
 1

SDSAT: Tight Integration of Small Domain Encoding
and Lazy Approaches in a Separation Logic Solver

Malay K Ganai1, Muralidhar Talupur2 and Aarti Gupta1

1NEC LABS America, Princeton, NJ, USA
2Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. Existing Separation Logic (a.k.a Difference Logic, DL) solvers can
be broadly classified as eager or lazy; each with its own merits and de-merits.
We propose a novel Separation Logic Solver SDSAT that combines the
strengths of both these approaches and provides a robust performance over a
wide set of benchmarks. The solver SDSAT works in two phases: allocation and
solve. In the allocation phase, it allocates non-uniform adequate ranges for
variables appearing in separation predicates. This phase is similar to previous
small domain encoding approaches, but uses a novel algorithm Nu-SMOD with
1-2 orders of magnitude improvement in performance and smaller ranges for
variables. Furthermore, the Separation Logic formula is not transformed into an
equi-satisfiable Boolean formula in one step, but rather done lazily in the fol-
lowing phase. In the solve phase, SDSAT uses a lazy refinement approach to
search for a satisfying model within the allocated ranges. Thus, any partially
DL-theory consistent model can be discarded if it can not be satisfied within
the allocated ranges. Note the crucial difference: in eager approaches, such a
partially consistent model is not allowed in the first place, while in lazy ap-
proaches such a model is never discarded. Moreover, we dynamically refine
the allocated ranges and search for a feasible solution within the updated
ranges. This combined approach benefits from both the smaller search space (as
in eager approaches) and also from the theory-specific graph-based algorithms
(characteristic of lazy approaches). Experimental results show that our method
is robust and always better than or comparable to state-of-the art solvers.

1 Introduction

Separation Logic, (a.k.a Difference Logic, DL) extends propositional logic with
predicates of the form x+c > y where > ∈ {>,≥}, c is a constant, and x, y are vari-
ables of some ordered infinite type integer or real. All other equalities and inequalities
can be expressed in this logic. Uninterpreted functions can be handled by reducing to
Boolean equalities [1]. Separation predicates play a pivotal role in verification of
timed systems [2] and hardware models with ordered data structures like queues and
stacks, and modeling job scheduling problem [3]. Deciding a Separation Logic prob-
lem is NP-Complete. Decision procedures based on graph algorithms use a weighted
directed graph to represent Separation predicates; with nodes representing variables
appearing in the predicates and edges representing the predicates. A predicate of the

 2

form x+c ≥ y is represented as directed edge from node x to node y with weight c. A
conjunction of separation predicates is consistent if and only if the corresponding
graph does not have a cycle with negative accumulated weight. The task for decision
procedures is reduced to finding solutions without negative cycles. Note, Some deci-
sion procedures can decide the more general problem of linear arithmetic where the
predicates are of the form Σi aixi ≥ c where ai, c are constants and xi are variables.
Most of them ICS [4], HDPLL [5], PVS [6], ASAP [7] are based on a variable elimi-
nation technique like Fourier-Motzkin [8]. Here, we restrict ourselves to a discussion
of dedicated decision procedures for Separation Logic.

Satisfiability of a Separation formula can be checked by translating the for-
mula into an equi-satisfiable Boolean formula and checking for a satisfying model
using a Boolean satisfiability solver (SAT). In the past, several dedicated decision
procedures have taken this approach to leverage off recent advances in SAT engines
[9]. These procedures can be classified as either eager or lazy, based on whether the
Boolean model is refined (i.e., transformed) eagerly or lazily, respectively. In eager
approaches [10-14] , the Separation formula is reduced to an equi-satisfiable Boolean
formula in one step and SAT is used to check the satisfiability. Reduction to Proposi-
tional Logic is done either by deriving adequate ranges for formula variables (a.k.a
small domain encoding) [12] or by deriving all possible transitivity constraints (a.k.a
per-constraint encoding) [11]. A hybrid method [13] combines the strengths of the
two encoding schemes and was shown to give robust performance over the two. In
lazy approaches [15-19], SAT is used to obtain a possibly feasible model correspond-
ing to a conjunction of separation predicates and feasibility of the conjunct is checked
separately using graph-based algorithms. If the conjunct is infeasible, the Boolean
formula is refined and thus, an equi-satisfiable Boolean formula is built lazily by
adding the transitivity constraints on a need-to basis.

Both the eager and lazy approaches have relative strengths and weaknesses.
Though the small model encoding approaches [12, 20] reduce the range space allo-
cated to a finite domain, Boolean encoding of the formula often leads to large pro-
positional logic formula, eclipsing the advantage gained from the reduced search
space. Researchers [14] have also experimented with the pseudo-Boolean Solver PBS
[21] to obtain a polynomial size formula, but without any significant performance
gain. In a per-constraint encoding, the formula is abstracted by replacing each predi-
cate with a Boolean variable, and then pre-emptively adding all transitivity con-
straints over the predicates. Often the transitivity constraints are redundant and add-
ing them eagerly can lead to an exponentially large formula. The Boolean SAT
solvers are often unable to decide “smartly” in the presence of such overwhelmingly
large number of constraints. As a result the advantage gained from reduced search
often takes a backseat due to lack of proper search guidance. Lazy approaches over-
come this problem by adding the constraints as required. Moreover, they use ad-
vanced graph algorithms based on Bellman-Ford shortest path algorithm [22] to
detect infeasible combination of predicates in polynomial time in the size of the
graph. These approaches exploit incremental propagation and efficient backtracking
schemes to obtain improved performance. Moreover, several techniques have been
proposed [17, 18] to add pre-emptively some subset of infeasible combination of
predicates. This approach has been shown to reduce the number of backtracks signifi-

 3

cantly in some cases. Note, the feasibility check is based on detection of a negative
cycle (negative accumulation of edge weights) in the graph. Potentially, there could
be an exponential number of such cycles and eliminating them lazily can be quite
costly. Due to this reason, lazy approaches do not perform as well as eager ap-
proaches on benchmarks like diamonds which have an exponential number of cycles
(~2n cycles where n is the number of variables). Thus, we are naturally motivated to
combine the strength of the two approaches as tightly as possible.

We propose a robust Separation Logic Solver SDSAT (short for Small Do-
main SATisfiability solver) that combines the strengths of both eager (small domain
encoding) and lazy approaches and gives a robust performance over a wide set of
benchmarks. Without overwhelming the SAT solver with a large number of con-
straint clauses and thereby adversely affecting its performance, we take advantage of
both the (finite) reduced search space and the need-to basis transitivity constraints
which are able to guide the SAT solver more efficiently.
Outline: We give a short background on Separation Logic and the state-of-the-art
solvers in Section 2. We describe our solver SDSAT in detail, highlighting the techni-
calities and novelties in Section 3. This is followed by experiments and conclusions
in Sections 4 and 5, respectively.

2 Background: Separation Logic

Separation predicates are of the form x+c > y where > ∈ {>,≥}, c is a constant and x,
y are variables of some ordered infinite type integer or real, D. Separation Logic is a
decidable theory combining Propositional Logic with these predicates. If all variables
are integers then a strict inequality x + c > y can be translated into a weak inequality
x + (c-1) ≥ y without changing the decidability of the problem. Similar transforma-
tions exist for mixed types, by decreasing c by small enough amounts that are decided
by remaining constants in the predicates. Note, an inequality of the form x > c, can be
also be translated into a weak inequality of two variables, by introducing a reference
node z. Henceforth, we will consider separation predicates of the form x+c≥ y.

2.1 State-of-the-art Lazy approach: Negative-cycle detection

We discuss briefly the essential components in the state-of-the-art Separation Logic
solvers based on lazy approaches as shown in Figure 1.

Problem Formulation: In this class of decision procedures, a Separation formula ϕ
is abstracted into Boolean formula ϕB by mapping predicates x+c≥ y and y+(-1-c)≥ x
to a Boolean variable and its negation respectively (or vice versa, depending on some
ordering of x and y.) An assignment (or interpretation) is a function mapping each
variable to value in D and each Boolean variable to {T, F}. An assignment α is ex-
tended to map a Separation formula ψ to {T, F} by defining the following mapping
over the Separation predicates, i.e., α(x+c≥y)=T iff α(x)+c≥ α(y). A Boolean SAT

 4

solver is used to obtain a consistent assignment for Boolean variables in ϕB. If such
an assignment does not exist, it declares the problem unsatisfiable. On the other hand,
for any satisfying assignment to ϕB, an additional consistency check is required for
the underlying separation predicates. Note, incremental solvers [17, 23] perform this
check on a partial assignment to detect conflict early. The problem is declared SAT
only when the satisfying assignment is consistent under the check.

Constraint Feasibility: Any partial assignment (also referred to as a partial Boolean
model) to variables in ϕB represents a conjunction of separation predicates. The Boo-
lean model is represented as a weighted directed graph (a.k.a constraint graph) [24],
where an edge x→y with weight c (denoted as (x,y,c)) corresponds to the predicate e
≡ (x+c ≥ y) where α(e)=T. The constraint graph is said to be consistent if and only if
it does not have an accumulated negative weighted cycle (or simply, negative cycle.)
Intuitively, a negative cycle violates the transitivity property of the inequality predi-
cates. The building of the constraint graph and detection of negative cycles, as shown
in Figure 1, are done incrementally to amortize the cost of constraint propagation. It
has been shown [25] that addition of a predicate and update of a feasible assignment
α can be done in O(m+n log n) where m is the number of predicates and n is the
number of variables. After the constraint graph is detected consistent i.e. feasible
(shown by the feasible arc in Figure 1), more assignments are made to the unassigned
variables in ϕB. leading to a more constraint graph. Problem is declared satisfiable by
Boolean SAT, if there are no more assignments to make.

Fig. 1. Overview of state-of-the-art Separation Logic Solver based on lazy approach

Refinement: Whenever a negative cycle is encountered during constraint feasibility
(a.k.a. constraint propagation), a transitivity constraint not yet implied by ϕB is learnt
and added to ϕB as a conflicting clause. For example, if the subgraph corresponding
to a conjunction of predicates, i.e., e1∧e2∧e3∧¬e4 has a negative cycle, then a clause
(¬e1∨¬e2∨¬e3∨ e4) is added to ϕB to avoid re-discovering it. As shown in [16],
instead of stopping at the first negative cycle, one can detect all negative cycles and
then choose a clause with minimum size representing a stronger constraint. Note, due
to large overhead, addition of all detected negative cycle clauses, though possible, is
not done. Moreover, like in Boolean SAT solvers, incremental solvers [17, 23] restore
the assignments to the variables to a state just before the inconsistency was detected,
instead of starting from scratch.

Boolean
Formula, ϕB

Constraint Feasibility
Find assignment: α:x→D(x)
Check feasibility: Neg. cycle

Boolean
SAT

Partial Model
Build Sub-graph

Refine
Theory Deduction

Find potential
infeasible condition

Infeasible
Feasible

SAT /
UNSAT

Separation
Formula, ϕ

Abstract
Boolean

Formula, ϕB

Constraint Feasibility
Find assignment: α:x→D(x)
Check feasibility: Neg. cycle

Boolean
SAT

Partial Model
Build Sub-graph

Refine
Theory Deduction

Find potential
infeasible condition

Infeasible
Feasible

SAT /
UNSAT

Separation
Formula, ϕ

Abstract

 5

Pre-emptive Learning (Theory Deduction): Some solvers [17, 18] have capabilities
to add transitivity constraints preemptively to ϕB so as to avoid finding them later.
However, as the overhead of adding all transitivity constraints can be prohibitive as
observed in per-constraint eager approach, solvers often use heuristics to add them
selectively and optionally (shown as dotted arrow in Figure 1).

2.2 Eager approach: Finite instantiation

 Range allocation (a.k.a. small domain encoding) approaches find the adequate set of
values (a.k.a. ranges) for each variable in the finite model. We briefly describe the
range allocation problem for Separation Logic which has been discussed at greater
depth in [20, 26]. Let Vars(ϕ) denote the set of variables used in a Separation formula
ϕ over the set of integers Ζ. We assume ϕ is in NNF, i.e., every predicate occurring
negatively in the formula is converted into its dual positive predicate a priori (e.g.,
¬(x+c<y) ⇒ x+c≥y) A domain (or range) R(ϕ) of a formula ϕ is a function from
Vars(ϕ) to 2Z. Let Vars(ϕ) = {v1,…,vn} and |R(vi)| denote the number of elements in
the set R(vi), domain of vi. The size of domain R(ϕ), denoted by |R(ϕ)| is given by
|R(ϕ)| = |R(v1)|⋅|R(v2)|⋅⋅⋅|R(vn)|. Let SATR(ϕ) denote that ϕ is satisfiable in a domain
R. The goal is to find a small domain R such that
 SATR(ϕ) ⇔ SATZ(ϕ) (1)
We say that a domain R is adequate for ϕ if it satisfies formula (1). As finding the
smallest domain for a given formula is at least as hard as checking the satisfiability of
ϕ, the goal (1) is relaxed to finding the adequate domain for the set of all separation
formulas with the same set of predicates as ϕ, denoted by Φ(ϕ) as adequacy for Φ(ϕ)
implies adequacy for ϕ. As discussed in the previous section, separation predicates
can be represented by a constraint directed graph G(V,E). Thus, the set of all the sub-
graphs of G represents the set Φ(ϕ). Given G, the range allocation problem is setup to
finding a domain R such that every consistent sub graph of G can be satisfied from
the values in R.

It has been shown [12] that for a Separation formula with n variables, a
range [1..n+maxC] is adequate for each variable, with maxC being equal to the sum
of absolute constants in the formula. This leads to a state space of (n+maxC)n where
all variables are given uniform ranges regardless of the formula structure. This small
model encoding approach in UCLID [12], would require ⎡log2|R(x)|⎤ Boolean vari-
ables to encode the range R(x), allocated for variable x. There has been further work
[20] to reduce the overall ranges and hence, the size of the Boolean formula. In [20],
a method SMOD was proposed to allocate non-uniform ranges to variables, exploiting
the problem structure. The method builds cut-point SCC graph recursively in top-
down manner and allocates ranges to the nodes in a bottom-up style, propagating the
range values. The approach is based on enumeration of all cycles and therefore, the
worst-case complexity of such an approach is exponential. In this paper, we propose
an efficient and robust technique Nu-SMOD that computes non-uniform ranges in
polynomial-time; polynomial in the number of predicate variables and size of the
constants. Moreover, the ranges are comparable to or better than the non-uniform
ranges obtained using SMOD, and consistently better than the uniform ranges ob-

 6

tained using UCLID [12]. In experimental evaluation, Nu-SMOD completes alloca-
tion for all the benchmarks unlike SMOD, with 1-2 orders of magnitude performance
improvement over SMOD. Unlike SMOD, we do not compute cutpoint-graph or enu-
merate cycles in our new procedure Nu-SMOD; rather we propagate only distinct
values along a path from a cut-point. As the ranges will be used subsequently by the
lazy search-engine, we emphasize improvement in performance instead of ranges.
Thus, our objective differs slightly from SMOD procedure.

3 SDSAT: Integrating Small Domain and Lazy Approaches

We propose a Separation Logic Solver SDSAT as shown in Figure 2, that combines
the strengths of both eager (small domain encoding) and lazy approaches and gives a
robust performance over a wide set of benchmarks. This combined approach benefits
both from the reduced search space (as in eager approaches) and also from the need-
to basis refinement of the Boolean formula with the transitivity constraints (as in lazy
approaches). The solver SDSAT proceeds in two phases: allocation and solve.

Fig. 2. Overview of our Separation Logic solver SDSAT

In the allocation phase (shown as Phase I in Figure 2), it computes non-uniform ade-
quate ranges using an efficient technique Nu-SMOD that runs in polynomial time;
polynomial in the number of predicate variables and size of the constants. This phase
is similar to previous small domain encoding approaches; however, the Separation
Logic formula is not transformed into an equi-satisfiable Boolean formula in one step,
but rather done lazily in the following phase.

In the solve phase (shown as Phase II in Figure 2), SDSAT searches for a sat-
isfying model within the allocated ranges using a lazy refinement approach. Thus,
any partially DL-theory consistent model is discarded if it can not be satisfied within
the allocated ranges (The check is done in the blocks “Check feasibility” and “Con-
straint feasibility” in Figure 2). Note the key difference: in eager approaches, such a
partially consistent model is not allowed in the first place, while in lazy approaches

Feasible

Boolean
Formula, ϕB

Constraint Feasibility
Find assignment: α:x→D(x)
Check feasibility: Neg. cycle

L(x) ≤ α(x) ≤ U(x)

Boolean
SAT

Partial
Model
Build

Sub-graph

Refine
Theory Deduction

Find potential
infeasible conditionInfeasible

Update Ranges (RCP)
x +c ≥ y

L(x)⇐ Max(L(x), L(y)-c)
U(y)⇐ Min(U(y), U(x)+c)

Record reasons

Check feasibility
L(x) ≤ U(x)

L(x) ≤ α(x) ≤ U(x)

ALLOCATE
(Nu-SMOD)

Find cutpoint set C
Allocate ranges R(x) ∀x

SAT /
UNSAT

Separation
Formula, ϕ

Abstract

Phase IPhase II

Feasible

Boolean
Formula, ϕB

Constraint Feasibility
Find assignment: α:x→D(x)
Check feasibility: Neg. cycle

L(x) ≤ α(x) ≤ U(x)

Boolean
SAT

Partial
Model
Build

Sub-graph

Refine
Theory Deduction

Find potential
infeasible conditionInfeasible

Update Ranges (RCP)
x +c ≥ y

L(x)⇐ Max(L(x), L(y)-c)
U(y)⇐ Min(U(y), U(x)+c)

Record reasons

Check feasibility
L(x) ≤ U(x)

L(x) ≤ α(x) ≤ U(x)

ALLOCATE
(Nu-SMOD)

Find cutpoint set C
Allocate ranges R(x) ∀x

SAT /
UNSAT

Separation
Formula, ϕ

Abstract

Phase IPhase II

 7

such a model is never discarded. By focusing on adequate ranges and not just con-
sistency of the separation predicates we are able to learn more constraints leading to
larger reductions in search space. Furthermore, we dynamically refine the ranges
allocated to variables in the allocation phase using range constraint propagation (de-
scribed in Section 3.2.2) and search for a feasible solution within the updated ranges
(shown in the block “Updated Ranges (RCP)” in Figure 2). Another novelty is in the
use of cutpoints to determine whether an added edge (to a consistent model) leads to
an infeasible condition, based on the observation that any cycle will have at least one
cutpoint. (Given a directed graph G(V,E), a cutpoint set C⊆V is a set of nodes whose
removal breaks all the cycles in G.). If an added edge x→y (corresponding to the
predicate x+c ≥ y) is not reachable from some cutpoint and x is not a cutpoint, then a
previously consistent subgraph modified with this new edge is guaranteed not to have
a negative cycle. Moreover like in most lazy approaches, SDSAT has incremental
propagation and cycle detection, and preemptive learning of infeasible condition
(theory deduction shown as dotted arrow in Figure 2).

3.1 Allocation Phase: Non-Uniform Range Allocation

We discuss the algorithm Nu-SMOD to allocate non-uniform ranges to the variables
in the predicates. The algorithm assumes that the constraint directed graph G(V,E) is
a Strongly Connected Component (SCC). Extension to non-SCCs is straightforward:
compute the ranges for SCCs individually and then offset the ranges appropriately to
account for the edges between the SCCs starting from some root SCC. As far as va-
lidity of the Difference Logic problem is concerned, it is easy to see that these edges
can be removed from the problem as they will never contribute to a cycle.

Algorithm Nu-SMOD: We first derive a cutpoint set C using polynomial approxima-
tion [27], as finding a minimal cutpoint set is an NP-Hard problem. Using the set C,
we invoke the procedure (line 1 of the procedure NU-SMOD, Figure 3) Nu-SMOD-1
which is described as follows (lines 11-19, Figure 3): Range of each node x, denoted
by R(x) is divided into several sets; each identified with unique id or simply level. Let
the level k set of the node x be denoted by Lk(x). Note, R(x)=∪k Lk(x). Initially, all the
level sets are empty. The nodes in Level 1 set, denoted by I, are allocated 0 value, i.e.,
L1(x)={0}, ∀x∈I. To compute Level (k+1) values, i.e., Lk+1(y) for node y (line 17), we
use the Level k values of the nodes x that have a direct edge, i.e., fanout (x,y,c) (cor-
responding to the predicate x+c≥ y) to y and offset with edge weight c. Note, we
include only the cutpoints C in the set I. Once the ranges for the cutpoints C are ob-
tained using Nu-SMOD-1, another pass is made (in lines 2-5) to obtain reverse_dfs
values Q[y] for each non-cutpoint y. Starting from each cutpoint (line 4-5) with value
M (equal to maximum range value allocated among the cutpoints), we do a re-
verse_dfs (lines 7-10) to update Q values (line 9) of all the non-cutpoints by reverse
propagating a tight value (higher than the previous Q value, line 8) without traversing
through any other cutpoints (line 7). Note that the reverse dfs path from a cutpoint to
non-cutpoint is a simple path as there is no cycle. All the inequalities from non-
cutpoint to cutpoint are satisfied using reverse_dfs Q values.

 8

/Range Allocation for an
//SCC G(V,E)
Input: G(V,E), Cutpoint set C
Output: R(x) for ∀x∈V
Procedure: Nu-SMOD
1. Nu-SMOD-1 {INPUT: G(V,E), I=C

 OUTPUT: R(x)∀x∈V }
2. ∀y∈V-C Q[y]=-∞
3. M=max(∪∀x∈CR(x))
4. foreach x∈C do
5. reverse_dfs(x,M);
6. end

reverse_dfs(x,v)
7. foreach (y,x,w) s.t. y∉C do
8. if (Q[y]+w ≥ v) continue;
9. Q[y] = v – w;
10. reverse_dfs(y,Q[y])

Input: G(V,E), I⊆V
 Output: R(x) for ∀x∈V
 Procedure: Nu-SMOD-1

11. L1(x)={0}∀x∈I, L1(x)={}∀x∈V\I
12. Lk(x)={} ∀x∈V, 1<k≤|V|

13. foreach k, 1≤k<|V| do
14. foreach node x∈V do
15. foreach(x,y,c)∈fanouts(x)do
16. foreach value v ∈ Lk(x) do
17. Lk+1(y)=Lk+1(y)∪{v+c}
18.
19. ∀x∈V R(x)=∪1≤k≤|V| Lk(x)

//Assignment for subgraph D of G
Input: D(Vd,Ed)
Output: {(x,vx)|x∈Vd, vx∈R(x)}
Procedure: ASSIGN
20. S = {set of root nodes}
21. ∀y ∈ Vd-S vy = +∞;
22. foreach x ∈ S do
23. vx = 0; enqueue(x)
24. bfm(x);
25. end
26. ∀y∈Vd-S if (vy == +∞) vy=Q[y]

bfm(x)
27. while (x = dequeue())!=null)
28. foreach(x,y,c)∈fanouts(x)do
29. if (vx+c >= vy) continue;
30. vy = vx+c;
31. enqueue(y);
32. end
33. end

Fig. 3. Pseudo-code for the algorithm Nu-SMOD and ASSIGN procedures

Theorem 1: Ranges allocated by Nu-SMOD are adequate
Proof Sketch: We now show that the ranges allocated by Nu-SMOD are adequate,
i.e., any satisfiable sub-graph D(Vd,Ed) of G(V,E) (Vd ⊆V, Ed⊆E) has a satisfying
assignment from the allocated set of ranges. We further assume D is connected. If
not, then each component is a satisfiable sub-graph of G and ranges can be assigned
to variables in each component independently of the other.

We construct the adequacy proof by devising an assignment procedure
ASSIGN as shown in Figure 3 (lines 20-33) which will generate a satisfying solution
from the allocated set of ranges. We first construct a set S of root nodes (those nodes
in Vd∩ C that can not be reached from any other node in Vd∩ C) in D (line 20). If S is
empty either Vd∩C is empty or all nodes are in some cycle. In the former case, we
skip to line 26, else we pick any node in Vd∩C and continue. We initially assign all
the nodes not in S with +∞ (a large positive value, line 21). We denote the value
assigned to a node x as vx. Starting from each node in S (with initial value 0 as in line
23), we call bfm (similar to Bellman-Ford-Moore Shortest Path algorithm [22]) pro-
cedure to assign tight values on the nodes that can be reached. The edge (x,y,c) is said
to be stable if the current value of x and y is said to satisfy the constraint (x+c≥ y).
Note that the value of the node can change only if the current value is lower than the
previously assigned value (line 30). Such an operation is also called an edge relaxa-

 9

tion [22]. Only under such a scenario, the node is en-queued (line 31). Those nodes
whose value are still +∞, are given reverse_dfs Q values (line 26). To show that the
given assignment procedure ASSIGN generates a satisfying solution from the ranges
allocated, we need to prove the following lemmas (Contact author for proof details).
Lemma 1: The procedure ASSIGN terminates.
Lemma 2: All inequalities corresponding to edges of D are satisfied.
Lemma 3: Each assigned value vx belongs to R(x).

The above theorem guarantees the existence of the solution for a satisfying
subgraph D with all the root nodes in Vd∩ C having special value 0 and the other
nodes in Vd\C having either tight values or reverse_dfs values Q, depending on
whether they are reachable from root nodes or not, respectively. Note that the cut-
points do not need Q values as they are the root nodes. As we will see shortly, the
solve phase is based primarily on this observation.

3.2 Solve Phase

Similar to standard lazy solvers, we first build an abstract Boolean formula ϕB from
the given Separation formula ϕ and search for a partial consistent Boolean model. As
the partial model is being incrementally built up, we search for a satisfying model
using cutpoint-relaxation algorithm (described in Section 3.2.1) within the dynami-
cally updated ranges achieved by range constraint propagation (described in Section
3.2.2). We build these algorithms by augmenting the procedure ASSIGN (described
above) with

• inconsistency detection due to negative cycles,
• range violations check, and
• pre-emptive learning.

In the following, we restrict our discussion to novelties in detecting the inconsisten-
cies. (For details on pre-emptive learning please refer [17, 18]).

3.2.1 Incremental Cycle Detection Using Cutpoint Relaxation

In the past [23, 28], the detection of negative cycles and finding satisfying assign-
ments are done incrementally in a weighted digraph that is built incrementally. Each
of these algorithms uses a variant (mostly in the ordering of the relaxed edges) of
Bellman-Ford-Moore (BFM) Shortest Path algorithm and extends it with an ability to
detect negative cycle. Our approach is also based on BFM with the following differ-
ence: For a satisfiable sub-graph D, we consider only those solutions which lie within
the ranges allocated by the Nu-SMOD procedure. Note, a satisfying assignment set
{α(x)} represents a class of satisfying assignments {α(x)+k} for some constant k.
As shown in the procedure ASSIGN, the existence of the solution for a satisfying
subgraph D is guaranteed with all the root nodes in Vd∩ C having special value 0 and
the other nodes in Vd\C having either tight values or reverse_dfs values Q, depending
on whether they are reachable from root nodes or not, respectively. Thus, in our ap-
proach, we restrict the set of satisfying assignments such that α(x)=0 for the root
nodes x ∈Vd∩ C. We discuss the implication of such restriction in our incremental

 10

cycle detection algorithm cutpoint relaxation. As will be clear shortly, the theoretical
complexity of the algorithm is not different from BFM and its variants. In our cut-
point relaxation algorithm (unlike ASSIGN procedure) we do not change α(x) from
+∞ to Q[x] if a node x is not reachable from a root node (due to incremental addition
of edges, such a node may be reachable later). Now, we discuss how the incremental
addition and deletion of edges affect the negative cycle detection.
Edge Addition: Suppose, we add an edge (x,y,c) to D and obtain a subgraph D’. If
α(x) ≠ +∞, x is reachable from some root node in D and we do the usual BFM. If α(x)
= +∞, we consider two cases depending on x∈C or x∉C.
Case x∈C: Clearly, x is root node in D’ as it is not reachable from any other root node
in D. We choose α(x)=0 and do usual BFM with negative cycle detection after relax-
ing (x,y,c).
Case x∉C: Note, x is not reachable from any node in Vd∩ C. As any cycle will have
at least one cutpoint and since x is not a cutpoint in G, there cannot be any cycle in
subgraph D’ (of G) with the edge (x,y,c). Based on this observation, we skip edge
relaxation and cycle detection for this case.
Edge Deletion: When an edge (x,y,c) is deleted, we need to restore the previous α(y)
value only if it is different from +∞. Since, deletion of edges takes place at the time
of backtracking, we restore only those α(y) that got affected after the backtrack level.
We use a standard stack-based approach for efficient backtracking.

Thus, our algorithm cutpoint relaxation has two main novelties: First, the
approach allows us to identify cases where we guarantee no negative cycles in a sub-
graph without edge relaxation. Second, we reduce the search space by restricting our
solution space in a spirit similar to finite instantiation. Though maintaining such a
restriction on assignment values on root nodes has an overhead, yet we did not find it
to be a significant bottleneck. Besides using cutpoints and restricted solutions to re-
duce the search space, we can further reduce the search space by dynamically updat-
ing the ranges of the variables as discussed in the following section.

3.2.2 Range Constraint Propagation (RCP)

Ranges computed by the allocation phase guarantee the adequacy for a satisfiable
subgraph D; however, the ranges are often more than those required to obtain a satis-
fying solution for D. We allow range constraint propagation (RCP) to dynamically
refine the ranges of the variables for the given subgraph D, while maintaining the
range adequacy (Theorem 2). This approach is similar to the more general approach
for interval arithmetic [29, 30]. We achieve RCP as follows: Let the minimum and
maximum values in the range of a variable x be denoted by L(x) and U(x), respec-
tively. Initially, these limits are obtained during the allocation phase. RCP on an edge
x+c≥ y, denoted by RCP(x+c≥ y), updates the limits L(x) and U(y) as follows:

L(x) ⇐ MAX{L(x), L(y)-c}
U(y) ⇐ MIN{U(y), U(x)+c}

We apply this process recursively, i.e., whenever the L (or U) value of a node
changes, we update the L (or U) values of all the nodes with a direct edge to (or from)
the node. The process stops when either a range violation is detected, i.e. L(x) > U(x)
or all the limits have stabilized. As constraint propagation reduces the range sizes

 11

monotonically, the process is guaranteed to terminate. A conflict can also be detected
due to range violation of the invariant L(x) ≤ α(x) ≤ U(x) where α(x) is a satisfying
assignment for x reachable from some root node. Note, these range violations can
occur in a subgraph even without a negative cycle. (These checks are carried out in
the block “Check feasibility” in Figure 2. We illustrate this with an example later.)
Thus, the reduced range space leads to faster detection of conflicts and hence, re-
duced search. We can also obtain the set of conflicting edges by storing the edges as
reasons for the change in minimum and maximum limits. The following theorem
addresses the range adequacy after RCP (please contact authors for proof details).

Theorem 2: Reduced ranges obtained by RCP are adequate for subgraph D.

Example: We illustrate RCP and its roles in reducing the search space on a diamond
example shown in Figure 4. Let the Separation formula F be e1 ∧ e4 ∧ e5 ∧ e8 ∧ e9 ∧
(e2∨ e3) ∧ (e6 ∨ e7) where ei represents a separation predicate. Let n0...n5 represent the
integer variables. The separation predicates are shown as edges ei in Figure 4(a) (with
weights in brackets). For example: e1≡(n0≥n1) and e9≡(n5-1≥n0). The previous ap-
proaches based on only negative cycle detection have to find all four negative cycles
before F is declared unsatisfiable. Using our approach of combined negative cycle
detection with RCP, we decide unsatisfiability with detection of two negative cycles
and one range violation as described below.

 (a) (b) (c)

Fig. 4. (a) Example (b) Allocated Ranges (c) RCP w/ negative cycle detection

 As shown in Figure 4(b), L and U of each variable are initially set to corresponding
minimum and maximum range R values as obtained by Nu-SMOD (for example:
L(n0)=-1, U(n0)=0). Note, that these ranges are adequate for this graph. Consider the
subgraph e1 ∧ e2 ∧ ¬e3 . When we apply RCP as shown in the Figure 4(c), we detect a
range violation as follows (note, *L and *U denote changes from the previous step):
As U(n0) changes in step 3, we change U(n1) to -1 in step 4 as the edge e1 is incident
on n1 and U(n2) to -1 in step 5 as the edge e2 is incident on n2. Now, as L(n2)=0 >
U(n2)=-1, we detect a range violation and learn a clause (¬e1∨¬e2 ∨ e3) by doing
conflict analysis. The learnt clause (¬e1∨¬e2 ∨ e3), together with the formula clause
(e2∨e3) implies a clause (¬e1∨ e3); which in turn with formula clause (e1) implies (e3).
When we detect two negative cycles with edge pairs (e3, e7) and (e3, e6), we learn that
e3 implies (¬e6∧¬e7). As (e6 ∨ e7) is a formula clause, we could declare the formula F
unsatisfiable without the need to detect further negative cycles.

e1(0) e2(0) e6(0)
e5(0)

e7(0)
e8(0)

e9(-1)
e3(0) e4(0)

n0

n1

n3

n2

n6

n5

n4

Allocated Ranges

R(n2): {0}
R(n0),R(n1),R(n3): {-1,0}
R(n4),R(n5),R(n6): {0,1}

Range Constraint Propagation

1. RCP(e1≡(n0≥n1)): L(n0)=-1, U(n1)=0
2. RCP(e2≡(n1≥n2)): *L(n1)=0, U(n2)=0
3. RCP(¬e3≡n0≤n3-1)): *L(n3)=0, *U(n0)=-1
4. RCP(e1≡(n0≥n1)): *L(n0)=0, *U(n1)=-1
5. RCP(e2≡(n1≥n2)): L(n1)=0, *U(n2)=-1

F ≡ e1 ∧ e4 ∧ e5 ∧ e8 ∧
e9 ∧(e2∨e3) ∧(e6 ∨e7)e1(0) e2(0) e6(0)

e5(0)

e7(0)
e8(0)

e9(-1)
e3(0) e4(0)

n0

n1

n3

n2

n6

n5

n4

Allocated Ranges

R(n2): {0}
R(n0),R(n1),R(n3): {-1,0}
R(n4),R(n5),R(n6): {0,1}

Range Constraint Propagation

1. RCP(e1≡(n0≥n1)): L(n0)=-1, U(n1)=0
2. RCP(e2≡(n1≥n2)): *L(n1)=0, U(n2)=0
3. RCP(¬e3≡n0≤n3-1)): *L(n3)=0, *U(n0)=-1
4. RCP(e1≡(n0≥n1)): *L(n0)=0, *U(n1)=-1
5. RCP(e2≡(n1≥n2)): L(n1)=0, *U(n2)=-1

F ≡ e1 ∧ e4 ∧ e5 ∧ e8 ∧
e9 ∧(e2∨e3) ∧(e6 ∨e7)

 12

4 Experimental Results

We have integrated our incremental cycle detection using cutpoint relaxation and
RCP with the zChaff Boolean SAT solver [31]. We have also implemented pre-
emptive learning but have not done controlled experiments to ascertain its usefulness.
We conducted experiments on a set of six public benchmark suites generated from
verification and scheduling problems: diamonds, DTP, DLSAT, mathsat, sal and
uclid. We ran our experiments on a workstation with 3.0 GHz Intel Pentium 4 proces-
sor and 2 GB of RAM running Red Hat Linux 7.2. First, we compare the range allo-
cation algorithms; second, we evaluate the effectiveness of RCP in SDSAT and third,
we compare it with the state-of-the-art solvers.

Comparison of Range Allocations Algorithms: We compared our approach Nu-
SMOD with previous approaches SMOD [20] and UCLID [12] on these benchmarks
and present results in Figure 5. We used a time limit of 2 minutes for each run. Note,
the UCLID procedure allocates each of n nodes in an SCC a continuous range from 1
to n+maxC where maxC is the sum of all constant absolute values. We compare the
number of Boolean variables required to encode the ranges assigned by the different
approaches as the ratio between the approach and Nu-SMOD. Note, for range set
R(y), we require ⎡log2(|R(y)|)⎤ Boolean variables to encode the set R(y).

 (a) (b) (c)

Fig. 5. Ratio of range bits allocated between (a) UCLID v/s Nu-SMOD, (b) SMOD v/s Nu-
SMOD. (c) Scatter plot of time taken (in sec) between SMOD v/s Nu-SMOD

 UCLID v/s Nu-SMOD: As shown in Figure 5(a), compared to UCLID, Nu-SMOD
allocates on average about 40% less range bits (about 4x less on diamond set). Note
that such linear reductions amount to exponential reduction in range space.
SMOD v/s Nu-SMOD: Of 432 benchmarks, SMOD could complete only 262 in the
given time limit of 2 minutes. If we increase the time limit to 20 minutes, it solves 23
more cases. Not surprisingly, time-out occurs mostly for dense graph as also ob-
served by the authors [20]. Baring a few benchmarks, the ranges allocated by Nu-
SMOD are comparable to SMOD as seen in Figure 5(b). Moreover, SMOD is 1-2
orders of magnitude slower on the completed benchmarks as compared to Nu-SMOD
as shown in the scatter plot (in logarithmic scale) in Figure 5(c).

Allocation and Role of RCP in SDSAT: In the second set of experiments, we pre-
sent the results of allocation phase and compare the effectiveness of refinement in

Range Allocated Bits
UCLID v/s Nu-SMOD

3.5
3.7
3.9
4.1
4.3
4.5

1

1.2

1.4

1.6

1.8

2

1 35 69 103 137 171 205 239 273 307 341 375 409
Benchmarks

R
at

io
=

U
C

LI
D

 /
N

u-
SM

O
D ≈

 Time Taken (in sec)
SMOD v/s Nu-SMOD

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000
Nu-SMOD

SM
O

D
 Range Allocated Bits

SMOD v/s Nu-SMOD

0

0.5

1

1.5

2

2.5

1 26 51 76 101 126 151 176 201 226 251 276

Benchmarks

R
at

io
 S

M
O

D
 /

N
u-

SM
O

D

 13

SDSAT with and without RCP as shown in Table 1. In our experience, the number of
refinements did not distinct the role of RCP. We observed performance improvement
using RCP with more refinements as well as with fewer refinements. Thus, instead of
using the number of refinements, we introduce two metrics to measure its effective-
ness: refinement overhead and refinement penalty. We define refinement overhead as
the time taken in the corresponding graph algorithm per refinement, and refinement
penalty as the time taken by Boolean SAT per refinement. The former metric meas-
ures the cost in detecting the inconsistency, whereas the latter measures the cost of
Boolean search after refinement, evaluating its effectiveness. Ideally, we would like
to have a low number for both the metrics. In the Table 1, Column 1 shows the
benchmarks suites with the number in brackets indicating the number of problems
considered. Columns 2-3 show the results of allocation phase: especially, Column 2
shows the average size of range bits per variable computed in the allocation phase.
Column 3 shows the average time taken for allocation phase. Columns 4-5 show the
result of incremental negative cycle detection without RCP. Column 4 shows the
average refinement overhead (in milliseconds) and Column 5 gives the average re-
finement penalty (in milliseconds). Similarly, Columns 6-8 show the result of incre-
mental negative cycle detection with RCP. Column 6 shows the average refinement
overhead (in milliseconds), Column 7 shows the average refinement penalty (in milli-
seconds), and Column 8 shows the average percentage of refinements due to RCP.

Note first that the time overhead in the allocation phase is not very signifi-
cant. The bits allocated for the ranges averages around 10 bits per variable. Though
the solution space is reduced, the bit blasted translation of the formula could be quite
large if we were to apply small domain encoding [12]. Note that in the presence of
RCP the refinement overhead is not affected significantly. Moreover, a lower refine-
ment penalty with RCP indicates improvement in quality of refinements and Boolean
search. We also observe that, except for diamonds, on average 50% refinements are
due to range violations discovered during RCP.

Comparison with other Separation Logic Solvers: In the third set of experiments,
we compare our approach SDSAT (the solve phase) with other latest available state-
of-the-art tools, including UCLID[13], MathSAT[17], ICS[4], TSAT++[16], and
DPLL(T)[18]. As allocation phase has a constant time overhead, we use the solver
phase run-time for comparison to understand the results better. We used a common
platform and 1 hour time limit for each of the benchmarks. We present the cumulative
results in Table 2. Due to unavailability of appropriate translators, we could not com-
pare on uclid benchmarks for this experiment. Pairs of the form (n t) represent that the
particular approach timed out in n number of cases for that benchmark suite. Overall,
we observe that SDSAT and DPLL(T) have superior performance compared to other
lazy and eager approaches by several orders of magnitude. Comparing SDSAT with
DPLL(T), we see an improvement in some suites, in particular, diamonds and math-
sat. Especially for diamonds, SDSAT is able to detect unsatisfiability in less than 1
sec for 32 out of 36 problems. Though there are many negative cycles in these dia-
monds problems, RCP is able to take advantage of the significantly reduced ranges as
shown in Column 2 in Table 1. On the whole, SDSAT times out in 7 cases as com-

 14

pared to 10 cases for DPLL(T). Thus, overall our approach is relatively more robust
than the pure lazy approaches which can also benefit using our ideas.

Table 1. SDSAT: Allocation and role of RCP

Allocation -ve cycle w/o RCP -ve cycle with RCP
Bench Avg. Range bits

per var
Avg.Time
taken (s)

Ref ovhd
(ms)

Ref pnlty
(ms)

Ref ovhd
(ms)

Ref Pnlty
(ms)

Range viola-
tion (%)

DTP (59) 13 0.46 0.2 0.3 0.2 0.18 48
diamonds(36) 0.99 0.14 0.1 0.12 0.006 0.02 100
mathsat (147) 9.97 0.94 32 713 32 371 48
DLSAT (31) 11.9 3 0.2 1.6 0.3 0.9 45

sal (99) 10.9 3.34 1 36 1 19 49

Table 2. Performance comparison (in sec) of state-of-the-art Separation Logic Solvers

Bench TSAT++ UCLID MathSAT ICS DPLL(T) SDSAT
DTP (59) 642 122590 (34 t) 120 188592 (48 t) 10 202

diamonds(36) 6571 32489 (9 t) 24302 (1 t) 51783 (11 t) 679 41
mathsat (147) 62863 (15 t) 73751 (20 t) 41673 (9 t) 51789 (13 t) 37696 (8 t) 31279 (6 t)
DLSAT (31) 276 97334 (27 t) 429 12671 (2 t) 13 46

sal (99) 135909 (34 t) 156399 (43 t) 57401 (15 t) 107313 (28 t) 18721 (2 t) 22178 (1 t)

5 Conclusions

We proposed a novel Separation Logic Solver SDSAT that takes advantage of the
small domain property of Separation logic to perform a lazy search of the state space.
The solver tightly integrates the strengths of both lazy and eager approaches and
gives a robust performance over a wide range of benchmarks. It first allocates non-
uniform adequate ranges efficiently and then uses the graph-based algorithms to
search lazily for a satisfying model within the allocated ranges. It combines a state-of-
the-art negative cycle detection algorithm with range constraint propagation to prune
out infeasible search space very efficiently. Moreover, it also benefits from incre-
mental propagation and cycle detection using cutpoint relaxation algorithm. Experi-
mental evidence presented here bears out the efficacy of our technique.

References

[1] W. Ackermann, "Solvable Cases of the Decision Problem," in Studies in Logic and the Foundations of
Mathematics, 1954.

[2] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, O. Maler, and N. Jain, "Verification of Timed Auto-
mata via Satisfiability Checking," in Proc. of Formal Techniques in Real-Time and Fault Tolerant
Systems, 2002.

[3] J. Adams, E. Balas, and D. Zawack, "The shifting bottleneck procedure for job shop scheduling," in
Management Science, 1988.

[4] J.-C. Filliatre, S. Owre, H. Rueβ, and N. Shankar, "ICS: Integrated Canonizer and Solver," in Pro-
ceedings of CAV, 2001.

 15

[5] G. Parthasarathy, M. K. Iyer, K.-T. Cheng, and C. Wang, "An Efficient Finite-Domain Constraint
Solver for RTL Circuits," in Proceedings of DAC, 2004.

[6] S. Owre, J. M. Rushby, and N. Shankar, "PVS: A Prototype Verification System," in Proceedings of
CADE, 1992.

[7] D. Kroening, J. Ouaknine, S. A. Seshia, and O. Shtrichman, "Abstraction-Based Satisfiability Solving
of Presburger Arithmetic," in Proceedings of CAV, 2004.

[8] A. J. C. Bik and H. A. G. Wijshoff, "Implementation of Fourier-Motzkin Elimination.," in Technical
Report 94-42, Dept. of Computer Science, Leiden University, 1994.

[9] L. Zhang and S. Malik, "The Quest for Efficient Boolean Satisfiability Solvers," in Proceeding of
CAV, 2002.

[10] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel, "The Small Model Property: How small can it
be?," in Information and computation, vol. 178(1), Oct 2002, pp. 279-293.

[11] O. Strichman, S. A. Seshia, and R. E. Bryant, "Deciding Separation Formulas with SAT," in CAV,
July 2002.

[12] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, "Modeling and Verifying Systems using a Logic of
Counter Arithmetic with Lambda Expressions and Uninterpreted Functions," in Computer-Aided Veri-
fication, 2002.

[13] S. A. Seshia, S. K. Lahiri, and R. E. Bryant, "A Hybrid SAT-based Decision Procedure for Separation
Logic with Uninterpreted Functions," in Proceedings of DAC, 2003.

[14] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, "Deciding CLU logic formulas via Boolean and peudo-
Boolean encodings," in Workshop on Constraints in Formal Verification, 2002.

[15] C. Barrett, D. L. Dill, and J. Levitt, "Validity Checking for Combination of Theories with Equality,"
in Proceedings of FMCAD, 1996.

[16] A. Armando, C. Castellini, E. Giunchiglia, M. Idini, and M. Maratea, "TSAT++: An Open Platform
for Satisfiability Modulo Theories," in Proceedings of Pragmatics of Decision Procedures in Auto-
mated Resonings (PDPAR'04), 2004.

[17] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. V. Rossum, S. Schulz, and R. Sebastiani, "An
Incremental and Layered Procedure for the Satisfiability of Integer Arithmetic Logic," in Proceedings
of TACAS, 2005.

[18] R. Nieuwenhuis and A. Oliveras, "DPLL(T) with Exhaustive Theory Propogation and its Application
to Difference Logic," in CAV, 2005.

[19] C. Wang, F. Ivancic, M. Ganai, and A. Gupta, "Deciding Separation Logic Formulae with SAT by
Incremental Negative Cycle Elimination," in Proceeding of Logic for Programming, Artificial Intelli-
gence and Reasoning, 2005.

[20] M. Talupur, N. Sinha, and O. Strichman, "Range Allocation for Separation Logic," in CAV, 2004.
[21] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, "PBS: A backtrack search pseudo-Boolean solver,"

in Symposium on the Theory and Applications of Satisfiability Testing (SAT), 2002.
[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cambridge, MA: MIT

Press, 1990.
[23] S. Cotton, "Satisfiability Checking with Difference Constraints," in IMPRS Computer Science, Saar-

bruceken, 2005.
[24] V. Pratt, "Two Easy Theories Whose Combination is Hard," in Technical report, MIT, 1977.
[25] G. Ramalingam, J. Song, L. Joscovicz, and R. Miller, "Solving difference constraints incrementally,"

in Alogrithmica, 1999.
[26] O. Strichman, "http://iew3.techninon.ac.il/~ofers."
[27] D. S. Hochbaum, Approximation Algorithms for NP-hard Problems: PWS Publishing Company,

1997.
[28] B. V. Cherkassky and E. Goldberg, "Negative-cycle Detection Algorithms," in European Symposium

on Algorithms, 1996.
[29] R. E. Moore, Interval Analysis. NJ: Prentice-Hall, 1966.
[30] T. Hickey, Q. Ju, and H. V. Emden, "Interval Arithmetic: from principles to implementation," in

Journal of the ACM, 2001.
[31] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, "Chaff: Engineering an Efficient SAT

Solver," in Proceedings of Design Automation Conference, 2001.

