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In this supplement, we extend our discussion of the pro-
posed reformulation of point cloud forecasting into 4D oc-
cupancy forecasting. Specifically, we discuss details about
the network architecture of the proposed approach in Sec. 1,
further results on nuScenes, KITTI-Odometry and ArgoV-
erse2.0 in Sec. 2, and the quality of our forecasts separately
on the foreground and background points in Sec. 3.

1. Network details
Architecture implementation We build on top of the
encoder-decoder architecture first proposed by Zeng et
al. [10] for neural motion planning. We extend the version
of this architecture used by Khurana et al. [4] for forecast-
ing occupancy in the birds’-eye-view. The only difference
between our setup and that used in prior work [4], is that we
treat our 4D voxel grid (X x Y x Z x T) as a reshaped 3D
voxel grid (X x Y x ZT), where the Z or height dimension is
incorporated into the channel dimension of the input, allow-
ing us to still make use of 2D convolutions on a 4D voxel
grid. This means that every channel in the input, represents
a slice of the world through the height and time dimensions.

Differentiable renderer We extend the differentiable
raycaster developed by Khurana et al. [4] to 3D and em-
ploy it as the differentiable voxel renderer in our approach.
As in the prior work, we define our set of rays using the
position of the egovehicle in the global coordinate frame as
the origin, and all the LiDAR returns as the end points for
the rays. The 4D voxel grid is initialized with three labels
- empty, occupied and unknown based on the returns in the
LiDAR sweeps. Each ray is traversed using a fast voxel
traversal algorithm [2]. Given all the voxels and their oc-
cupancies along a ray, we compute the expected distance
the ray travels through the voxel grid. This is same as vol-
ume rendering but in a discretized grid [6]. The gradient of
the loss between this expected distance and the groundtruth
distance is backpropagated to all the voxels traversed by the
ray. Note that when a ray does not terminate within the
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voxel grid volume, we put all the probability mass of occu-
pancy at the boundary of the voxel grid, similar to Milden-
hall et al. [6]. This means that when a ray passes through
occupancy regions that are empty (refer occupancy visuals
in the main draft and supplementary video), the rays results
in a point at the boundary of the voxel grid.

Dataset training and testing splits We use the official
train and validation splits of nuScenes and ArgoVerse2.0.
Only when comparing results on KITTI-Odometry with
ST3DCNN [5], we follow their dataset splits for training
and testing. These dataset splits allow us to draw apples-to-
apples comparisons with state-of-the-art approaches.

2. Additional results
2.1. nuScenes

Results with confidence thresholding We supplement
the results in the main paper by evaluating the point cloud
forecasts of SPFNet [8] and S2Net [7] by thresholding
points at a recommended confidence threshold of 0.05.
Qualitatively in Fig. 1, we observe point clouds from SOTA
that only consist of high confidence LiDAR returns close
to the ground plane, because of which we perform quanti-
tatively much better than these baselines on our ray-based
metrics. We summarise these results in Tab. 1.

Access to ground-truth egoposes during evaluation
Note that in our proposed formulation of 4D occupancy
forecasting, we view the LiDAR point clouds used during
training as just another observation of the world, which
in our case, happens to come from the view of the ego-
vehicle. In reality, this LiDAR measurement of occupancy
could have also come from any other observer in the world.
Similarly, during evaluation, the only LiDAR measurement
we have access to comes from the view of the ego-vehicle,
making this the only datapoint to evaluate our occupancy
forecasts against. This creates an apparent advantage for
our method when comparing to point cloud forecasting ap-
proaches because they do not have access to ground-truth
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Method Horizon L1 (m) AbsRel (%) Chamfer Distance (m2)
Near-field Vanilla

S2Net [7] 1s 2.88 20.57 4.61 11.77
3s 4.97 24.79 13.10 30.95

SPFNet [8] 1s 5.30 30.12 21.24 45.12
3s 5.70 28.65 20.99 44.71

Ray tracing 1s 1.50 14.73 0.54 0.90
3s 2.44 26.86 1.66 3.59

Ours 1s 1.40 10.37 1.41 2.81
3s 1.71 13.48 1.40 4.31

Table 1. Results on nuScenes [3] with confidence filtering on
SPFNet and S2Net. As described in the main paper we thresh-
old the points at a recommended confidence threshold of 0.05. We
see that the conclusions made from the proposed metrics are more
in line with the qualitative results in Fig. 1. This once again reit-
erates the need for metrics that intuitively evaluate the underlying
geometry of the scene instead of uncorrelated samples of the scene
(e.g., points in space).

Method GT Egoposes L1 (m) AbsRel (%) Chamfer Distance (m2)
Near-field Vanilla

Ray tracing Yes 2.44 26.86 1.66 3.59
Ray tracing No 2.50 26.35 1.60 3.39

Ours Yes 1.71 13.48 1.40 4.31
Ours No 1.84 13.95 1.50 4.50

Table 2. We experiment with using a simple linear dynamics based
motion planner that can replace the ground-truth future egoposes
used in our analysis. Our experiments prove that even in the ab-
sence of access to ground-truth future egoposes – which are not a
concern from the viewpoint of our formulation but only a means to
evaluate the occupancy predictions – simple linear dynamics mod-
els such as those based on constant velocity, suffice.

egoposes from the future. To alleviate this concern, first,
we use the future ground-truth egoposes to align all point
cloud forecasts to a global coordinate frame. Only after do-
ing this, all the reported metrics are computed for the base-
lines. Second, we employ a simple motion planner based on
linear dynamics, and use these planned future egoposes for
evaluating our own method. We see that the metrics drop
marginally, showing that the dependence of our method on
ground-truth egoposes from the future is not a concern. This
is also true for the ray tracing baseline, results of which are
summarised in Tab. 2.

2.2. KITTI-Odometry

Qualitative results We supplement the quantitative re-
sults in the main paper with qualitative results in Fig. 2.
As noted before, the trends are similar to nuScenes.

2.3. ArgoVerse2.0

We benchmark ArgoVerse2.0 in Tab. 3 and compare the
ray tracing baseline to our method. We see that the ray trac-
ing baseline is strong and performs better than our method

Method Horizon L1 (m) AbsRel (%) Chamfer Distance (m2)
Near-field Vanilla

Ray tracing 1s 2.39 15.43 0.56 1.90
3s 3.72 25.24 2.50 11.59

Ours 1s 2.25 10.25 1.53 60.94
3s 2.86 14.62 2.20 69.81

Table 3. Quantitative results on the ArgoVerse2.0 [9] dataset. We
compare our method trained on the ArgoVerse2.0 dataset to the ray
tracing baseline and find similar trends to nuScenes and KITTI-
Odometry.

in terms of the Chamfer distance. Yet, our method is able
to forecast better scene geometry in the near-field, than the
ray tracing baseline as suggested by the ray-based metrics.

Note that the high vanilla Chamfer distance for ArgoV-
erse2.0 is due to the fact that the its LiDAR is long-range
(up to 200m) and we focus on points only withing the
bounded volume. We also clarify that we always test cross-
sensor generalization between KITTI-Odometry and Argo-
Verse2.0, with training on ArgoVerse2.0 because (1) both
datasets have the same number of LiDAR beams and point
clouds are captured at the same frequency, and (2) Argo-
Verse2.0 is a much larger and diverse dataset than KITTI-
Odometry that is suitable for pretraining.

3. Foreground vs. background query rays
In order to further analyse the variants of our architec-

ture, we separate the query rays as belonging to foreground
or background regions, using the labels from nuScenes’ Li-
DARSeg [1]. We evaluate both the regions using both the
new and old metrics in Table 5 and Table 6.

Poor performance on foreground objects Our main ob-
servation is that all the variants perform poorly on the fore-
ground objects (which includes moving or stationary fore-
ground objects) as compared to the background. This is
because a large number of rays and voxels (more than 90%)
belong to background regions and thus, the foreground ob-
jects are downweighted during the training process. Even
when the combined evaluation of foreground and back-
ground regions is considered (Table 3 in main draft), we see
that the poor performance on the foreground fails to mate-
rialize in the metrics. This hints are improving the metrics
and methods to focus more on the forecasting of foreground
objects, especially those in motion.

Strengths of each variant Another observation stem-
ming from the above fact is that even with this disentangled
evaluation on foreground, the static variant is the strongest
baseline for short-horizon forecasting (1s). On 3s forecast-
ing, the dynamic variant shines on the ray-based evaluation
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Figure 1. Qualitative results on the nuScenes dataset on three different sequences at different time horizons. We compare the point
cloud forecasts of our approach with the aggregation-based ray tracing baseline and S2Net [7], SPFNet [8] with confidence filtering, after
applying a recommended confidence threshold of 0.05 on the point clouds. Our forecasts look significantly crisper than the SOTA, however
we see that the ray tracing baseline is also a strong baseline. We visualize a render of the learnt occupancy and the color encodes height
along the z-axis.

Ours (Occupancy)Ours (Point cloud)Groundtruth ST3DCNN Raytracing

t = 0.6s

t = 1.8s

t = 3.0s

Figure 2. Qualitative results on KITTI-Odometry on three different sequences at different time horizons. We compare the point cloud
forecasts of ST3DCNN [5] and the ray tracing baseline. We see that this SOTA is qualitatively more geometry-aware than the SOTA on
nuScenes. However, our method is still more reflective of the true rigid geometry of the underlying world. We visualize a render of the
learnt occupancy and the color encodes height along the z-axis.
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Config Horizon
Pedestrians Vehicles All foreground Background

L1 AbsRel Chamfer Dist. L1 AbsRel Chamfer Dist. L1 AbsRel Chamfer Dist. L1 AbsRel Chamfer Dist.
N.f. Vanilla N.f. Vanilla N.f. Vanilla N.f. Vanilla

Ray tracing 1s 6.09 37.18 61.30 66.79 3.53 28.82 16.92 21.19 3.72 34.47 16.09 19.45 1.39 12.51 0.49 0.85
Ours 1s 6.43 34.89 79.63 68.60 3.61 25.28 21.47 22.59 3.61 28.33 18.19 19.05 1.33 8.82 1.44 3.02

Raytracing 3s 7.84 46.42 92.86 92.97 5.29 44.25 26.99 38.22 5.52 51.48 25.66 35.32 2.27 23.50 1.60 3.48
Ours 3s 6.58 34.72 78.47 71.99 4.11 29.73 22.28 28.36 4.14 33.22 18.59 22.57 1.61 11.48 1.43 4.63

Table 4. We extend our metrics analysis to pedestrians, vehicles, movable foreground and static background objects separately. Since, we
are not able to compute these category-wise metrics for the state-of-the-art [7, 8] due to historical reasons, we do this for the ray tracing
baseline. In summary, we find that our method outperforms this otherwise strong baseline at long-horizon forecasting. However, in the
short-horizon the ray tracing baseline is a strong one; sometimes doing better and other times performing at par with our proposed method.

Arch. Horizon L1 (m) AbsRel (%) Chamfer Distance (m2)
Near-field Vanilla

S 1s 3.28 26.14 13.52 15.35
3s 4.10 32.25 19.25 23.05

D 1s 3.61 28.33 18.19 19.05
3s 4.14 33.22 18.59 22.57

S + R 1s 3.28 25.34 13.95 15.01
3s 4.11 31.65 19.91 25.29

Table 5. Performance analysis on foreground query rays on
nuScenes [3] for the different architecture variants introduced in
the main draft, static (S), dynamic (D) and residual (S+R).

Arch. Horizon L1 (m) AbsRel (%) Chamfer Distance (m2)
Near-field Vanilla

S 1s 1.22 7.89 1.10 3.74
3s 1.64 11.65 1.43 4.00

D 1s 1.33 8.82 1.44 3.02
3s 1.61 11.48 1.43 4.63

S + R 1s 1.29 8.48 1.07 3.52
3s 1.74 12.01 1.56 3.78

Table 6. Performance analysis on background query rays on
nuScenes [3] for the different architecture variants introduced in
the main draft, static (S), dynamic (D) and residual (S+R).

of background objects (some unseen background regions
may only appear at future timesteps) and the residual vari-
ant shines on the ray-based evaluation of foreground ob-
jects (possibly decouples the foreground from background
regions better).

Comparison to the ray tracing baseline Given the
strength of the ray tracing baseline, we investigate its per-
formance on foreground and background objects in com-
parison to our approach in Tab. 4. This time we further
divide foreground objects into subcategories of pedestrains
and vehicles, while also reporting the metrics on all fore-
ground objects. Note that the according to the vocabulary
of nuScenes, apart from different types of pedestrians and

vehicles, miscellaneous movable objects like traffic cones
and barriers are included in the umbrella category of fore-
ground objects. We have the following findings:

1. For long-horizon forecasting, our method consistently
does better than the ray tracing baseline, for both all
types of foreground objects and background objects.

2. For short-horizon forecasting, the ray tracing baseline
performs at par with our method and sometimes even
better (on most types of foreground objects), hence
proving to be a strong yet simple and non-learnable
approach.
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