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Abstract Our Approach

Exploiting Texture Cues for Clothing Parsing in Fashion Images c)
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We focus on the problem of parsing fashion images for detecting various types Early Fusion: Texture feature maps are directly merged with the segmentation 'G q. ﬁ
of clothing and style. The current state-of-the-art techniques formulate the feature maps (experimented with merging at various layers). The merging was
problem as segmentation and typically rely on geometrical shapes and position followed by a 5x5 convolutional layer to learn local context in the fused information. @ ® ®

to segment the image. However, specifically for fashion images, each clothing
item is made of specific type of materials with characteristic visual texture
patterns. Exploiting the texture for recognizing the clothing type is an important
cue which has been ignored so far by the state-of-the-art.
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a . Fig 3. Comparison of results of proposed model on Fashionista (left) & CFPD (right).
Motivation
Texture Feature Maps

Late Fusion: The two streams generate score maps for the clothing labels
independently. These two score maps are concatenated and a 1x1 convolutional
layer is applied to obtain the final category maps for each label.

In this paper, we propose a two-stream deep neural network architecture for
fashion image parsing. While the first stream uses the regular fully convolutional
network segmentation architecture to give accurate spatial segments, the
second stream provides texture features learned from handcrafted Gabor
feature maps, and helps in determining the clothing type. Our approach
achieves state-of-the-art results on the standard benchmark datasets, such as
Fashionista and CFPD.
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Outfit Encoder by Tangseng etal. [2] ,’ !' Fig 2. Proposed two-stream architecture for clothing parsing == . ‘
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‘sweater' in the first image and
‘stockings' as ‘skin' in the second,
characteristic  textures of these
clothing items help our model to
disambiguate between them.
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ﬂ Experimental Results
Table 1. Results of various configurations of Table 2. Comparison with the state-of-the-art  in terms of H
Conclusion

Fig 1. Motivation . Fashionista CFPD We show in our experiments that the proposed two-stream model helps in
Fashionista CFPD disambiguating similarly shaped but different textured clothing items, and achieves
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