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We focus on the problem of fine-grained visual classification (FGVC). We posit
that unreasonable effectiveness of the state-of-the-art in this area is because of
similar object categories present in the ImageNet dataset, which allows such
models to be pretrained on a much larger set of samples and learn generic
features for those object categories.

We observe that in FGVC problems, the objects are captured from a small set of
viewing angles only. We notice that subtle differences between object categories
are difficult to pick from an arbitrary angle but easier to identify from a similar
pose. We show in this paper that training specialized pose experts, focusing on
classification from a single, fixed pose, and combining them in an ensemble style
framework successfully exploits the structure in the problem. To highlight the
contribution when the target category features may not be available in a
pretrained network, we test on footwear class.

Datasets Description Experimental Results
reduced (R) networks.

Footwear Dataset: Contribution of ~1000 scraped images’ dataset
corresponding to 12 classes for four different poses. The classes spanned
across: Ankle Boots, Knee High Boots, Formal Shoes, Casual Shoes, Sandals,
Slippers, Ballerinas, Boat Shoes, Clogs, Ethnic Chappal, Ethnic Juti, Heels. The
four poses used were: Facing Left, Facing Right, Diagonal Facing Left and
Diagonal Facing Right.
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Fig 3. Proposed Network Architecture
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Table 1. Performance of Pose Experts v/s Single Network
for all poses. ‘PE Network’ denotes Pose Ensemble Network

Classes

4
8
12

Single Network
LeNet
722 873
637 742
52.1 734

AlexNet VGG16

PE Network

LeNet AlexNet VGG16

88.1 80.7 90.5 90.8
732 73 823 827
721 59.6 791 79.3

Classes

Single Network PE Network

R-AlexNet R-VGG16 R-AlexNet R-VGG16

88.3 88.8 93.1 94.1
775 786 84.5 86.3
76.2 775 82.6 83.5

The tables indicate the viability of replacing a state-of-the-art single deep network with

Fig 5. Activation Maps. Row 1 shows maps from the 4 datasets. Row 2 shows 2 pairs of
images, each belonging to the same class with different viewpoints & discriminative regions.
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Fig 6. Top two most confused class pairs in each of the 4 datasets

Henslow Sparrow

Conclusion

We posit that it's harder for a single network, deep or shallow, to overcome
large intra-class variance and small inter-class variance, as observed from
an arbitrary view, in a data scarce FGVC problem. The classification
problem gets significantly simplified when viewing objects from similar pose.

multiple smaller pose experts. An ensemble of shallower networks with less number of
trainable parameters is thus able to outperform the single deeper networks.
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