compute Level (k+1) values, i.e., Lk+1(y) for node y (line 17), we 
use the Level k values of the nodes x that have a direct edge, i.e., fanout (x,y,c) (cor-
responding to the predicate x+c≥ y) to y and offset with edge weight c. Note, we 
include only the cutpoints C in the set I. Once the ranges for the cutpoints C are ob-
tained using Nu-SMOD-1, another pass is made (in lines 2-5) to obtain reverse_dfs 
values Q[y] for each non-cutpoint y. Starting from each cutpoint (line 4-5) with value 
M (equal to maximum range value allocated among the cutpoints), we do a re-
verse_dfs (lines 7-10) to update Q values (line 9) of all the non-cutpoints by reverse 
propagating a tight value (higher than the previous Q value, line 8) without traversing 
through any other cutpoints (line 7). Note that the reverse dfs path from a cutpoint to 
non-cutpoint is a simple path as there is no cycle. All the inequalities from non-
cutpoint to cutpoint are satisfied using reverse_dfs Q values.    
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/Range Allocation for an  
//SCC G(V,E)   
Input: G(V,E), Cutpoint set C 
Output: R(x) for ∀x∈V 
Procedure: Nu-SMOD 
1. Nu-SMOD-1 {INPUT: G(V,E), I=C 

           OUTPUT: R(x)∀x∈V } 
2. ∀y∈V-C Q[y]=-∞ 
3. M=max(∪∀x∈CR(x)) 
4. foreach x∈C do 
5.   reverse_dfs(x,M); 
6. end 
 

 
reverse_dfs(x,v) 
7. foreach (y,x,w) s.t. y∉C do 
8.  if (Q[y]+w ≥ v) continue; 
9.  Q[y] = v – w; 
10. reverse_dfs(y,Q[y]) 

 
 
 
Input: G(V,E), I⊆V 
 Output: R(x) for ∀x∈V 
 Procedure: Nu-SMOD-1 
 
11. L1(x)={0}∀x∈I, L1(x)={}∀x∈V\I 
12. Lk(x)={} ∀x∈V, 1<k≤|V| 

13. foreach k, 1≤k<|V| do 
14.  foreach node x∈V do 
15.   foreach(x,y,c)∈fanouts(x)do 
16.    foreach value v ∈ Lk(x) do 
17.      Lk+1(y)=Lk+1(y)∪{v+c} 
18.  
19. ∀x∈V  R(x)=∪1≤k≤|V| Lk(x) 
 
//Assignment for subgraph D of G 
Input: D(Vd,Ed)  
Output: {(x,vx)|x∈Vd, vx∈R(x)} 
Procedure: ASSIGN 
20. S = {set of root nodes} 
21. ∀y ∈ Vd-S vy = +∞; 
22. foreach x ∈ S do 
23.    vx = 0; enqueue(x) 
24.    bfm(x); 
25. end 
26. ∀y∈Vd-S if (vy == +∞) vy=Q[y] 

 
bfm(x) 
27. while (x = dequeue())!=null)  
28.  foreach(x,y,c)∈fanouts(x)do 
29.     if (vx+c >= vy) continue; 
30.     vy = vx+c; 
31.     enqueue(y); 
32.   end 
33. end 

 
 
 

Fig. 3. Pseudo-code for the algorithm Nu-SMOD and ASSIGN procedures 
 
Theorem 1: Ranges allocated by Nu-SMOD are adequate 
Proof Sketch: We now show that the ranges allocated by Nu-SMOD are adequate, 
i.e., any satisfiable sub-graph D(Vd,Ed) of G(V,E) (Vd ⊆V, Ed⊆E) has a satisfying 
assignment from the allocated set of ranges. We further assume D is connected. If 
not, then each component is a satisfiable sub-graph of G and ranges can be assigned 
to variables in each component independently of the other.  

We construct the adequacy proof by devising an assignment procedure 
ASSIGN as shown in Figure 3 (lines 20-33) which will generate a satisfying solution 
from the allocated set of ranges. We first construct a set S of root nodes (those nodes 
in Vd∩ C that can not be reached from any other node in Vd∩ C) in D (line 20). If S is 
empty either Vd∩C is empty or all nodes are in some cycle. In the former case, we 
skip to line 26, else we pick any node in Vd∩C and continue. We initially assign all 
the nodes not in S with +∞ (a large positive value, line 21). We denote the value 
assigned to a node x as vx. Starting from each node in S (with initial value 0 as in line 
23), we call bfm (similar to Bellman-Ford-Moore Shortest Path algorithm [22]) pro-
cedure to assign tight values on the nodes that can be reached. The edge (x,y,c) is said 
to be stable if the current value of x and y is said to satisfy the constraint (x+c≥ y). 
Note that the value of the node can change only if the current value is lower than the 
previously assigned value (line 30). Such an operation is also called an edge relaxa-
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tion [22]. Only under such a scenario, the node is en-queued (line 31). Those nodes 
whose value are still +∞, are given reverse_dfs Q values (line 26). To show that the 
given assignment procedure ASSIGN generates a satisfying solution from the ranges 
allocated, we need to prove the following lemmas (Contact author for proof details).  
Lemma 1: The procedure ASSIGN terminates. 
Lemma 2: All inequalities corresponding to edges of D are satisfied.  
Lemma 3: Each assigned value vx belongs to R(x).  

The above theorem guarantees the existence of the solution for a satisfying 
subgraph D with all the root nodes in Vd∩ C having special value 0 and the other 
nodes in Vd\C having either tight values or reverse_dfs values Q, depending on 
whether they are reachable from root nodes or not, respectively. Note that the cut-
points do not need Q values as they are the root nodes. As we will see shortly, the 
solve phase is based primarily on this observation. 

3.2 Solve Phase 

Similar to standard lazy solvers, we first build an abstract Boolean formula ϕB from 
the given Separation formula ϕ  and search for a partial consistent Boolean model. As 
the partial model is being incrementally built up, we search for a satisfying model 
using cutpoint-relaxation algorithm (described in Section 3.2.1) within the dynami-
cally updated ranges achieved by range constraint propagation (described in Section 
3.2.2). We build these algorithms by augmenting the procedure ASSIGN (described 
above) with 

• inconsistency detection due to negative cycles, 
• range violations check, and 
• pre-emptive learning. 

In the following, we restrict our discussion to novelties in detecting the inconsisten-
cies. (For details on pre-emptive learning please refer [17, 18]).  
 
3.2.1 Incremental Cycle Detection Using Cutpoint Relaxation 
 
In the past [23, 28], the detection of negative cycles and finding satisfying assign-
ments are done incrementally in a weighted digraph that is built incrementally. Each 
of these algorithms uses a variant (mostly in the ordering of the relaxed edges) of 
Bellman-Ford-Moore (BFM) Shortest Path algorithm and extends it with an ability to 
detect negative cycle. Our approach is also based on BFM with the following differ-
ence: For a satisfiable sub-graph D, we consider only those solutions which lie within 
the ranges allocated by the Nu-SMOD procedure. Note, a satisfying assignment set 
{α(x)} represents a class of satisfying assignments {α(x)+k} for some constant k.  
As shown in the procedure ASSIGN, the existence of the solution for a satisfying 
subgraph D is guaranteed with all the root nodes in Vd∩ C having special value 0 and 
the other nodes in Vd\C having either tight values or reverse_dfs values Q, depending 
on whether they are reachable from root nodes or not, respectively. Thus, in our ap-
proach, we restrict the set of satisfying assignments such that α(x)=0 for the root 
nodes x ∈Vd∩ C. We discuss the implication of such restriction in our incremental 
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cycle detection algorithm cutpoint relaxation. As will be clear shortly, the theoretical 
complexity of the algorithm is not different from BFM and its variants. In our cut-
point relaxation algorithm (unlike ASSIGN procedure) we do not change α(x) from 
+∞ to Q[x] if a node x is not reachable from a root node (due to incremental addition 
of edges, such a node may be reachable later). Now, we discuss how the incremental 
addition and deletion of edges affect the negative cycle detection. 
Edge Addition: Suppose, we add an edge (x,y,c) to D and obtain a subgraph D’. If 
α(x) ≠ +∞, x is reachable from some root node in D and we do the usual BFM. If α(x) 
= +∞, we consider two cases depending on x∈C or x∉C.  
Case x∈C: Clearly, x is root node in D’ as it is not reachable from any other root node 
in D. We choose α(x)=0 and do usual BFM with negative cycle detection after relax-
ing (x,y,c). 
Case x∉C:  Note, x is not reachable from any node in Vd∩ C. As any cycle will have 
at least one cutpoint and since x is not a cutpoint in G, there cannot be any cycle in 
subgraph D’ (of G) with the edge (x,y,c). Based on this observation, we skip edge 
relaxation and cycle detection for this case.  
Edge Deletion: When an edge (x,y,c) is deleted, we need to restore the previous α(y) 
value only if it is different from +∞. Since, deletion of edges takes place at the time 
of backtracking, we restore only those α(y) that got affected after the backtrack level. 
We use a standard stack-based approach for efficient backtracking.  

Thus, our algorithm cutpoint relaxation has two main novelties: First, the 
approach allows us to identify cases where we guarantee no negative cycles in a sub-
graph without edge relaxation. Second, we reduce the search space by restricting our 
solution space in a spirit similar to finite instantiation. Though maintaining such a 
restriction on assignment values on root nodes has an overhead, yet we did not find it 
to be a significant bottleneck. Besides using cutpoints and restricted solutions to re-
duce the search space, we can further reduce the search space by dynamically updat-
ing the ranges of the variables as discussed in the following section. 
 
3.2.2 Range Constraint Propagation (RCP) 
 
Ranges computed by the allocation phase guarantee the adequacy for a satisfiable 
subgraph D; however, the ranges are often more than those required to obtain a satis-
fying solution for D. We allow range constraint propagation (RCP) to dynamically 
refine the ranges of the variables for the given subgraph D, while maintaining the 
range adequacy (Theorem 2). This approach is similar to  the more general approach 
for interval arithmetic [29, 30].  We achieve RCP as follows: Let the minimum and 
maximum values in the range of a variable x be denoted by L(x) and U(x), respec-
tively. Initially, these limits are obtained during the allocation phase. RCP on an edge 
x+c≥ y, denoted by RCP(x+c≥ y), updates the limits L(x) and U(y) as follows: 

L(x)  ⇐ MAX{L(x), L(y)-c} 
U(y)  ⇐ MIN{U(y), U(x)+c} 

We apply this process recursively, i.e., whenever the L (or U) value of a node 
changes, we update the L (or U) values of all the nodes with a direct edge to (or from) 
the node. The process stops when either a range violation is detected, i.e. L(x) > U(x) 
or all the limits have stabilized. As constraint propagation reduces the range sizes 
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monotonically, the process is guaranteed to terminate. A conflict can also be detected 
due to range violation of the invariant L(x) ≤ α(x) ≤ U(x) where α(x) is a satisfying 
assignment for x reachable from some root node. Note, these range violations can 
occur in a subgraph even without a negative cycle. (These checks are carried out in 
the block “Check feasibility” in Figure 2. We illustrate this with an example later.) 
Thus, the reduced range space leads to faster detection of conflicts and hence, re-
duced search. We can also obtain the set of conflicting edges by storing the edges as 
reasons for the change in minimum and maximum limits. The following theorem 
addresses the range adequacy after RCP (please contact authors for proof details). 
 
Theorem 2: Reduced ranges obtained by RCP are adequate for subgraph D. 
 
Example: We illustrate RCP and its roles in reducing the search space on a diamond 
example shown in Figure 4. Let the Separation formula F be e1 ∧ e4 ∧ e5 ∧ e8 ∧ e9  ∧ 
(e2∨ e3) ∧ (e6 ∨ e7) where ei represents a separation predicate. Let n0...n5 represent the 
integer variables. The separation predicates are shown as edges ei in Figure 4(a) (with 
weights in brackets). For example: e1≡(n0≥n1) and e9≡(n5-1≥n0). The previous ap-
proaches based on only negative cycle detection have to find all four negative cycles 
before F is declared unsatisfiable.  Using our approach of combined negative cycle 
detection with RCP, we decide unsatisfiability with detection of two negative cycles 
and one range violation as described below.  
 

 

 
 

 
                  (a)         (b)                   (c) 

Fig. 4. (a) Example (b) Allocated Ranges (c) RCP w/ negative cycle detection 

 As shown in Figure 4(b), L and U of each variable are initially set to corresponding 
minimum and maximum range R values as obtained by Nu-SMOD (for example: 
L(n0)=-1, U(n0)=0 ). Note, that these ranges are adequate for this graph. Consider the 
subgraph e1 ∧ e2 ∧ ¬e3 . When we apply RCP as shown in the Figure 4(c), we detect a 
range violation as follows (note, *L and *U denote changes from the previous step): 
As U(n0) changes in step 3, we change U(n1) to -1 in step 4 as the edge e1 is incident 
on n1 and U(n2) to -1 in step 5 as the edge e2 is incident on n2. Now, as L(n2)=0 > 
U(n2)=-1, we detect a range violation and learn a clause  (¬e1∨¬e2 ∨ e3) by doing 
conflict analysis. The learnt clause (¬e1∨¬e2 ∨ e3), together with the formula clause 
(e2∨e3) implies a clause (¬e1∨ e3); which in turn with formula clause (e1) implies (e3). 
When we detect two negative cycles with edge pairs (e3, e7) and (e3, e6), we learn that 
e3 implies (¬e6∧¬e7). As (e6 ∨ e7) is a formula clause, we could declare the formula F 
unsatisfiable without the need to detect further negative cycles.   
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4  Experimental Results 

We have integrated our incremental cycle detection using cutpoint relaxation and 
RCP with the zChaff Boolean SAT solver [31]. We have also implemented pre-
emptive learning but have not done controlled experiments to ascertain its usefulness. 
We conducted experiments on a set of six public benchmark suites generated from 
verification and scheduling problems: diamonds, DTP, DLSAT, mathsat, sal and 
uclid. We ran our experiments on a workstation with 3.0 GHz Intel Pentium 4 proces-
sor and 2 GB of RAM running Red Hat Linux 7.2. First, we compare the range allo-
cation algorithms; second, we evaluate the effectiveness of RCP in SDSAT and third, 
we compare it with the state-of-the-art solvers. 
 
Comparison of Range Allocations Algorithms: We compared our approach Nu-
SMOD with previous approaches SMOD [20] and UCLID [12] on these benchmarks 
and present results in Figure 5. We used a time limit of 2 minutes for each run. Note, 
the UCLID procedure allocates each of n nodes in an SCC a continuous range from 1 
to n+maxC where maxC is the sum of all constant absolute values. We compare the 
number of Boolean variables required to encode the ranges assigned by the different 
approaches as the ratio between the approach and Nu-SMOD. Note, for range set 
R(y), we require ⎡log2(|R(y)|)⎤ Boolean variables to encode the set R(y).    

 
 
 
 
 
 
 
 
 
                       (a)                    (b)                   (c) 

Fig. 5. Ratio of range bits allocated between (a) UCLID v/s Nu-SMOD, (b) SMOD v/s Nu-
SMOD. (c) Scatter plot of time taken (in sec) between SMOD v/s Nu-SMOD 

 
 UCLID v/s Nu-SMOD: As shown in Figure 5(a), compared to UCLID, Nu-SMOD 
allocates on average about 40% less range bits (about 4x less on diamond set).  Note 
that such linear reductions amount to exponential reduction in range space.  
SMOD v/s Nu-SMOD: Of 432 benchmarks, SMOD could complete only 262 in the 
given time limit of 2 minutes. If we increase the time limit to 20 minutes, it solves 23 
more cases.  Not surprisingly, time-out occurs mostly for dense graph as also ob-
served by the authors [20]. Baring a few benchmarks, the ranges allocated by Nu-
SMOD are comparable to SMOD as seen in Figure 5(b). Moreover, SMOD is 1-2 
orders of magnitude slower on the completed benchmarks as compared to Nu-SMOD 
as shown in the scatter plot (in logarithmic scale) in Figure 5(c). 
 
Allocation and Role of RCP in SDSAT: In the second set of experiments, we pre-
sent the results of allocation phase and compare the effectiveness of refinement in 
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SDSAT with and without RCP as shown in Table 1. In our experience, the number of 
refinements did not distinct the role of RCP. We observed performance improvement 
using RCP with more refinements as well as with fewer refinements. Thus, instead of 
using the number of refinements, we introduce two metrics to measure its effective-
ness: refinement overhead and refinement penalty. We define refinement overhead as 
the time taken in the corresponding graph algorithm per refinement, and refinement 
penalty as the time taken by Boolean SAT per refinement. The former metric meas-
ures the cost in detecting the inconsistency, whereas the latter measures the cost of 
Boolean search after refinement, evaluating its effectiveness. Ideally, we would like 
to have a low number for both the metrics. In the Table 1, Column 1 shows the 
benchmarks suites with the number in brackets indicating the number of problems 
considered. Columns 2-3 show the results of allocation phase: especially, Column 2 
shows the average size of range bits per variable computed in the allocation phase.  
Column 3 shows the average time taken for allocation phase. Columns 4-5 show the 
result of incremental negative cycle detection without RCP. Column 4 shows the 
average refinement overhead (in milliseconds) and Column 5 gives the average re-
finement penalty (in milliseconds). Similarly, Columns 6-8 show the result of incre-
mental negative cycle detection with RCP. Column 6 shows the average refinement 
overhead (in milliseconds), Column 7 shows the average refinement penalty (in milli-
seconds), and Column 8 shows the average percentage of refinements due to RCP.  

Note first that the time overhead in the allocation phase is not very signifi-
cant. The bits allocated for the ranges averages around 10 bits per variable. Though 
the solution space is reduced, the bit blasted translation of the formula could be quite 
large if we were to apply small domain encoding [12]. Note that in the presence of 
RCP the refinement overhead is not affected significantly. Moreover, a lower refine-
ment penalty with RCP indicates improvement in quality of refinements and Boolean 
search. We also observe that, except for diamonds, on average 50% refinements are 
due to range violations discovered during RCP. 
 
Comparison with other Separation Logic Solvers: In the third set of experiments, 
we compare our approach SDSAT (the solve phase) with other latest available state-
of-the-art tools, including UCLID[13], MathSAT[17], ICS[4], TSAT++[16], and 
DPLL(T)[18]. As allocation phase has a constant time overhead, we use the solver 
phase run-time for comparison to understand the results better. We used a common 
platform and 1 hour time limit for each of the benchmarks. We present the cumulative 
results in Table 2. Due to unavailability of appropriate translators, we could not com-
pare on uclid benchmarks for this experiment. Pairs of the form (n t) represent that the 
particular approach timed out in n number of cases for that benchmark suite.  Overall, 
we observe that SDSAT and DPLL(T) have superior performance compared to other 
lazy and eager approaches by several orders of magnitude. Comparing SDSAT with 
DPLL(T), we see an improvement in some suites, in particular, diamonds and math-
sat. Especially for diamonds, SDSAT is able to detect unsatisfiability in less than 1 
sec for 32 out of 36 problems. Though there are many negative cycles in these dia-
monds problems, RCP is able to take advantage of the significantly reduced ranges as 
shown in Column 2 in Table 1. On the whole, SDSAT times out in 7 cases as com-
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pared to 10 cases for DPLL(T). Thus, overall our approach is relatively more robust 
than the pure lazy approaches which can also benefit using our ideas. 

Table 1.  SDSAT: Allocation and role of RCP 

Allocation -ve cycle w/o RCP -ve cycle with RCP 
Bench Avg.  Range bits 

per var 
Avg.Time 
taken (s)

Ref   ovhd
(ms) 

Ref  pnlty
(ms) 

Ref  ovhd 
(ms) 

Ref  Pnlty 
(ms) 

Range viola-
tion (%) 

DTP (59) 13 0.46 0.2 0.3 0.2 0.18 48 
diamonds(36) 0.99 0.14 0.1 0.12 0.006 0.02 100 
mathsat (147) 9.97 0.94 32 713 32 371 48 
DLSAT (31) 11.9 3 0.2 1.6 0.3 0.9 45 

sal (99) 10.9 3.34 1 36 1 19 49 

Table 2.  Performance comparison (in sec) of state-of-the-art Separation Logic Solvers 

Bench TSAT++ UCLID MathSAT ICS DPLL(T) SDSAT 
DTP (59) 642 122590 (34 t) 120 188592 (48 t) 10 202 

diamonds(36) 6571 32489 (9 t) 24302 (1 t) 51783 (11 t) 679 41 
mathsat (147) 62863 (15 t) 73751 (20 t) 41673 (9 t) 51789 (13 t) 37696 (8 t) 31279 (6 t) 
DLSAT (31) 276 97334 (27 t) 429 12671 (2 t) 13 46 

sal (99) 135909 (34 t) 156399 (43 t) 57401 (15 t) 107313 (28 t) 18721 (2 t) 22178 (1 t) 

5  Conclusions 

We proposed a novel Separation Logic Solver SDSAT that takes advantage of the 
small domain property of Separation logic to perform a lazy search of the state space. 
The solver tightly integrates the strengths of both lazy and eager approaches and 
gives a robust performance over a wide range of benchmarks. It first allocates non-
uniform adequate ranges efficiently and then uses the graph-based algorithms to 
search lazily for a satisfying model within the allocated ranges. It combines a state-of-
the-art negative cycle detection algorithm with range constraint propagation to prune 
out infeasible search space very efficiently. Moreover, it also benefits from incre-
mental propagation and cycle detection using cutpoint relaxation algorithm. Experi-
mental evidence presented here bears out the efficacy of our technique. 
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